检测与传感器98724
传感器与检测技术实验报告

传感器与检测技术实验报告一、实验目的本次实验旨在深入了解传感器与检测技术的基本原理和应用,通过实际操作和数据测量,掌握常见传感器的特性和检测方法,培养我们的实践能力和解决问题的思维。
二、实验设备与材料1、传感器实验箱,包含各类常见传感器,如电阻式传感器、电容式传感器、电感式传感器、光电式传感器等。
2、数字万用表、示波器。
3、实验连接导线若干。
三、实验原理1、电阻式传感器电阻式传感器是将被测量的变化转换为电阻值的变化。
常见的有应变式电阻传感器和热敏电阻传感器。
应变式电阻传感器基于电阻应变效应,当受到外力作用时,其电阻丝发生形变,从而导致电阻值的变化;热敏电阻传感器则根据温度的变化改变自身电阻值。
2、电容式传感器电容式传感器是将被测量的变化转换为电容值的变化。
主要有变极距型、变面积型和变介质型电容传感器。
其工作原理基于电容的定义式 C =εS/d,其中ε 为介质的介电常数,S 为两极板的相对面积,d 为两极板间的距离。
3、电感式传感器电感式传感器是利用电磁感应原理将被测量转换为电感量的变化。
包括自感式和互感式传感器。
自感式传感器通过改变线圈的自感系数来反映被测量;互感式传感器则是根据互感系数的变化进行测量。
4、光电式传感器光电式传感器是把被测量的变化转换成光信号的变化,然后通过光电元件转换成电信号。
常见的有光电管、光电倍增管、光敏电阻、光敏二极管和光敏三极管等。
四、实验内容与步骤1、电阻式传感器实验(1)连接应变式电阻传感器到实验电路,施加不同的外力,用数字万用表测量电阻值的变化,并记录数据。
(2)将热敏电阻传感器接入电路,改变环境温度,测量电阻值,绘制温度电阻曲线。
2、电容式传感器实验(1)分别连接变极距型、变面积型和变介质型电容传感器到实验电路,改变相应的参数,如极距、面积或介质,用示波器观察输出电压的变化。
(2)记录不同参数下的输出电压值,分析电容值与输出电压的关系。
3、电感式传感器实验(1)连接自感式传感器,改变磁芯位置或气隙大小,测量电感值的变化。
传感器与检测技术课程设计

传感器与检测技术课程设计项目背景传感器与检测技术是现代工业自动化和信息化的核心技术之一,广泛应用于汽车、机器人、航空航天等多个领域。
随着物联网和智能制造技术的发展,对传感器与检测技术的需求也越来越大。
本课程设计旨在通过理论学习和实验操作,让学生掌握传感器的工作原理、分类、应用场景及与检测技术的结合。
同时培养学生的动手能力和实验设计能力。
课程设计思路本课程设计分为三个部分:理论学习、实验操作和课程作业。
理论学习部分为课堂教学,主要介绍传感器的基本原理、分类和应用场景。
实验操作部分为实验室环节,将学生分成小组,进行传感器电路的实际连接和数据采集。
课程作业部分为学生的自主设计和实现任务,要求学生独立完成传感器电路设计和数据采集,并用实验数据进行分析和解释。
以下是具体的课程设计内容:理论学习1.传感器的定义和基本原理2.传感器的分类和应用场景3.传感器与检测技术的结合实验操作1.传感器基础实验:温度传感器的电路连接和数据采集2.模拟信号处理实验:光敏传感器的电路连接和数据采集3.数字信号处理实验:红外传感器的电路连接和数据采集课程作业学生自主设计一个传感器的电路连接和数据采集实验,并完成以下任务:1.说明选用传感器的原因和应用场景2.设计传感器的电路连接图和程序3.完成数据采集和存储4.对实验数据进行分析和解释5.提交实验报告并进行展示教学方法本课程设计采用以下教学方法:1.课堂讲授:引导学生对传感器的基本原理、分类和应用场景的了解和认识。
2.实验操作:通过小组实验操作,让学生亲身体验传感器电路的连接和实验数据的采集。
3.课程作业:培养学生的实验设计和数据分析能力,提高学生的动手能力和实践能力。
