改性 ZSM5分子筛上乙醇胺催化胺化合成乙撑胺

合集下载

《不同体系下ZSM-5分子筛的合成及其催化性能研究》

《不同体系下ZSM-5分子筛的合成及其催化性能研究》

《不同体系下ZSM-5分子筛的合成及其催化性能研究》篇一一、引言随着科技的发展和人们对可持续性化工生产的重视,ZSM-5分子筛在各种化学反应中的使用愈发重要。

作为工业生产中的核心催化剂之一,其独特的晶体结构和卓越的吸附与分离能力赋予了其在多相催化中无与伦比的地位。

由于ZSM-5分子筛的合成工艺和条件对催化剂的形态、结构及性能有着重要影响,本文旨在研究不同体系下ZSM-5分子筛的合成方法及其催化性能。

二、ZSM-5分子筛的合成1. 传统水热合成法传统的水热合成法是制备ZSM-5分子筛的常用方法。

该法通常采用四乙基氢氧化铵(TEAOH)为模板剂,利用NaOH或KOH 为矿化剂,将铝源(如氢氧化铝、拟薄水铝石)与硅源(如硅溶胶、白炭黑)进行反应。

该体系在特定的温度和压力下形成凝胶,经水热老化后得到ZSM-5分子筛。

2. 干凝胶转化法干凝胶转化法是一种新型的合成方法,其优点在于无需使用大量的溶剂。

该方法以有机胺为模板剂,通过干凝胶的转化过程,使硅铝酸盐在无水环境下形成ZSM-5分子筛。

此方法制备的ZSM-5分子筛具有较高的结晶度和均匀的粒径。

3. 溶剂热合成法溶剂热合成法利用不同的溶剂体系进行合成。

除了常用的水体系外,甲醇、乙醇等有机溶剂也被广泛用于ZSM-5分子筛的合成。

不同的溶剂体系会影响ZSM-5分子筛的晶型、形貌及孔道结构,从而影响其催化性能。

三、不同体系下ZSM-5分子筛的催化性能研究1. 催化裂化反应在催化裂化反应中,ZSM-5分子筛的酸性位点和孔道结构对其催化性能有着重要影响。

在不同体系下合成的ZSM-5分子筛具有不同的酸性和孔道结构,因此在催化裂化反应中表现出不同的活性。

研究表明,干凝胶转化法合成的ZSM-5分子筛具有较高的裂化活性和选择性。

2. 甲醇制汽油反应(MTG)甲醇制汽油反应是一种重要的化工反应,ZSM-5分子筛是该反应的主要催化剂之一。

不同体系下合成的ZSM-5分子筛在MTG反应中表现出不同的活性。

ZSM-5分子筛合成和改性的研究进展

ZSM-5分子筛合成和改性的研究进展

ZSM-5分子筛合成和改性的研究进展摘要:ZSM-5分子筛在工业中应用广泛。

本文详细阐述了ZSM-5沸石分子筛的各种合成方法,并介绍了常用的高温水热处理、金属改性和磷改性等改性技术现状及其应用。

关键词:ZSM-5,分子筛,合成,改性ZSM-5沸石分子筛是Mobil公司于20世纪70年代开发的一种高硅三维交叉直通道的新结构沸石分子筛。

ZSM-5分子筛属高硅五元环型沸石,其基本结构单元由8个五元环组成,这种基本结构单元通过共边联结成链状结构,然后再围成沸石骨架,其理想晶胞组成为:Na n(Al n Si96-n O192)·16H2O。

该沸石分子筛亲油疏水,热和水热稳定性高,大多数的孔径为0.55nm左右,属于中孔沸石。

由于其独特的孔结构不仅为择形催化提供了空间限制作用,而且为反应物和产物提供了丰富的进出通道,也为制备高选择性、高活性、抗积炭失活性能强的工业催化剂提供了晶体结构基础。

