高考数学空间几何高考真题

高考数学空间几何高考真题
高考数学空间几何高考真题

高考数学空间几何高考真

The document was prepared on January 2, 2021

2017年高考数学空间几何高考真题

一.选择题(共9小题)

1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()

A.B.C.

D.

2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()

A.πB.C.D.

3.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()

A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC

4.某三棱锥的三视图如图所示,则该三棱锥的体积为()

A.60 B.30 C.20 D.10

5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()

A.+1 B.+3 C.+1 D.+3

6.如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D ﹣QR﹣P的平面角为α、β、γ,则()

A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α

7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()

A.90πB.63πC.42πD.36π

1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()

A.10 B.12 C.14 D.16

2.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()

A.B.C.D.

二.填空题(共5小题)

8.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为.

9.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.

10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.

11.由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.

12.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.

三.解答题(共9小题)

13.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.

14.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,

AB=BC=AD,∠BAD=∠ABC=90°.

(1)证明:直线BC∥平面PAD;

(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.

15.如图四面体ABCD中,△ABC是正三角形,AD=CD.

(1)证明:AC⊥BD;

(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.

16.如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.

(1)求三棱柱ABC﹣A1B1C1的体积;

(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.

17.如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PA⊥BD;

(2)求证:平面BDE⊥平面PAC;

(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.

18.如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,

BC=3,CD=4,PD=2.

(Ⅰ)求异面直线AP与BC所成角的余弦值;

(Ⅱ)求证:PD⊥平面PBC;

(Ⅲ)求直线AB与平面PBC所成角的正弦值.

19.如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.

(Ⅰ)证明:CE∥平面PAB;

(Ⅱ)求直线CE与平面PBC所成角的正弦值.

20.由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;

(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.

21.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.

求证:(1)EF∥平面ABC;

(2)AD⊥AC.

3.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.

4.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,

AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.

(1)证明:直线CE∥平面PAB;

(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D 的余弦值.

5.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.

(1)证明:平面ACD⊥平面ABC;

(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.

6.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.

(1)求证:M为PB的中点;

(2)求二面角B﹣PD﹣A的大小;

(3)求直线MC与平面BDP所成角的正弦值.

7.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.

(Ⅰ)求证:MN∥平面BDE;

(Ⅱ)求二面角C﹣EM﹣N的正弦值;

(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH 的长.

8.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.

(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;

(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.

2017年高考数学空间几何高考真题

参考答案与试题解析

一.选择题(共7小题)

1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()

A.B.C.

D.

【解答】解:对于选项B,由于AB∥MQ,结合线面平行判定定理可知B不满足题意;

对于选项C,由于AB∥MQ,结合线面平行判定定理可知C不满足题意;

对于选项D,由于AB∥NQ,结合线面平行判定定理可知D不满足题意;

所以选项A满足题意,

故选:A.

2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()

A.πB.C.D.

【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r==,

∴该圆柱的体积:V=Sh==.

故选:B.

3.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()

A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC

【解答】解:法一:连B1C,由题意得BC1⊥B1C,

∵A1B1⊥平面B1BCC1,且BC1平面B1BCC1,

∴A1B1⊥BC1,

∵A1B1∩B1C=B1,

∴BC1⊥平面A1ECB1,

∵A1E平面A1ECB1,

∴A1E⊥BC1.

故选:C.

法二:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,

设正方体ABCD﹣A1B1C1D1中棱长为2,

则A1(2,0,2),E(0,1,0),B(2,2,0),D(0,0,0),C1(0,2,2),A(2,0,0),C(0,2,0),

=(﹣2,1,﹣2),=(0,2,2),=(﹣2,﹣2,0),

=(﹣2,0,2),=(﹣2,2,0),

∵=﹣2,=2,=0,=6,

∴A1E⊥BC1.

故选:C.

4.某三棱锥的三视图如图所示,则该三棱锥的体积为()

A.60 B.30 C.20 D.10

【解答】解:由三视图可知:该几何体为三棱锥,

该三棱锥的体积==10.

故选:D.

5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()

A.+1 B.+3 C.+1 D.+3

【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,

圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,

故该几何体的体积为××π×12×3+××××3=+1,

故选:A

6.如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D ﹣QR﹣P的平面角为α、β、γ,则()

A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α

【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.

不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,﹣6,0),D(0,0,6),

Q,R,

=,=(0,3,6),=(,5,0),=,=.

设平面PDR的法向量为=(x,y,z),则,可得,

可得=,取平面ABC的法向量=(0,0,1).