4.实验报告:对学生的实验结果进行评估,考察学生真正掌握传感器的工作原理和应用。
教学资源1.教材:传感器与检测技术第2版,作者:张云波。
2.实验室设备:温度传感器、光敏传感器、红外传感器等。
3.实验工具:万用表、示波器、数据采集卡等。
传感器及检测技术培训pptx

工业自动化领域应用案例
1 2 3
温度传感器
在工业生产线上,温度传感器被广泛应用于监测 环境温度、设备温度等,以确保生产过程的稳定 性和安全性。
压力传感器
压力传感器在工业自动化领域具有重要地位,用 于监测管道压力、气缸压力等,以实现精确的流 程控制和设备保护。
流量传感器
流量传感器被用于测量液体或气体的流量,对于 化工、石油等行业的生产流程至关重要。
热电式传感器
利用热电效应,将 温度变化转换为电 信号。
传感器应用领域
智能家居
用于实现家庭环境的智能化控 制,如温度调节、照明控制等 。
医疗电子
用于监测人体生理参数,如体 温、血压、心率等。
工业自动化
用于监测和控制生产过程中的 各种参数,如温度、压力、流 量等。
汽车电子
用于监测和控制汽车的各种状 态,如车速、油量、胎压等。
智能家居领域应用案例
红外传感器
01
红外传感器在智能家居中用于人体感应,如自动开关灯、自动
门等,提高家居便利性和节能性。
烟雾传感器
02
烟雾传感器是智能家居安全系统的重要组成部分,用于监测室
内烟雾浓度,及时发出警报,保障家庭安全。
温湿度传感器
03
温湿度传感器被用于智能家居环境中,监测室内温湿度变化,
为用户提供舒适的居住环境。
电感式检测
利用电感线圈在被测物体上产生的电磁感应现象,通过测量电感量 的变化来检测被测物体的位移、振动等参数。
压电式检测
利用压电元件在被测物体上产生的压电效应,通过测量电荷量的变 化来检测被测物体的压力、加速度等参数。
复合式检测技术
光电复合检测
将光学检测和电学检测相结合,利用光电转换器件将光信 号转换为电信号进行测量,具有高精度、高灵敏度等优点 。
传感器与检测技术(周杏鹏)第一章

1.3 传感器与检测系统的分类
2. 按被测参量的检测转换方法分类
➢电磁转换 电阻式、应变式、压阻式、热阻式、电感式、互感式、电容
式、阻抗式、磁电式、 热电式、压电式、霍尔式、振频式、感 应同步器、磁栅等;
➢光电转换
光电式、激光式、红外式、光栅、光导纤维式等;
➢其他能/电转换 声/电转换、辐射能/电转换、化学能/电转换等。
目前七页\总数四十一页\编于十六点
1.1 传感器与检测技术的地位与作用
➢生活中化学成分的检测
利用化学反应机理检测成分,上图为酒精检测仪, 右图为空气质量检测仪。
目前八页\总数四十一页\编于十六点
1.1 传感器与检测技术的地位与作用
➢防火防盗和见用电器安全检测
左图为漏电报警器,上图为烟 雾报警器。
4. 信号处理 现代检测仪表、检测系统中的信号处理模块通
常以各种型号的嵌入式微控制器、专用高速数据处 理器(DSP)或为核心来直接采用工业控制计算机
构建。
目前十九页\总数四十一页\编于十六点
1.2 检测系统的组成
基于ARM9核的嵌入式 控制器
DSP处理芯片
目前二十页\总数四十一页\编于十六点
1.2 检测系统的组成
“工业用表”:是长期使用于实际工业生产现场的检测 仪表与检测系统。
目前三十四页\总数四十一页\编于十六点
绪论
1.1 传感器与检测技术的地位与作用 1.2 检测系统的组成 1.3 传感器与检测系统的分类 1.4 传感器与检测技术的发展趋势
目前三十五页\总数四十一页\编于十六点
1.4.1 传感器的发展方向
传感器技术的主要发展动向,一是深入开展基 础和应用研究,探索新现象、研发新型传感器;二 是研究和开发新材料、新工艺,实现传感器的集成 化、微型化与智能化。
传感器与检测技术ppt课件第一章