由此,其成为了石油工业中择形反应中最重要的催化材料之一。

不仅如此,ZSM-5分子筛在精细化工和环境保护等领域中也得到了广泛的应用。

因此,对ZSM-5分子筛的研究具有重要的理论意义和实践价值。

本文在介绍ZSM-5分子筛结构的基础上,分析总结了ZSM-5分子筛的各种合成方法,如有机胺合成,无机胺合成等方法。

此外,浅述了ZSM-5分子筛在改性方面的研究,以及未来ZSM-5分子筛的重点研究方向。

1 ZSM-5分子筛的结构ZSM-5分子筛属于正交晶系,晶胞参数[1]为a=2.017nm,b=1.996nm,c=1.343nm。

ZSM-5的晶胞组成可表示为Na n(Al n Si96-n O192)·16H2O。

式中n是晶胞中Al原子个数,可以由0~27变化,即硅铝物质的量比可以在较大范围内改变,但硅铝原子总数为96个。

ZSM-5分子筛的晶体结构由硅(铝)氧四面体所构成。

硅(铝)氧四面体通过公用顶点氧桥形成五元硅(铝)环,8个这样的五元环组成ZSM-5分子筛的基本结构单元。

ZSM-5分子筛的合成与应用研究进展

ZSM-5分子筛的合成与应用研究进展

ZSM-5分子筛的合成与应用研究进展摘要:ZSM-5分子筛由于其特殊的骨架结构被广泛应用。

然而,ZSM-5分子筛传统的合成方法需使用大量溶剂和添加有机胺或无机胺作模板剂,使用大量溶剂会造成浪费,而模板剂大多成本高,有机模板剂毒性大,这些均不利于经济和环境友好,故此,研究者们对ZSM-5分子筛的合成技术进行了发展。

综述了当前ZSM-5分子筛主要的合成拔术;重点介绍了ZSM-5分子筛的水热合成法、微波合成法、干凝胶合成法以及无溶剂合成法,并总结了各自的优缺点;简要介绍了ZSM-5分子筛在传统工业及新领域方面的应用,对ZSM-5分子筛的未来进行了展望。

1 ZSM-5分子筛的合成方法1.1水热合成法水热合成法是指在热压釜中加入一定比例的硅源、铝源、碱源、水、模板剂等物质,通过调节压力和温度,析出ZSM-5晶体的方法。

水热合成法是目前合成分子筛广泛采用的方法,可根据模板剂种类不同进行分类。

1.1.1以季铵盐及有机胺类为模板剂结构导向剂通常称为模板剂,用于指导分子筛的形成和稳定分子筛骨架结构。

水热合成法中常用季铵盐及有机胺类作为模板剂3〕,合成的分子筛具有较高的结晶度,可以得到粒径较小的ZSM-54I。

Sadeghpour等l5以四丙基溴化铵(TPABr)为模板剂,采用高温水热合成方法,在较短的晶化时间内成功制备了纳米结构的ZSM-5,结果表明,水热温度为350℃、结晶时间为0.5 h合成的ZSM-5催化剂具有独特的孔结构、较好的稳定性和较高的酸强度,是甲醇制低碳烯经的高效择形催化剂。

近年来,研究者通过将不同的模板剂组合起来,使用两个或多个模板剂合成ZSM-5,通过这种方式可改善不同有机模板剂的缺点[6』。

Beheshti等7采用不同比例的四丙基氢氧化铵(TPAOH)和TPABr合成了5种硅铝物质的量之比相近的ZSM-5,研究发现,n(TPAOH)/n(TPABr)=0.750.25时制备的样品活性最好,其认为,采用混合模板剂可以提高催化剂的总酸度,降低强酸性位点的含量,从而提高催化剂的活性。

ZSM-5分子筛合成和改性的研究进展详解

ZSM-5分子筛合成和改性的研究进展详解

ZSM-5分子筛合成和改性的研究进展摘要:ZSM-5分子筛在工业中应用广泛。

本文详细阐述了ZSM-5沸石分子筛的各种合成方法,并介绍了常用的高温水热处理、金属改性和磷改性等改性技术现状及其应用。

关键词:ZSM-5,分子筛,合成,改性ZSM-5沸石分子筛是Mobil公司于20世纪70年代开发的一种高硅三维交叉直通道的新结构沸石分子筛。

ZSM-5分子筛属高硅五元环型沸石,其基本结构单元由8个五元环组成,这种基本结构单元通过共边联结成链状结构,然后再围成沸石骨架,其理想晶胞组成为:Na n(Al n Si96-n O192)·16H2O。