则cos==,取α=arccos.

同理可得:β=arccos.γ=arccos.

∵>>.

∴α<γ<β.

解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG ⊥QR,垂足分别为E,F,G,连接DE,DF,DG.

设OD=h.

则tanα=.

同理可得:tanβ=,tanγ=.

由已知可得:OE>OG>OF.

∴tanα<tanγ<tanβ,α,β,γ为锐角.

∴α<γ<β.

故选:B.

7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()

A.90πB.63πC.42πD.36π

【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π32×10﹣π32×6=63π,

故选:B.

1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()

A.10 B.12 C.14 D.16

【解答】解:由三视图可画出直观图,

该立体图中只有两个相同的梯形的面,

S梯形=×2×(2+4)=6,

∴这些梯形的面积之和为6×2=12,

故选:B

2.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()

A.B.C.D.

【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,

则AB1、BC1夹角为MN和NP夹角或其补角

(因异面直线所成角为(0,]),

可知MN=AB1=,

NP=BC1=;

作BC中点Q,则△PQM为直角三角形;

∵PQ=1,MQ=AC,

△ABC中,由余弦定理得

AC2=AB2+BC2﹣2ABBCcos∠ABC

=4+1﹣2×2×1×(﹣)

=7,

∴AC=,

∴MQ=;

在△MQP中,MP==;

在△PMN中,由余弦定理得

cos∠MNP===﹣;又异面直线所成角的范围是(0,],

∴AB1与BC1所成角的余弦值为.

【解法二】如图所示,

补成四棱柱ABCD﹣A1B1C1D1,求∠BC1D即可;

BC1=,BD==,

C1D=,

∴+BD2=,

∴∠DBC1=90°,

∴cos∠BC1D==.

二.填空题(共5小题)

8.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为36π.

【解答】解:三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,

可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,

可得,解得r=3.

球O的表面积为:4πr2=36π.

故答案为:36π.

9.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为14π.

【解答】解:长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,可知长方体的对角线的长就是球的直径,

所以球的半径为:=.

则球O的表面积为:4×=14π.

故答案为:14π.

10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.

【解答】解:设正方体的棱长为a,

∵这个正方体的表面积为18,

∴6a2=18,

则a2=3,即a=,

∵一个正方体的所有顶点在一个球面上,

∴正方体的体对角线等于球的直径,

即a=2R,

即R=,

则球的体积V=π()3=;

故答案为:.

11.由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为

2+.

【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,

圆柱的底面半径为1,高为1,则圆柱的体积V2=×π×12×1=,

则该几何体的体积V=V1+2V1=2+,

故答案为:2+.

12.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.

【解答】解:设球的半径为R,则球的体积为:R3,

圆柱的体积为:πR22R=2πR3.

则==.

故答案为:.

三.解答题(共9小题)

13.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.

【解答】证明:(1)∵在四棱锥P﹣ABCD中,∠BAP=∠CDP=90°,

∴AB⊥PA,CD⊥PD,

又AB∥CD,∴AB⊥PD,

∵PA∩PD=P,∴AB⊥平面PAD,

∵AB平面PAB,∴平面PAB⊥平面PAD.

解:(2)设PA=PD=AB=DC=a,取AD中点O,连结PO,

∵PA=PD=AB=DC,∠APD=90°,平面PAB⊥平面PAD,

∴PO⊥底面ABCD,且AD==,PO=,

∵四棱锥P﹣ABCD的体积为,

∴V P﹣ABCD=

====,

解得a=2,∴PA=PD=AB=DC=2,AD=BC=2,PO=,

∴PB=PC==2,

∴该四棱锥的侧面积:

S侧=S△PAD+S△PAB+S△PDC+S△PBC

=+++

=

=6+2.

14.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,

AB=BC=AD,∠BAD=∠ABC=90°.

(1)证明:直线BC∥平面PAD;

(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.

【解答】(1)证明:四棱锥P﹣ABCD中,∵∠BAD=∠ABC=90°.∴BC∥AD,∵AD 平面PAD,BC平面PAD,

∴直线BC∥平面PAD;

(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,

AB=BC=AD,∠BAD=∠ABC=90°.设AD=2x,

则AB=BC=x,CD=,O是AD的中点,

连接PO,OC,CD的中点为:E,连接OE,

则OE=,PO=,PE==,

△PCD面积为2,可得:=2,

即:,解得x=2,PE=2.

则V P﹣ABCD=×(BC+AD)×AB×PO==4.

15.如图四面体ABCD中,△ABC是正三角形,AD=CD.