2024/2/29
16
1.2检测技术理论基础
1.2.2 测量方法
1) 直接测量、间接测量和组合测量 (又称联立 测量)。经过求解联立方程组,才能得到被测物理量的最后
结果,则称这样的测量为组合测量。
2) 偏差式测量、零位式测量与微差式测量
3) 等精度测量与非等精度测量
4) 静态测量与动态测量
2024/2/29
2024/2/29
23
2024/2/29
3
1.1.3 传感器基本特性
当传感器的输入信号是常量,不随时间变化时,其 输入输出关系特性称为静态特性。
传感器的基本特性是指系统的输入与输出关系特性 ,即传感器系统的输出信号y(t)和输入信号(被测 量)x(t)之间的关系,传感器系统示意图如下图所 示。
2024/2/29
4
1.1.3 传感器基本特性
2.传感器的分类
(1)按照其工作原理,传感器可分为电参数式(如电阻式、 电感式和电容式)传感器、压电式传感器、光电式传感器及 热电式传感器等。
(2)按照其被测量对象,传感器可分为力、位移、速度、 加速度传感器等。常见的被测物理量有机械量、声、磁、温 度和光等。
(3)按照其结构,传感器可分为结构型、物性型和复合型 传感器。物性型传感器是依靠敏感元件材料本身物理性质的 变化来实现信号变换,如:水银温度计。结构型传感器是依 靠传感器结构参数的变化实现信号变换,如:电容式传感器。
敏感元件输出的物理量转换成适于传输或测量电信号 的元件。
测量电路(measuring circuit): 将转换
元件输出的电信号进行进一步转换和处理的部分,如 放大、滤波、线性化、补偿等,以获得更好的品质特 性,便于后续电路实现显示、记录、处理及控制等功 能。
传感器与检测技术基础

转换元件 它是将敏感元件输出的非电信号直接转换为电信号,或直接将被测非电信号转换为电信号(如应变式压力传感器的电阻应变片,它作为转换元件将弹性敏感元件的输出转换为电阻)。 转换电路 它能把转换元件输出的电信号转换为便于显示、处理和传输的有用信号。
传感器的分类 传感器技术是一门知识密集型技术。
1.2 测量误差与准确度
3)恰为第n位单位数字的0.5,则第n位为偶数或零时就舍去,为奇数时则进1。 (2)参加中间运算的有效数字的处理 1)加法运算:运算结果的有效数字位数应与参与运算的各数中小数点后面的有效位数相同。 2)乘除运算:运算结果的有效数字位数,应与参与运算的各数中有效位数最小的相同。 3)乘方及开方运算:运算结果的有效数字位数比原数据多保留一位。 4)对数运算:取对数前后有效数字位数应相同。 2.测量数据的处理 常用的数据处理方法有列表法、图示法、最小二乘法线性拟合。
列表法 列表法是把被测量的数据列成表格,可以简明地表示有关物理量之间的对应关系,便于随时检查测量结果是否合理,及时发现和分析问题。
01
图示法 图示法是用图形或曲线表示物理量之间的关系,它能更直观地表示物理量之间的变化规律,如递增或递减。
02
最小二乘法线性拟合 图示法虽然能很直观方便地将测量中的各种物理量之间的关系、变化规律用图像表示出来,但是,在图像的绘制上往往会引起一些附加的误差。
1.1 传感器简述
1.1 传感器简述
1)超调量σ:传感器输出超出稳定值而出现的最大偏差,常用相对于最终稳定值的百分比来表示。 2)延滞时间td:阶跃响应达到稳态值的50%所需要的时间。 3)上升时间tr:传感器的输出由稳态值的10%变化到稳态值的90%所需的时间。 4)峰值时间tp:传感器从阶跃输入开始到输出值达到第一个峰值所需的时间。 5)响应时间ts:传感器从阶跃输入开始到输出值进入稳态值所规定的范围内所需的时间。 (2)频率响应法 频率响应法是从传感器的频率特性出发研究传感器的动态特性。
传感器与检测技术ppt课件
控制系统的自动化水平高低。