该沸石分子筛亲油疏水,热和水热稳定性高,大多数的孔径为0.55nm左右,属于中孔沸石。

由于其独特的孔结构不仅为择形催化提供了空间限制作用,而且为反应物和产物提供了丰富的进出通道,也为制备高选择性、高活性、抗积炭失活性能强的工业催化剂提供了晶体结构基础。

由此,其成为了石油工业中择形反应中最重要的催化材料之一。

不仅如此,ZSM-5分子筛在精细化工和环境保护等领域中也得到了广泛的应用。

因此,对ZSM-5分子筛的研究具有重要的理论意义和实践价值。

本文在介绍ZSM-5分子筛结构的基础上,分析总结了ZSM-5分子筛的各种合成方法,如有机胺合成,无机胺合成等方法。

此外,浅述了ZSM-5分子筛在改性方面的研究,以及未来ZSM-5分子筛的重点研究方向。

1 ZSM-5分子筛的结构ZSM-5分子筛属于正交晶系,晶胞参数[1]为a=2.017nm,b=1.996nm,c=1.343nm。

ZSM-5的晶胞组成可表示为Na n(Al n Si96-n O192)·16H2O。

式中n是晶胞中Al原子个数,可以由0~27变化,即硅铝物质的量比可以在较大范围内改变,但硅铝原子总数为96个。

ZSM-5分子筛的晶体结构由硅(铝)氧四面体所构成。

硅(铝)氧四面体通过公用顶点氧桥形成五元硅(铝)环,8个这样的五元环组成ZSM-5分子筛的基本结构单元。

碱处理法改性ZSM-5分子筛催化苯与乙醇烷基化制乙苯

碱处理法改性ZSM-5分子筛催化苯与乙醇烷基化制乙苯

碱处理法改性ZSM-5分子筛催化苯与乙醇烷基化制乙苯李建军;甘玉花;王伟明;方维平;杨意泉【摘要】用不同浓度的NaOH溶液对ZSM-5分子筛进行改性,以XRD、SEM、NH3-TPD和BET方法对改性前后的催化剂进行表征,并考察了碱处理改性对ZSM-5分子筛孔结构、酸性以及催化苯与乙醇烷基化反应的性能的影响.结果表明,通过调变NaOH溶液浓度可以在保持ZSM-5分子筛的微孔骨架结构的同时,调变介孔分布.随着NaOH溶液浓度升高,ZSM-5分子筛的酸量、介孔孔容、介孔表面积都增加,孔径分布变宽,从而改善了催化剂的催化性能.对ZSM-5分子筛进行碱改性,比较合适的NaOH溶液浓度为0.2 mol/L,改性后的ZSM-5分子筛催化剂具有较高的活性和稳定性.但超过0.5 mol/L的NaOH溶液会破坏ZSM-5分子筛骨架结构,该浓度的NaOH溶液改性后的ZSM-5分子筛催化活性下降较快.%The alkylation of benzene with ethanol to produce ethylbenzene over ZSM-5 catalyst has been widely investigated. In order to improve the ZSM-5 catalyst performance,the ZSM-5 zeolite catalysts were modified by desilication treatment in alkaline solution with different concentrations for the alkylation of benzene with ethanol to ethylbenzene, and characterized by X-ray diffraction (XRD) .scanning electron microscope(SEM) ,NH3-TPD,and BET techniques. The characterization results show that mesopore size distribution of the catalysts can be controlled by changing NaOH solution concentration without destroying framework of ZSM-5 zeolite. With the increase concentration of NaOH solution, the amount of acid sites,mesopore volume,and specific surface area increased, the pore size distribution became broader. Therefore,the catalytic performance for thereaction was effectively improved. It was found that the optimal concentration of NaOH solution used to treat the ZSM-5 zeolite was 0. 2 mol/L. When the NaOH concentration was over 0. 