(1)证明:AC⊥BD;

(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.

【解答】证明:(1)取AC中点O,连结DO、BO,

∵△ABC是正三角形,AD=CD,

∴DO⊥AC,BO⊥AC,

∵DO∩BO=O,∴AC⊥平面BDO,

∵BD平面BDO,∴AC⊥BD.

解:(2)法一:连结OE,由(1)知AC⊥平面OBD,

∵OE平面OBD,∴OE⊥AC,

设AD=CD=,则OC=OA=1,

∴E是线段AC垂直平分线上的点,∴EC=EA=CD=,

由余弦定理得:

cos∠CBD==,

即,解得BE=1或BE=2,

∵BE<<BD=2,∴BE=1,∴BE=ED,

∵四面体ABCE与四面体ACDE的高都是点A到平面BCD的高h,

∵BE=ED,∴S△DCE=S△BCE,

∴四面体ABCE与四面体ACDE的体积比为1.

法二:设AD=CD=,则AC=AB=BC=BD=2,AO=CO=DO=1,

∴BO==,∴BO2+DO2=BD2,∴BO⊥DO,

以O为原点,OA为x轴,OB为y轴,OD为z轴,建立空间直角坐标系,

则C(﹣1,0,0),D(0,0,1),B(0,,0),A(1,0,0),

设E(a,b,c),,(0≤λ≤1),则(a,b,c﹣1)=λ(0,,﹣1),解得E(0,,1﹣λ),

∴=(1,),=(﹣1,),

∵AE⊥EC,∴=﹣1+3λ2+(1﹣λ)2=0,

由λ∈[0,1],解得,∴DE=BE,

∵四面体ABCE与四面体ACDE的高都是点A到平面BCD的高h,

∵DE=BE,∴S△DCE=S△BCE,

∴四面体ABCE与四面体ACDE的体积比为1.

16.如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.

(1)求三棱柱ABC﹣A1B1C1的体积;

(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.

【解答】解:(1)∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,

两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.

∴三棱柱ABC﹣A1B1C1的体积:

V=S△ABC×AA1

=

==20.

(2)连结AM,

∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,

两直角边AB和AC的长分别为4和2,侧棱AA1的长为5,M是BC中点,

∴AA1⊥底面ABC,AM==,

∴∠A1MA是直线A1M与平面ABC所成角,

tan∠A1MA===,

∴直线A1M与平面ABC所成角的大小为arctan.

17.如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PA⊥BD;

(2)求证:平面BDE⊥平面PAC;

(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.

【解答】解:(1)证明:由PA⊥AB,PA⊥BC,

AB平面ABC,BC平面ABC,且AB∩BC=B,

可得PA⊥平面ABC,

由BD平面ABC,

可得PA⊥BD;

(2)证明:由AB=BC,D为线段AC的中点,

可得BD⊥AC,

由PA⊥平面ABC,PA平面PAC,

可得平面PAC⊥平面ABC,

又平面ABC∩平面ABC=AC,

BD平面ABC,且BD⊥AC,

即有BD⊥平面PAC,

BD平面BDE,

可得平面BDE⊥平面PAC;

(3)PA∥平面BDE,PA平面PAC,

且平面PAC∩平面BDE=DE,

可得PA∥DE,

又D为AC的中点,

可得E为PC的中点,且DE=PA=1,

由PA⊥平面ABC,

可得DE⊥平面ABC,

可得S△BDC=S△ABC=××2×2=1,

则三棱锥E﹣BCD的体积为DES△BDC=×1×1=.

18.如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.

(Ⅰ)求异面直线AP与BC所成角的余弦值;

(Ⅱ)求证:PD⊥平面PBC;

(Ⅲ)求直线AB与平面PBC所成角的正弦值.

【解答】解:(Ⅰ)如图,由已知AD∥BC,

故∠DAP或其补角即为异面直线AP与BC所成的角.

因为AD⊥平面PDC,所以AD⊥PD.

在Rt△PDA中,由已知,得,

故.

所以,异面直线AP与BC所成角的余弦值为.

证明:(Ⅱ)因为AD⊥平面PDC,直线PD平面PDC,

所以AD⊥PD.