传感器的选用主要取决于建模参数和被测 量、测量精度和灵敏度要求以及测量系统的 成本等因素。
(4) 传感器的品质参数 灵敏度 分辨率 准确度 精密度
重复性
线性度
灵敏度
灵敏度反映传感器对被测量变化的 响应能力。
O S I
输出变化量
输入变化量
分辨率
如果已知总体精度上限,要计算各部件的 误差,则假定各部件误差对总精度的影响 是均等的。
f N xi xi n
N xi f n xi
[实例]已知角速度与作用力的关系式 试求转速的不确定性。 [解]
F 5 0 0 3 1 6 . 2 3 m r 0 . 20 . 0 2 5
霍尔传感器的应用—— 测量焊接电流
在标准的园环铁芯开一 小缺口,将霍尔元件放在 缺口处,被测电流的导线 穿过铁心时就产生磁场B, 则霍尔传感器有输出。当 测出的小于 规定的焊接电流时,可 控硅的导通角增大,焊接 电流变大,测出的电压大 于规定的焊接电流时,可 控硅的导通角减,焊接电 流变小,控制焊接回路的 电流。
性;
没有机械电位器特有的滑片,彻底解决了滑 片接触不良的问题;体积小,节省空间,易于装 配;寿命长,可靠性高。
数字电位器与机械式电位器的区别
类 特 型 性 机 无 械 源 式 数 有 字 源 式 电阻变 调节 位置 自动 化规律 方法 记忆 复位 连续 变化 阶梯 变化 手动 有 没有 使用 体 寿命 积 短 大
为减小零点残余电压的影响,一般要用电路进行补偿, 电路补偿的方法较多,可采用以下方法。
• 串联电阻:消除两次级绕组基波分量幅值上的差异;
• 并联电阻电容:消除基波分量相差,减小谐波分量;
测试技术与传感器实验报告.(DOC)
测试技术与传感器实验报告班级:学号:姓名:任课老师:年月日实验一:静压力传感器标定系统一、实验原理:压力传感器输入—输出之间的工作特性,总是存在着非线性、滞后和不重复性,对于线性传感器(如压力传感器)而言,就希望找出一条直线使它落在传感器每次测量时实际呈现的标准曲线内,并相对各条曲线上的最大偏离值与该直线的偏差为最小,来作为标定工作直线。
标定工作线可以用直线方程=+表示。
y kx b对压力传感器进行静态标定,就是通过实验建立压力传感器输入量与输出量=+使它落之间的关系,得到实际工作曲线,然后,找出一条直线y kx b在实际工作曲线内,由于方程中的x和y是传感器经测量得到的实验数据,因此一般采用平均斜率法或最小二乘法求取拟合直线。
本实验通过最小二乘法求取拟合直线,并通过标定曲线得到其精度。
即常用静态特性:工作特性直线、满量程输出、非线性度、迟滞误差和重复性。
二、准备实验:1)调节活塞式压力计底座四个调节旋钮,使整个活塞式压力计呈水平状态如图6所示;2)松开活塞筒缩紧手柄,将活塞系统从前方绕水平轴转动,使飞轮在水平转轴上方且活塞在垂直位置锁紧,调整活塞系统底座下部滚花螺母,使活塞筒上的水平仪气泡居于中间位置,如图6,并紧固调水平处的滚花螺母;图6 调节好,已水平3)被标定三个压力传感器接在截止阀上(参见下图7),打开截止阀、进气调速阀、进油阀,关闭进气阀和排气阀,将微调器的调节阀门旋出15mm左右位置;4)打开空气压缩机,待空气压缩机压力达到0.4MPa时,关闭压气机。
因为对于最大量程为0.25MPa的活塞式压力计,压力必须小于等于0.4MPa。
5)打开采集控制柜开关,检查串口连接情况。
双击桌面的“压力传感器静态标定”软件,进入测试系统,如图7所示。
图7 压力传感器标定系统6)新建实验单击工具栏“新建”按钮或者菜单栏“系统”下拉菜单中“新建实验”,在弹出的对话框中,输入学生姓名、学号和指导老师等信息后,点击登录即可开始做实验,如图8所示。
传感器及检测技术重点知识点总结
传感器及检测技术重点知识点总结传感器是一种能够感知环境中各种参数并将其转化为可量化的电信号输出的设备。