5 mol/L the frameworkof ZSM-5 zeolite was found to be severely destroyed.【期刊名称】《厦门大学学报(自然科学版)》【年(卷),期】2012(051)005【总页数】6页(P882-887)【关键词】ZSM-5分子筛;碱处理;烷基化;苯【作者】李建军;甘玉花;王伟明;方维平;杨意泉【作者单位】厦门大学化学化工学院,福建厦门361005;厦门大学化学化工学院,福建厦门361005;厦门大学化学化工学院,福建厦门361005;厦门大学化学化工学院,福建厦门361005;厦门大学醇醚酯清洁生产国家工程实验室,福建厦门361005;厦门大学化学化工学院,福建厦门361005;厦门大学醇醚酯清洁生产国家工程实验室,福建厦门361005【正文语种】中文【中图分类】O643.3乙苯是生产聚苯乙烯的重要原料,而工业上主要用苯和乙烯烷基化生产乙苯[1],对于缺少乙烯资源的地区无法实施.ZSM-5分子筛具有高活性、高选择性、抗积碳失活等特点,广泛用作工业催化剂[2].近年来,国内外开展了ZSM-5分子筛催化苯与乙醇烷基化反应的研究[3-7].然而ZSM-5分子筛的孔道狭窄,限制了大分子反应物、产物的传质[8].具有较大的比表面积和孔径的介孔分子筛,虽然提高了其扩散性能,但热稳定性和水热稳定性差、酸性低[9].微孔-介孔分子筛具有微孔-介孔双孔模型孔分布,且孔径和酸性可调,自问世以来得到了广泛的关注.微孔-介孔分子筛的合成有直接合成法和后处理法.目前直接合成法不够成熟,且成本高、工艺复杂.实验室常常采用热处理法、水热处理法、酸处理法等后处理法.但是这些方法产生的介孔易坍塌,脱除的Al易堵塞孔道阻碍分子传质并且严重影响分子筛酸性[10-12].新兴的分子筛碱处理技术,可以选择性的脱出Si而产生介孔,且保持其微孔孔道和酸性基本不受影响,从而提高沸石的传质性能[13-15].Suzuki等[13]将MFI分子筛用碱溶液处理后,总表面积和外表面积都增加了,微孔的体积几乎没有变化,30%的Si被脱除,而Al几乎没有减少.Ogura等[14]发现碱处理后ZSM-5分子筛的微孔骨架结构未被破坏,Si物种被选择性的脱除,酸性和酸量变化很小,异丙苯裂化性能提高.Groen等[15]通过优化碱液处理ZSM-5分子筛的温度和时间,使得介孔的面积增加了450%,最佳条件是0.2 mol/L NaOH在338 K下处理30 min.近年来人们对碱处理ZSM-5分子筛的条件、碱处理后ZSM-5分子筛的物化性能、裂化、芳构化性能等的报道很多,但对苯与乙醇烷基化性能的报道较少[15-20].本文采用NaOH溶液对ZSM-5分子筛改性,对不同浓度NaOH溶液处理后的分子筛进行了表征,研究其对苯与乙醇烷基化性能的影响.NH4ZSM-5(n(Si)∶n(Al)=80)分子筛原粉由南开大学催化剂厂提供;苯(AR)、乙醇(95%,AR)、NaOH(AR).将NH4ZSM-5分子筛原粉分别与浓度为0.05,0.1,0.2,0.5,1.0和1.5 mol/L的NaOH溶液按照1∶30的体积比混合,在65℃水浴中加热搅拌1.5 h后用冰水急冷.过滤混合液,用去离子水冲洗滤饼至中性,110℃干燥后,以5℃/min的升温速率升温到550℃,焙烧4 h.将上述样品与1mol/L的NH4NO3溶液按照1∶30的体积比在85℃恒温水浴中搅拌2 h,重复3次后在110℃下干燥并于550℃焙烧2 h,得到粉末氢型分子筛.将上述粉末状的氢型分子筛与适量的拟薄水铝石混合,加入质量分数为10%的浓硝酸溶液,混捏、挤条.成型后的分子筛凉干过夜,在110℃下干燥,550℃焙烧4 h,所得分子筛记为HZSM-5.将NaOH溶液浓度为0.05,0.1,0.2,0.5,1.0,1.5 mol/L处理后的ZSM-5分子筛分别记做AT01,AT02,AT03,AT04,AT05,AT06.XRD表征在Pan alytical X′pert PRO仪器上进行,以Cu-Kα为发射源(λ=0.154 06 nm),工作电压为40 k V,工作电流为30 m A,扫描范围为5°~50°,扫描步长为0.016 7°,每步时间为10 s.SEM表征在LEO-1530场发射扫描电子显微镜上进行.BET表征在Micromeritics Tristar 3000上进行,以高纯氮为吸附质,测定样品的孔容、比表面积和孔径.NH3-TPD表征在QIC-20(Atmospheric Gas A-nalysis System)型仪器上进行.称取100 mg 30~60目样品,在500℃下用氩气吹扫处理2 h,除去催化剂表面的物理吸附物;降温至50℃,吸附氨气30 min,随后氩气吹扫10 min.待基线稳定后,开始程序升温,50 min升温至550℃,脱附出来的氨气由QIC-20质谱仪在线分析.采用连续流动固定床反应器评价催化剂性能,反应流程及实验装置如图1.反应器为长110 cm、内径10 mm的不锈钢管.