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

2017年高考数学空间几何高考真题

2017年高考数学空间几何高考真题

2017年高考数学空间几何高考真题 一.选择题(共9小题) 1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是() A.B.C. D. 2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A.πB.C.D. 3.在正方体ABCD﹣A 1B 1 C 1 D 1 中,E为棱CD的中点,则() A.A 1E⊥DC 1 B.A 1 E⊥BD C.A 1 E⊥BC 1 D.A 1 E⊥AC 4.某三棱锥的三视图如图所示,则该三棱锥的体积为() A.60 B.30 C.20 D.10

5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是() A.+1 B.+3 C.+1 D.+3 6.如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D ﹣QR﹣P的平面角为α、β、γ,则() A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α 7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A.90πB.63πC.42πD.36π

1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为() A.10 B.12 C.14 D.16 2.已知直三棱柱ABC﹣A 1B 1 C 1 中,∠ABC=120°,AB=2,BC=CC 1 =1,则异面直线 AB 1与BC 1 所成角的余弦值为() A. B.C.D. 二.填空题(共5小题) 8.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为. 9.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为. 10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为. 11.由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.

2018年高考数学空间几何高考真题

2017年高考数学空间几何高考真题 ?选择题(共9小题) 1 ?如图,在下列四个正方体中,A, B为正方体的两个顶点,M , N, Q为所在 棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是() 2. 已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上, 则该圆柱的体积为() A. n B. C. D. 3. 在正方体ABCD- A i B i CD i中,E为棱CD的中点,贝U( ) A. A i E± DC i B. A i E丄BD C A i E丄BG D. A i E丄AC 4. 某三棱锥的三视图如图所示,则该三棱锥的体积为( A. 60 B. 30 C. 20 D . i0 侧〔左)视圄 C

5?某几何体的三视图如图所示(单位:cm ), 则该几何体的体积(单位:cm 2) 是( ) 6?如图,已知正四面体 D -ABC (所有棱长均相等的三棱锥),P 、Q 、R 分别为 AB 、BC CA 上的点,AP=PB ==2,分别记二面角 D- PR- Q , D- PQ- R, D - A .产 aV B B. aV 产 B C ? a< Y D. p< 产 a 7. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图, 该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A . 90 n B. 63 n C. 42 n D . 36 n 1 .某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三 D . +3 +1

4 角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中 有若干个是梯形,这些梯形的面积之和为( ) A . 10 B. 12 C. 14 D . 16 2. 已知直三棱柱 ABC- A 1B 1C 1中,/ ABC=120, AB=2, BC=CC=1,则异面直线 AB 1与BG 所成角的余弦值为( ) A . B. C. D. 二.填空题(共5小题) 8. 已知三棱锥S-ABC 的所有顶点都在球0的球面上,SC 是球0的直径.若平 面SCAL 平面SCB SA=AC SB=BC 三棱锥S-ABC 的体积为9,则球0的表面 积为 _______ . 9. 长方体的长、宽、高分别为3, 2,1,其顶点都在球0的球面上,则球0的 表面积为 _______ . 10. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为 18, 则这个球的体积为 ________ . 11. 由一个长方体和两个亍圆柱体构成的几何体的三视图如图,则该几何体的

2020年高考数学 空间几何体解答题 专练(含答案)

2020年高考数学空间几何体解答题专练 1.如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,点E、F分别为 棱AB、PD的中点. (1)求证:AF∥平面PCE; (2)求证:平面PCE⊥平面PCD; (3)求三棱锥C-BEP的体积. 2.如图,在直三棱柱ABC-A B1C1中,AB=AC,P为AA1的中点,Q为BC的中点。 1 (1)求证:PQ//平面A1BC1; (2)求证:BC⊥PQ。

3.如图,在直三棱柱ABC-A B1C1中,AC⊥BC,A1B与AB1交于点D,A1C与AC1交于点E.求证: 1 (1)DE∥平面B1BCC1; (2)平面A1BC⊥平面A1ACC1. 4.如图,四棱锥P—ABCD的底面ABCD是平行四边形,平面PBD⊥平面ABCD,PB=PD,PA⊥PC, CD⊥PC,O,M分别是BD,PC的中点,连结OM. (1)求证:OM∥平面PAD; (2)求证:OM⊥平面PCD.

5.如图,在直四棱柱ABCD–A B1C1D1中,已知底面ABCD是菱形,点P是侧棱C1C的中点. 1 (1)求证:AC1∥平面PBD; (2)求证:BD⊥A1P. 6.如图,直四棱柱ABCD–A B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC, 1 BB1,A1D的中点. (1)证明:MN∥平面C1DE; (2)求二面角A?MA1?N的正弦值.

7.在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=2AB,E,F是线段BC,AB的中 点. (1)证明:ED⊥PE; (2)在线段PA上确定点G,使得FG∥平面PED,请说明理由. 8.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面是棱长为1的菱形,∠ADC=60°,, M是PB的中点. (1)求证:PD∥平面ACM; (2)求直线CM与平面PAB所成角的正弦值.

