干法脱硫工艺技术分析

合集下载

燃煤锅炉烟气污染治理技术分析

燃煤锅炉烟气污染治理技术分析

燃煤锅炉烟气污染治理技术分析摘要:我国目前的电力来源仍以燃煤电厂为主,燃煤电厂运行过程中不可避免的会产生烟气污染物。

随着环保要求越来越高,降低燃煤电厂燃气的排放,成为燃煤电厂的一项重要工作。

对循环流化床锅炉的特征进行简要介绍,提出该锅炉运行中污染物排放控制的工艺与方法,污染物排放控制包括脱硫、脱销、除尘,力求通过干法脱硫、PNCR工艺脱销、布袋除尘等方式,使污染物排放量得到有效控制,与国家规定充分符合。

关键词:电厂;燃煤锅炉;烟气余热回收利用1循环流化床锅炉的特征当前工业锅炉及电站锅炉排放的污染物,不但对城市空气与居住环境造成严重污染,甚至对人类身心健康构成威胁,在一定程度上为第一、第二产业发展带来巨大损失。

近年来,国家在环保方面的重视度不断提升,循环流化床锅炉技术得到不断发展及重视,作为一项清洁燃烧技术得到了广泛应用,循环流化床锅炉主要具有以下特征:1)燃烧适应性广。

循环流化床燃烧方式可烧优质燃料,也可烧各种劣质燃料,例如炉渣、木屑、褐煤、煤矸石、固体垃圾等,也包括一些低挥发分燃料与高灰分的燃料,只要燃料燃烧放出的热量能够将燃料本身和燃烧所需的空气加热到稳定燃烧所需的温度,这种燃料就能在循环流化床内稳定燃烧。

2)燃烧热强度较大。

在锅炉燃烧后,炉膛容积的热负荷在1.5~2MW/m3,与煤粉炉相比,是后者的8~11倍,受此影响,该锅炉的炉膛截面与容积均可低于相同容量的链条炉。

3)负荷调节性能较强。

该锅炉中内部床料中大多数为高温循环灰,将新燃料加入后可瞬时着火,为燃烧提供稳定的热源。

同时,锅炉还可适应负荷的动态变化,使调节比增加。

4)脱硫效果好。

由于炉膛燃烧温度可控制在850~950℃及石灰石或氧化钙与SO2的循环反应,当钙硫比为1.5~2.0时,脱硫效率可达80%以上。

与常规燃煤方式锅炉相比,循环流化床锅炉有独特的环保优势。

5)脱硝效果好。

由于循环流化床锅炉采用一二次风进行分级燃烧,且床温控制在850~950℃,只有燃料中的氮转化成NOX,空气中的氮不会生成NOX,故循环流化床锅炉NOX的排放浓度低。

焦化厂焦炉烟气脱硫脱硝技术的应用

焦化厂焦炉烟气脱硫脱硝技术的应用

焦化厂焦炉烟气脱硫脱硝技术的应用摘要:炼焦生产期间排放的烟气内部包含氮氧化物、二氧化硫等污染物,由此转变而言的PM2.5占据空气总量的50%左右,同时也会形成酸雨,诱发严重的环境问题。

在脱硫脱硝技术不断发展和进步的影响下,其为炼焦烟气污染物治理提供方向指导,尤其是氮氧化更为相关工作的顺利进行提供保障。

本文就针对当前相对成熟的脱硝工艺技术方法进行分析,并未今后焦化厂脱硫脱硝工作顺利进行提供保障。

关键词:焦化厂;焦炉烟气;脱硫脱硝技术;应用分析随着工业生产的应用热度逐渐升高,人们对工业排放污染的关注度也越来越高。

在工业生产的过程中由于工艺的需要导致大量污染物排放到生态环境中,严重威胁着人们的生命安全。

其中,焦化厂作为焦化生产的主要场所,每时每刻都在排放着大量的烟气,其成分中所包含SO2会导致酸雨的形成,进而给空气环境带来严重的威胁。

针对这种情况,焦化厂采用了脱硫脱硝技术对烟气中的污染物进行科学处理,有效减轻焦化烟气对生态环境造成的压力。

1焦化厂焦炉烟气的特点分析焦化厂的焦化生产过程非常复杂,中间需要经过多道处理程序。

洗精煤储存在焦化厂的备煤车间,而在后续的生产操作中,洗精煤需要经过煤塔的漏嘴装入到运输车中,因此在车间和煤塔之间需要经过封闭的通廊,来保证洗精煤的运送安全。

运输车将洗精煤按照顺序输送到炭化室进行干馏产生焦炭,干馏温度设置在960~1040℃。

焦炉的燃烧过程会产生大量的烟气,烟气会通过设置好的通道从烟囱排放到大气中。

焦炉的工作过程非常复杂,工艺也具有一定的特殊性。

对烟气的成分进行分析可知,烟气中主要含有SO2、粉尘以及氮氧化物,且氮氧化物所占的比例较高。

其中,SO2是一种非常常见的硫氧化物,会对大气造成非常严重的危害。

一旦将SO2与水相溶,便会发生化学反应进而产生亚硫酸,而亚硫酸在PM2.5的基础上会进一步氧化成硫酸,导致酸雨的形成,对环境造成不可挽回的影响。

氮氧化物所包含的化合物较多,除了NO2,其他的氮氧化物具有非常不稳定的特性。

烟气脱硫概述

烟气脱硫概述

烟气脱硫概述烟气脱硫科技名词定义中文名称:烟气脱硫英文名称:flue gas desulfurization,FGD;flue gas desulfurization定义1:从烟气中脱除硫氧化物的工艺过程。