准确称取1.0 g粒度为30~60目的催化剂置于反应器中部,催化剂上面加入适量干燥的石英砂,用石英棉隔开.常压下反应,反应前先用高纯氮气吹扫以除去反应管内的氧气,升温至450℃活化2 h,降温至反应温度后,用双柱塞微量泵输入苯和乙醇.反应温度为385℃,苯与乙醇摩尔比为4∶1,质量空速(WHSV)为4 h-1,定时取反应器出口的液体样品进行分析.采用上海海欣GC-950气相色谱仪,FID检测器,HP-5毛细柱(25 m×0.25 mm)色谱柱分析.图2为不同浓度碱液处理ZSM-5分子筛的XRD谱图.由图可见,随着NaOH 溶液浓度的升高,ZSM-5分子筛的特征衍射峰强度逐渐变弱.浓度低于0.2 mol/L的NaOH溶液处理后,ZSM-5分子筛特征峰强度降低不明显,说明碱处理脱Si产生介孔后,沸石的晶体结构保持不变,即微孔结构基本不变.而浓度高于0.2 mol/L的NaOH溶液处理后的ZSM-5分子筛,特征峰强度下降明显,说明分子筛的结构遭到明显的破坏,但仍然保持ZSM-5晶型.图3显示碱液处理前后ZSM-5分子筛的形貌变化.由图可见,经0.2 mol/L NaOH溶液处理后的AT03分子筛产生了更多的断层和缺陷,晶粒表面有很多小块的晶体,大块的晶体外层被溶解但晶体基本保持原貌.0.5 mol/L NaOH溶液处理后,晶粒腐蚀严重,仅剩大块的碎片.这说明在NaOH溶液中ZSM-5分子筛的边界和缺陷处的Si物种优先被溶解,溶解过程由外表面逐渐深入体相[13].图4为NaOH溶液处理前后ZSM-5分子筛的NH3-TPD谱图.由图可见,碱处理和未经碱处理的ZSM-5均有2种不同强度的酸中心,分别在150和470℃出现α和β2个脱附峰,α峰代表ZSM-5上的弱酸中心,β峰代表强酸中心[21-22].随着NaOH溶液浓度的升高,α和β峰均有增大,但经0.5 mol /L NaOH溶液处理后α峰变小.ZSM-5分子筛的酸性主要来源于骨架Al,分子筛表面的强酸中心主要是B酸(Brønsted acid)中心,在β峰处的吸附中心是与Al原子有关的酸中心,而α峰处为与Al原子无关的弱酸(L酸或非质子酸)中心的吸附[23].碱处理可以优先脱除分子筛中的Si物种,使得Al的相对含量增加,因而随着NaOH溶液浓度的提高,β峰变大[23].图5给出了碱处理前后ZSM-5分子筛的孔径分布图.碱处理后的ZSM-5分子筛出现以孔径为10 nm左右为中心、更宽、更高的峰,说明碱处理产生了介孔.随着NaOH浓度提高,峰高增加且向右移动,说明随着NaOH溶液浓度的提高,产生了更多的介孔.在NaOH溶液浓度低于0.5 mol/L时,出现在1.5~4 nm区域的峰随着NaOH溶液浓度的升高而增大,NaOH溶液浓度较高时(0.5 mol/L),该峰变小.这可能是稀NaOH溶液优先清除了分子筛孔道中的无定形物种,疏通了孔道,因而暴露出更多的微孔[25],高浓度的NaOH 溶液破坏了微孔的骨架结构,因而微孔变少.对于经过碱处理的ZSM-5分子筛催化剂,其孔结构由两部分组成,即微孔和介孔.微孔即ZSM-5分子筛本征的,具有均匀孔径的孔,其孔径大小以0.1 nm 计.分子筛的选择性催化作用都在这种微孔中进行.这种孔的比表面积就叫做微孔比表面积.经过碱处理,由于部分Si被脱出,部分均匀的微孔遭到破坏,直接导致介孔的形成,介孔孔径大小以纳米(nm)计,相应的介孔比表面积也叫做外比表面积.分子筛催化剂的总比表面积是微孔比表面积和介孔比表面积的总和.由BET法测得的比表面积就是催化剂的总比表面积.通过测定微孔比表面积和介孔比表面积的比值可以判定碱处理对分子筛催化剂孔结构的破坏程度.表1显示碱处理前后ZSM-5分子筛孔结构性质.从表1可以看出,总比表面积(SBET)随着NaOH浓度的提高而降低,介孔比表面积(Smeso)占总比表面积的比例(Smeso/SBET)逐渐升高.这说明NaOH溶液处理ZMS-5分子筛可以产生新的介孔,而且碱溶液浓度越高,产生的介孔越多.NaOH溶液浓度低于0.5 mol/L时,随着其浓度的升高,总孔容(Vtotal)逐渐升高,微孔孔容(Vmicro)占总孔容的比例(Vmicro/Vtotal)降低,而微孔的孔容略有降低.这说明总孔容的升高主要由产生了更多的介孔引起的,碱溶液虽然破坏了少量的微孔,但是介孔是直接生成的,而不是由微孔扩大形成的[13-14].NaOH浓度高于0.5 mol/L时,总孔容、微孔孔容、总比表面积、微孔比表面积都随碱溶液浓度升高而迅速下降,但是介孔比表面积占总比表面积的比例升高.这说明,高浓度的NaOH溶液可以产生更多介孔,但是破坏了微孔的骨架结构,造成ZSM-5分子筛结构坍塌[26],这与SEM图以及XRD谱图相印证.图6和7显示NaOH溶液改性前后ZSM-5分子筛催化苯与乙醇烷基化催化活性.未改性的HZSM-5分子筛催化苯的活性较低,转化率约为24%,乙苯的选择性为84.2%,其余为二乙苯、甲苯和二甲苯等副产物.NaOH溶液改性后的ZSM-5分子筛催化苯的活性升高.