高考文科数学立体几何试题汇编

图 2 1俯视图 侧视图 正视图2 11.(北京8)如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点, 则 P 到各顶点的距离的不同取值有( ) A .3个 B .4个 C .5个 D .6个 2.(广东卷6)某三棱锥的三视图如图所示,则该三棱锥的体积是( ) A .1 6 B .1 3 C .2 3 D .1 3. (广东卷8)设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则//αβ C .若l α⊥,//l β,则//αβ D .若αβ⊥,//l α,则l β⊥ 4. (湖南卷7)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于 A . 3 B.1 C. 21 + D.2 5. 江西卷8).一几何体的三视图如右所示,则该几何体的体积为( ) A.200+9π B. 200+18π C. 140+9π D. 140+18π 6. (辽宁卷10)已知三棱柱 1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,, ,AB AC ⊥112AA O =,则球的半径为 A . 317 B .210 C .13 2 D .310 B .. (全国卷11)已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 (A ) 23 (B )3 (C )23 (D )1 3 8. (四川卷2)一个几何体的三视图如图所示,则该几何体可以是( )

2018年高考数学立体几何试题汇编

2018年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 18.如图,在平行四边形ABCM 中,3AB AC ==,90ACM =?∠,以AC 为折痕将△ACM 折起,使点M 到达点 D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ; (2)Q 为线段AD 上一点,P 为线段BC 上一点,且2 3 BP DQ DA == ,求三棱锥Q ABP -的体积. 全国1卷理科 理科第7小题同文科第9小题 18. 如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点 P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 全国2卷理科: 9.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15 B . 5 C . 5 D . 2 20.如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.

(1)证明:PO⊥平面ABC; --为30?,求PC与平面PAM所成角的正弦值.(2)若点M在棱BC上,且二面角M PA C 全国3卷理科 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 19.(12分) 如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点. (1)证明:平面AMD⊥平面BMC; (2)当三棱锥M ABC -体积最大时,求面MAB与面MCD所成二面角的正弦值. 2018年江苏理科: 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为▲.

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国8)正六棱柱ABCDEF-A1B1C1D1E1F1底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E1D与BC1所成的角是() A、90° B、60° C、45° D、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国18)如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF 上移动,若CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

高考数学空间几何高考真题

高考数学空间几何高考 真题 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

2017年高考数学空间几何高考真题 一.选择题(共9小题) 1.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( ) A . B . C . D . 2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .π B . C . D . 3.在正方体ABCD ﹣A 1B 1C 1D 1中,E 为棱CD 的中点,则( ) A .A 1E ⊥DC 1 B .A 1E ⊥BD C .A 1E ⊥BC 1 D .A 1E ⊥AC 4.某三棱锥的三视图如图所示,则该三棱锥的体积为( ) A .60 B .30 C .20 D .10 5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 2)是( ) A . +1 B . +3 C . +1 D . +3 6.如图,已知正四面体D ﹣ABC (所有棱长均相等的三棱锥),P 、Q 、R 分别为AB 、BC 、CA 上的点,AP=PB , = =2,分别记二面角D ﹣PR ﹣Q ,D ﹣PQ ﹣R ,D ﹣QR ﹣P 的平面角为α、β、γ,则( ) A .γ<α<β B .α<γ<β C .α<β<γ D .β<γ<α

7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A.90πB.63πC.42πD.36π 1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为() A.10 B.12 C.14 D.16 2.已知直三棱柱ABC﹣A 1B 1 C 1 中,∠ABC=120°,AB=2,BC=CC 1 =1,则异面直线AB 1 与 BC 1 所成角的余弦值为() A.B.C.D. 二.填空题(共5小题) 8.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA ⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积 为. 9.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为. 10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为. 11.由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为. 12.如图,在圆柱O 1O 2 内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆 柱O 1O 2 的体积为V 1 ,球O的体积为V 2 ,则的值是. 三.解答题(共9小题) 13.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°. (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.

2020年高考数学空间几何高考真题

2017年高考数学空间几何高考真题 一.选择题(共9小题) 1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是() A.B.C. D. 2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A.πB. C.D. 3.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则() A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC 4.某三棱锥的三视图如图所示,则该三棱锥的体积为() A.60 B.30 C.20 D.10

5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是() A.+1 B.+3 C.+1 D.+3 6.如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则() A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α 7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A.90πB.63πC.42πD.36π

1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为() A.10 B.12 C.14 D.16 2.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为() A.B.C.D. 二.填空题(共5小题) 8.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为. 9.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为. 10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为. 11.由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.