检测技术则是利用传感器对环境中各种参数进行检测和监测的技术。
以下是传感器及检测技术的重点知识点总结:1.传感器的基本原理:传感器的基本原理是将被测物理量转化为与之成正比的电信号输出。
传感器中常用的原理包括电阻、电容、电感、磁电效应、光电效应等。
2.传感器的分类:传感器可以根据测量参数的类型进行分类,如力传感器、温度传感器、湿度传感器、压力传感器等;也可以根据传感器的工作原理进行分类,如光传感器、声传感器、气体传感器、生物传感器等。
3.传感器的特性:传感器的特性包括精度、灵敏度、稳定性、线性度、响应时间等。
精度是指传感器输出与实际值之间的偏差;灵敏度是指传感器输出信号随被测量变化的程度;稳定性是指传感器输出信号在长时间内的稳定程度;线性度是指传感器输出与被测量之间的线性关系;响应时间是指传感器从检测到信号输出的时间。
4.传感器信号的处理和调节:传感器输出的信号常常需要经过放大、滤波、校准和线性化处理后才能得到有效的结果。
放大可以增大传感器输出信号的幅度;滤波可以去除传感器输出信号中的噪声;校准可以修正传感器输出的非线性特性;线性化可以将传感器输出信号与被测量参数之间建立线性关系。
5.传感器网络和通信技术:近年来,随着物联网的兴起,传感器网络和通信技术也得到了迅速发展。
传感器网络是一种由分布在空间中的大量传感器节点组成的网络,通过无线通信技术实现节点之间的数据传输。
这种网络可以实现大范围的环境监测和数据采集。
6.检测技术的应用领域:传感器及检测技术广泛应用于各个领域,如环境监测、医疗健康、交通运输、工业自动化等。
在环境监测方面,传感器可以用于测量环境中的温度、湿度、气体含量等;在医疗健康方面,传感器可以用于监测人体的心率、体温、血压等;在交通运输方面,传感器可以用于监测车辆的速度、加速度、位置等;在工业自动化方面,传感器可以用于监测生产线上的温度、压力、流量等。
传感器与检测技术(第2版)全套课件
传感器与检测技术(第2版)
(3)组合测量。若被测量必须经过求解联立方程组才能得 到最后结果,则这种测量方法称为组合测量。组合测量是一种 特殊的精密测量方法,操作手续复杂,花费时间长,多用于科 学实验等特殊场合。 2.等精度测量与不等精度测量
用相同仪表与测量方法对同一被测量进行多次重复测量, 称为等精度测量。
用不同精度的仪表或不同的测量方法,或在环境条件相差 很大时对同一被测量进行多次重复测量称为非等精度测量。
传感器与检测技术(第2版)
3.偏差式测量、零位式测量和微差式测量
(1)偏差式测量。在测量过程中,用仪表指针的位移(即 偏差)决定被测量值,这种测量方法称为偏差式测量。仪表上 有经过标准量具校准过的标尺或刻度盘。在测量时,利用仪表 指针在标尺上的示值,读取被测量的数值。偏差式测量简单、 迅速,但精度不高,这种测量方法广泛应用于工程测量中。
1.1 测量方法及检测系统的组成
1.1.1 测量的基本概念
在科学实验和工业生产中,为了及时了解实验进展情况、 生产过程情况以及它们的结果,人们需要经常对一些物理量, 如电流、电压、温度、压力、流量、液位等参数进行测量,这 时人们就要选择合适的测量装置,采用一定的检测方法进行测 量。
测量是人们借助于专门的设备,通过一定的方法,对被测 对象收集信息、取得数据概念的过程。为了确定某一物理量的 大小,就要进行比较,因此,有时也把测量定义为“将被测量 与同种性质的标准量进行比较,确定被测量对标准量倍数的过
传感器与检测技术(第2版)
1.直接测量、间接测量与组合测量
(1)直接测量。用事先分度或标定好的测量仪表,直接读 取被测量值的方法称为直接测量。例如,用电磁式电流表测量
电路的某一支路电流、用电压表测是工程技术中大量采用的方法, 其优点是测量过程简单而又迅速,但不易达到很高的测量精度。