当NaOH溶液0.2 mol/L时,改性后的AT03分子筛催化苯的转化率达到最大值29.9%,乙苯选择性为88.7%.但经0.5 mol/L NaOH溶液处理后的AT04分子筛活性下降较快,在30 h内,苯的转化率由22.5%下降到17.5%,乙苯的选择性由83.8%下降到81.4%.沸石分子筛的活性中心绝大部分存在于孔道结构内部,只有大小和形状与沸石孔道相匹配,能够扩散进出孔道的分子才能实现反应物或产物择形催化[27].分子筛的烷基化催化活性主要取决于酸性和孔结构.苯与乙醇烷基化反应的活性中心主要在B酸中心[28].未经NaOH溶液改性的HZSM-5分子筛强酸性较少,且受扩散限制,苯的转化率和乙苯选择性较低.浓度低于0.5 mol/L NaOH溶液处理后ZSM-5分子筛的B酸量升高;在保持微孔的骨架结构的同时产生了更多的介孔,更利于反应物和产物的吸附扩散;微孔的增多,可以提供更多的可接触活性位,因此苯的转化率、乙苯选择性均比未经过碱处理的HZSM-5分子筛高.ZSM-5分子筛的催化活性与表面的B酸量有直接关系[23].AT03比AT01的B酸量更大.因而苯的转化率更高.AT03与AT01的微孔分布非常相近,但AT03的介孔更多,反应物和产物分子更容易进出孔道,更多的活性中心暴露于外表面,发生副反应的可能性也越大,因此AT03的乙苯选择性略低于AT01.浓度高于0.5 mol/L的NaOH溶液处理ZSM-5分子筛,B酸性更强,有更多的介孔,但是微孔分子筛的骨架遭到严重的破坏,因此其择形催化性能下降,样品失活较快.碱处理法改性ZSM-5分子筛是改善催化苯与乙醇烷基化性能的有效方法.当NaOH浓度低于0.5 mol/L时,随着NaOH溶液浓度的升高,ZSM-5分子筛的孔径变大,外比表面积和孔容增大,酸性增强,且没有明显破坏微孔的结构.经过0.2 mol/L NaOH溶液改性后的AT03分子筛催化活性高且稳定性好.但经过浓度超过0.5mol/L的NaOH溶液处理的ZSM-5分子筛,骨架破坏严重,微孔体积、外比表面积下降,催化剂活性下降较快.【相关文献】[1]赵仁殿.芳烃工学[M].北京:化学工业出版社,1994:234.[2]朱晓茹.改性纳米HZSM-5催化剂上生物乙醇脱水制乙烯的研究[D].大连:大连理工大学,2007.[3]徐海升,王安中.在ZSM-5分子筛催化剂上苯与乙醇合成乙苯的研究[J].化学工程,1989,17(2):118-119.[4]魏辉荣,王留成,徐海升.磷镁改性ZSM-5分子筛催化剂上苯与乙醇合成乙苯的研究[J].郑州工学院学报,1992,13(2):60-65.[5] Yuan Junjun,Borje S G.Alkylation of benzene with ethanol over ZSM-5 catalyst with different SiO2/Al2O3ratios[J].Indian J Chem Technol,2004,11:337-345.[6] Vijayaranghavan V R,Joseph K,Raj A.Ethylation of benzene with ethanol over substituted large pore aluminophosphate-based molecular sieves[J].J Mol Catal A:Chem,2004(207):41-50.[7]高俊华,张立东,胡津仙,等.不同HZSM-5催化剂上苯与乙醇的烷基化反应[J].石油学报,2009,25(1):60-65.[8]Pérez-Ramírez J,Kapteijn F,Groen J C,et al.Steam-activated Fe-MFI zeolites.Evolution of iron species and activity in direct N2O decomposition[J].J Catal,2003,214(1):33-45.[9] Corma A.From microporous to mesoporous molecular sieve materials and their use in catalysis[J].Chem Rev,1997,97(6):2373-2420.[10] Zhang Cunman,Liu Qian,Xu Zheng,et al.Synthesis and characterization of composite molecular sieves with mesoporous and microporous structure from ZSM-5 zeolites by heat treatment[J].Microporous Mesoporous Material,2003,62:157-163.[11] Cartlidge S,Nissen H U,Wessicken R.Ternary mesoporous structure of ultra stable zeolites CSZ-1[J].Zeolites,1989,9(4):346-351.