高考数学二轮复习专题四空间几何体

第1讲空间几何体 空间几何体与三视图 [核心提炼] 1.三视图的排列规则 俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”. 2.由三视图还原几何体的步骤 一般先由俯视图确定底面,再利用正视图与侧视图确定几何体. [典型例题] (1)(2019·温州瑞安七中高考模拟)下列结论正确的是() A.各个面都是三角形的几何体是三棱锥 B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥 C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥 D.圆锥的顶点与底面圆周上的任意一点的连线都是母线 (2)(2019·杭州市五校联考)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为() 【解析】(1)A.如图(1)所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥,故A错误;B.如图(2)(3)所示,若△ABC不是直角三角形,或是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥,故B错误;C.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由过中心和顶点的截面知,若以正六边形为底面,侧棱长必然要大于底面边长,故C错误;D.根据圆锥母线的定义知,故D正确.故选D.

(2) 因为一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是以正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为A. 【答案】(1)D(2)A (1)判断与几何体结构特征有关问题的技巧 把握几何体的结构特征,熟悉空间几何体性质,能够根据条件构建几何模型,从而判断命题的真假,有时也可通过反例对结构特征进行辨析. (2)已知几何体识别三视图的技巧 已知几何体画三视图时,可先找出各个顶点在投影面上的投影,然后再确定线在投影面的实虚. [对点训练] 1.(2019·福州市综合质量检测)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是() A.2B.3C.4D.5 解析:选C.由三视图知,该几何体是如图所示的四棱锥P-ABCD,易 知四棱锥P-ABCD的四个侧面都是直角三角形,即此几何体各面中直角三 角形的个数是4. 2.图①是棱长为1的正方体ABCD-A1B1C1D1截去三棱锥A1-AB1D1

2019江苏高考数学14个填空题专题练空间几何体

2019江苏高考数学14个填空题专题练空间几何体 A 组——题型分类练 题型一 平面及其基本性质 1.若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的________条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”). 解析:若两直线为异面直线,则两直线无公共点,反之不一定成立. 答案:充分不必要 2.设a ,b ,c 是空间中的三条直线,下面给出四个命题: ①若a ∥b ,b ∥c ,则a ∥c ; ②若a ⊥b ,b ⊥c ,则a ∥c ; ③若a 与b 相交,b 与c 相交,则a 与c 相交; ④若a ?平面α,b ?平面β,则a ,b 一定是异面直线. 上述命题中正确的命题是________(写出所有正确命题的序号). 解析:由公理4知①正确;当a ⊥b ,b ⊥c 时,a 与c 可以相交、平行或异面,故②错;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故③错;a ?α,b ?β,并不能说明a 与b “不同在任何一个平面内”,故④错. 答案:① [临门一脚] 1.四个公理,三个推论要记清楚;公理3以及三个推论都是用来判定是否共面的依据. 2.因为两直线没有公共点包含两种情况:平行和异面. 所以不能把异面直线误解为:分别在不同平面内的两条直线为异面直线. 题型二 空间中的平行与垂直 1.给出下列条件:①l ∥α;②l 与α至少有一个公共点;③l 与α至多有一个公共点.能确定直线l 在平面α外的条件的序号为________. 解析:直线l 在平面α外指:l ∥α或直线l 与平面α仅有一个交点. 答案:①③ 2.如图,在空间四边形ABCD 中,M ∈AB ,N ∈AD ,若AM MB =AN ND ,则直线MN 与平面BDC 的位置关系是________. 解析:因为AM MB =AN ND ,所以MN ∥BD , 又MN ?平面BCD ,BD ?平面BCD , 所以MN ∥平面BDC . 答案:平行 3.已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的序

高考数学空间几何高考真题定稿版

高考数学空间几何高考 真题 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

2017年高考数学空间几何高考真题 一.选择题(共9小题) 1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是() A.B.C. D. 2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A.πB.C.D. 3.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则() A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC 4.某三棱锥的三视图如图所示,则该三棱锥的体积为() A.60 B.30 C.20 D.10 5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是() A.+1 B.+3 C.+1 D.+3

6.如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则() A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α 7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A.90πB.63πC.42πD.36π 1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为() A.10 B.12 C.14 D.16 2.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为() A.B.C.D. 二.填空题(共5小题) 8.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为. 9.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为. 10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.

高考立体几何知识点总结(详细)

高考立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的 面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2 棱柱的分类 棱柱 四棱柱 平行六面体 直平行 六面体长方体正四棱柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式 ch S 直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形 图1-1 棱柱

面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 对棱间的距离为 a 2 2 (正方体的边长) 正四面体的高 a 6(正方体体对角线l 3 2 =) 正四面体的体积为 32a (正方体小三棱锥正方体V V V 3 1 4=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2 1 61= ) 3 、棱台的结构特征 3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。 3.2 正棱台的结构特征 (1)各侧棱相等,各侧面都是全等的等腰梯形; (2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点。 4 、圆柱的结构特征 4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。 A B C D P O H

2018高考数学空间几何高考真题

2017 年高考数学空间几何高考真题 一.选择题(共9 小题) 1.如图,在下列四个正方体中,A,B 为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面 MNQ 不平行的是() A.B. C . D. 2.已知圆柱的高为1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为() A.πB.C.D. 3.在正方体ABCD﹣A1B1C1D1 中,E为棱CD的中点,则() A.A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC 4.某三棱锥的三视图如图所示,则该三棱锥的体积为() A.60 B.30 C.20 D.10

2)5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 是() A.+1 B.+3 C.+1 D.+3 6.如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为 AB、BC、CA上的点,AP=PB,= =2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R, D﹣QR﹣P的平面角为α、β、γ,则() A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α 7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图, 该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A.90πB.63πC.42πD.36π

1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三 角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中 有若干个是梯形,这些梯形的面积之和为() A.10 B.12 C.14 D.16 2.已知直三棱柱ABC﹣A1B1C1 中,∠ABC=12°0,AB=2,BC=CC1=1,则异面直线 AB1 与BC1 所成角的余弦值为() A.B.C.D. 二.填空题(共 5 小题) 8.已知三棱锥S﹣ABC的所有顶点都在球O 的球面上,SC是球 O的直径.若平面SCA⊥平面 SCB,SA=AC,SB=BC,三棱锥 S﹣ABC的体积为 9,则球O的表面 积为. 9.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为. 10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为. 11.由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的 体积为.

高考数学空间几何高考真题 (2)

高考数学空间几何高考真题 一.选择题(共9小题) 1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是() A.B.C. D. 2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A.πB. C.D. 3.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则() A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC 4.某三棱锥的三视图如图所示,则该三棱锥的体积为()

5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是() A.+1 B.+3 C.+1 D.+3 6.如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则() A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α 7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()

1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为() A.10 B.12 C.14 D.16 2.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为() A.B.C.D. 二.填空题(共5小题) 8.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O 的表面积为. 9.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为. 10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为. 11.由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.

高考数学 空间向量与立体几何常用公式 理科

《空间向量与立体几何》 知识点一:利用向量求空间角 (1)求异面直线所成的角 已知a,b为两异面直线,A,C与B,D分别是a,b上的任意两点,a,b所成的角为,则。 注意:两异面直线所成的角的范围为(00,900]。 (2)求直线和平面所成的角 设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与的角为,则有。 (3)求二面角 如图,若于A,于B,平面PAB交于E,则∠AEB为二面角 的平面角,∠AEB+∠APB=180°。 若分别为面,的法向量, 则二面角的平面角或,即二面角等于它的两个面的法向量的夹角或夹角的补角。 知识点二:利用向量求空间距离 (1)空间两点间距离公式: 设点,,则 (2)两异面直线距离的求法

如图,设,是两条异面直线,是与的公垂线段AB的方向向量,又C,D分别是,上任意两点,则与的距离是。 (3)点面距离的求法: 如图,BO⊥平面,垂足为O,则点B到平面的距离就是线段BO的长度。 若AB是平面的任一条斜线段, 则在Rt△BOA中,。 设平面的法向为,则点B到平面的距离为。 注意:线面距、面面距均可转化为点面距离,用求点面距的方法进行求解。 知识点三:用向量语言表述线与面之间的位置关系 设两不同直线,的方向向量分别为,,两不同平面,的法向量分别为,,则 ①线线平行:,; ②线线垂直:; ③线面平行:在平面外,; ④线面垂直:,; ⑤面面平行:,;

⑥面面垂直:。 关键:用向量知识来探讨空间的垂直与平行问题,关键是找出或求出问题中涉及的直线的方向向量和平面的法向量,通过讨论向量的共线或垂直,确定线面之间的位置关系。

高考数学空间几何高考真题

高考数学空间几何高考真 题 The pony was revised in January 2021

2017年高考数学空间几何高考真题 一.选择题(共9小题) 1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是() A.B.C. D. 2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A.πB.C.D. 3.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则() A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC 4.某三棱锥的三视图如图所示,则该三棱锥的体积为() A.60 B.30 C.20 D.10

5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是() A.+1 B.+3 C.+1 D.+3 6.如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则() A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α 7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A.90πB.63πC.42πD.36π 1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为() A.10 B.12 C.14 D.16 2.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为() A.B.C.D.