[12] Kortunov P,Vasenkov S,Karger J,et al.The role of mesoporous in intracrystalline transport in USY zeolite:PFG NMR diffusion study on various length scales[J].J Am Chem Soc,2005,127(37):13055-13059.[13] Suzuki T,Okuhar T.Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution[J].Microporous Mesoporous Mater,2001,43(1):83-89.[14] Ogura M,Shunomiya S,Tateno J,et al.Alkali-treatment technique-new method for modification of structure and acid-catalytic properties of ZSM-5 zeolites [J].Applied Catalysis A,2001,219(1/2):33-43.[15] Groen J C,Peffer L A A,Moulijn J A,et al.Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium[J].Colloids Surf A:Physicochem Eng,2004,214:53-58.[16] Groen J C,Zhu Weidong,Brouwer S,et al.Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J].J Am Chem Soc,2007,129(2):355-360.[17] Katoh M,Yoshikawa T,Tomonari T,et al.Adsorption characteristics of ion-exchanged ZSM-5 zeolites for CO2/N2mixtures[J].J Colloid Interface Sci,2000,226:145-150.[18] Abello S,Bonilla A,Ramirez J P.Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching [J].Applied Catalysis A:General,2009,364:191-198.[19]金文清,赵国良,滕加伟,等.氢氧化钠改性ZSM-5分子筛的碳四烯烃催化裂化性能[J].化学反应工程与工艺,2007,23(3):193-199.[20] Song Y Q,Zhu X X,Yi S,et al.An effect method to enhance the stability on-stream of butene aromatization:post-treatment of ZSM-5 by alkali solution hydroxide [J].Applied Catalysis A,2006,302(1):69-77.[21]蒋培兴,李全芝.程序升温脱附法研究HZMS-5和HM分子筛的酸性质[J].催化学报,1983,4(3):232-240.[22]严贻春,谢常实,秦关林.氨在HZSM-5沸石上的吸附与程序升温脱附[J].催化学报,1984,5(1):87-90.[23]张怀彬,潘履让,李赫喧.HZSM-5的表面B酸与催化活性[J].燃料化学报,1991,19(1):8-13.[24] Tao Yousheng,Kanoh H,Abrams,et al.Mesopore-modified zeolites:preparation,characterization,and applications[J].Chem Rev,2006,106:896-910.[25]吴伟,李凌飞,武光,等.碱脱硅改性的ZSM-12分子筛择形催化合成2,6-二甲基萘的研究[J].现代化工,2009,29(6):40-45.[26]祁晓岚,陈雪梅,孔德金,等.介孔丝光沸石的制备及其对重芳烃转化反应的催化性能[J].催化学报,2009,30(12):1197-1202.[27] Csicsery S M.Shape-selective catalysis in zeolites[J].Zeolites,1984,4:202-213.[28]潘履让,郝玉芝,李赫喧.苯与乙醇烷基化制乙苯的研究:III.HZSM-5及其改性后的酸性和催化性能[J].燃料化学学报,1988,16(3):199-204.。

一种ZSM-5分子筛改性催化剂及其制备方法与用途[发明专利]

一种ZSM-5分子筛改性催化剂及其制备方法与用途[发明专利]

专利名称:一种ZSM-5分子筛改性催化剂及其制备方法与用途专利类型:发明专利
发明人:高小兵,沈振国,姚剑
申请号:CN201310509561.X
申请日:20131025
公开号:CN103521257A
公开日:
20140122
专利内容由知识产权出版社提供
摘要:本发明涉及一种ZSM-5分子筛改性催化剂,该改性催化剂本体具有下列摩尔比组成的多孔晶体材料:A1O:nSiO。

本发明还设及其制备以及用于低浓度乙醇脱水反应,具体是以ZSM-5分子筛为载体,通过基团嫁接、表面修饰而制成的负载改性催化剂,在固定床反应器上用于低浓度乙醇脱水制乙烯的制备方法。

该方法中负载改性ZSM-5分子筛制得的低浓度乙醇脱水催化剂具有催化活性高、选择性高、容易再生等特点。

经固定床反应器装置长期连续运行用于低浓度乙醇脱水工艺,显示出反应温度低、能耗低,且乙醇转化率高、乙烯选择性及收率高,催化剂活性稳定,再生方便,操作平稳等优点。

申请人:连云港阳方催化科技有限公司
地址:222500 江苏省连云港市灌南县堆沟港化工园经5路
国籍:CN
代理机构:连云港润知专利代理事务所
代理人:刘喜莲
更多信息请下载全文后查看。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档