高考数学空间向量与立体几何总复习

空间向量与立体几何总复习一、知识网络构建 二、课标及考纲要求

三、知识要点及考点精析 (一)空间向量及其运算 1.空间向量的概念 在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模. 还需要掌握的几个相关的概念包括相等向量、零向量、共线向量等.

2.空间向量的线性运算 (1)空间向量的加法、减法和数乘运算 平面向量中的三角形法则和平行四边形法则同样适用于空间向量的加(减)法运算.加法运算对于有限个向量求和,交换相加向量的顺序其和不变.三个不共面的向量的和等于以这三个向量为邻边的平行六面体的对角线所表示的向量.加法和数乘运算满足运算律: ①交换律,即a +b =b+a ; ②结合律,即()()+=+a +b c a b+c ; ③分配律,即()λμλμ+a =a +a 及()λλλ=+a +b a b (其中λμ,均为实数). (2)空间向量的基本定理 ① 共线向量定理:对空间向量,a b (0)≠,b a b ∥的充要条件是存在实数λ,使λa =b . ② 共面向量定理:如果空间向量,a b 不共线,则向量c 与向量a,b 共面的充要条件是,存在惟一的一对实数x y ,,使c =x y a +b . ③ 空间向量基本定理:如果三个向量a , b , c 不共面,那么对空间任一向量p ,存在有序实数组x ,y ,z ,使x y z p =a +b +c .其中 {},,a b c 是空间的一个基底,a , b , c 都叫做基向量,该定理可简述

为:空间任一向量p 都可以用一个基底{},,a b c 惟一线性表示(线性组合). (3)两个向量的数量积 两个向量的数量积是a ?b= |a||b|cos,数量积有如下性质: a , b , c ① a ?e= |a|cos(e 为单位向量); ② a ⊥a ?a ?b=0; ③ a ?a=|a|2; ④ |a ?b|≤| a||b|. 数量积运算满足运算律: ①交换律,即a ?b= b ?a ; ②与数乘的结合律,即(λa )?b=λ(a ?b ); ③分配律,即(a+b ) ?c =a ?c +b ?c . 3.空间向量的坐标运算 (1)给定空间直角坐标系xyz O -和向量a ,存在惟一的有序实数组使 123a a a a =i +j +k ,则123()a a a ,,叫作向量a 在空间的坐标,记作 123()a a a ,,a =.

高考数学 立体几何大题30题

立体几何大题 1.如下图,一个等腰直角三角形的硬纸片ABC 中,∠ACB =90°,AC =4cm ,CD 是斜边上的高沿CD 把△ABC 折成直二面角. (1)如果你手中只有一把能度量长度的直尺,应该如何确定A ,B 的位置,使二面角A -CD -B 是直二面角?证明你的结论. (2)试在平面ABC 上确定一个P ,使DP 与平面ABC 内任意一条直线都垂直,证明你的结论. (3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值. 解:(1)用直尺度量折后的AB 长,若AB =4cm ,则二面角A -CD -B 为直二面角. ∵ △ABC 是等腰直角三角形, (),cm 22DB AD ==∴ 又∵ AD ⊥DC ,BD ⊥DC . ∴ ∠ADC 是二面角A -CD -B 的平面角. 有时当,cm 4AB ,22DB AD === Θ .90ADB .AB DB AD 222?=∠∴=+ (2)取△ABC 的中心P ,连DP ,则DP 满足条件 ∵ △ABC 为正三角形,且 AD =BD =CD . ∴ 三棱锥D -ABC 是正三棱锥,由P 为△ABC 的中心,知DP ⊥平面ABC , ∴ DP 与平面内任意一条直线都垂直. (3)当小球半径最大时,此小球与三棱锥的4个面都相切,设小球球心为0,半径为r ,连结OA ,OB ,OC ,OD ,三棱锥被分为4个小三棱锥,且每个小三棱锥中有一个面上的高都为r ,故有ABC O ABD O ADC O BCD O BCD A V V V V V -----+++=代入得3 6 23r -=,即半径最大的小球半径为3 6 23-. A B C 第1题图 A B C D 第1题图

相关文档
最新文档