所属学科:电力(一级学科);环境保护(二级学科)定义2:从煤炭燃烧或工业生产过程排放的废气中去除硫氧化物的过程。

所属学科:煤炭科技(一级学科);煤矿环境保护(二级学科);煤矿环境污染及防治(三级学科)本内容由全国科学技术名词审定委员会审定公布烟气脱硫:指从烟道气或其他工业废气中除去硫氧化物(SO2和SO3)。

目录一、方法二、工艺介绍1干式烟气脱硫工艺2喷雾干式烟气脱硫工艺3粉煤灰干式烟气脱硫技术4湿法FGD工艺三、工艺历史1第一代FGD的效率一般为70%~85%2第二代FGD系统3第三代FGD系统四、湿法烟气脱硫1湿法烟气脱硫的基本原理2湿法烟气脱硫用脱硫剂3湿法烟气脱硫的类型及工艺过程4湿法烟气脱硫主要设备5湿法烟气脱硫技术的应用6湿法烟气脱硫存在的问题及解决。

7湿法烟气脱硫装置各腐蚀区域的腐蚀分析一、方法烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。

世界上普遍使用的商业化技术是钙法,所占比例在90%以上。

按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。

湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。

干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。

低碳经济环境下的燃煤电厂脱硫脱硝除尘技术

低碳经济环境下的燃煤电厂脱硫脱硝除尘技术

低碳经济环境下的燃煤电厂脱硫脱硝除尘技术摘要:燃煤电厂生产经营中,会产生很多的排放物,继而导致污染问题的产生。

空气污染的主要来源之一是氮氧化物、硫氧化物,而烟气脱硫脱硝技术是应用于多氮氧化物、硫氧化物生成化工工业的一项锅炉烟气净化技术,故应用该技术对环境空气净化益处颇多。

关键词:燃煤电厂;脱硫脱硝;除尘技术一、燃煤电厂脱硫脱硝除尘的意义燃煤电厂运用的传统发电技能,会产生大量的硫化物或硝化物,这对大气产生了严峻的污染效应。

燃煤电厂是我国能源消耗大户及污染物排放主要贡献者。

目前,随着我国对节能减排工作的不断深入,燃煤电厂的煤炭燃烧排放监督已愈发严格。

因而,在电厂中合理的运用烟气脱硫脱硝技能,才干完成节能环保等方针。

燃煤电厂是我国节能减排的重要控制点,为此我国环保规划中明确地提出“二氧化硫、氮氧化物”的减排方针,在此局势背景下,不仅推动了我国电厂脱硫脱硝工程的迅速开展,一起也极大地促进了电厂烟气脱硫脱硝监测分析技能的开展从而为我国电力职业可继续运作开展提供确保。

随着环境问题在全球范围内越来越突出,世界各国纷纷加大了环境管理的力度。

我国也连续制定并出台了一系列法律法规、规划、技能政策。

1.燃煤电厂的主要污染问题燃煤电厂烟尘、二氧化硫、氮氧化物等污染物大量产生,带来的环境问题日益严重,要求必须加强对脱硫、脱硝、除尘、控制重金属汞排放防治,实现可持续发展。

1.烟尘。

我国火电厂燃煤锅炉烟气烟尘技术经历了由初级到高级的发展过程,从现阶段点差除尘器的应用情况来看,燃煤电厂的除尘技术主要有电除尘、袋式除尘和改造后的电袋合一除尘。

目前,电除尘仍是我国电力主流除尘工艺。

当前大多数燃煤电厂煤种复杂、混烧劣质煤情况突出,烟尘工况条件较为恶劣,而电除尘器对烟尘特性较为敏感,煤质变化等原因均会降低除尘效率。

2.粉尘污染。

火力发电厂的发电会产生大量粉尘,进入大气后会危害人眼和呼吸道,直接危害人的身体健康。

比如很多粉尘中都含有大量焦油,人吸入粉尘后容易引发支气管炎甚至肺癌。

固定床干法脱硫效果主要影响因素

固定床干法脱硫效果主要影响因素

固定床干法脱硫效果主要影响因素摘要:目前国内烟气脱硫工艺主要分为湿法脱硫工艺、半干法脱硫工艺和干法脱硫工艺。

在干法脱硫工艺中固定床干法脱硫具有适应温度范围广、装置简单、建设运营成本低、能耗低、无水污染、副产物可资源化等优势收到市场认可。

在焦化、钢铁、水泥、建材等非电行业的烟气治理中得到了广泛的应用。

在脱硫的实际运行中,固定床干法脱硫的脱硫效率主要受到反应温度、脱硫剂成分、流场布置、烟气中的粉尘浓度、含湿度、混合停留时间等因素的影响,本文结合实际运营项目的运行情况和理论依据,通过综合比较、总结了实际运行的规律并分析了在项目工程中影响固定床干法脱硫效率的主要因素。

关键词:固定床干法脱硫、干法脱硫、运行温度、流场分析、脱硫工艺1引言二氧化硫是原料中的硫份在燃烧过程中生产的主要污染物之一,也是我国现影响面较广的一种气态污染物。

SO2是一种无色但有强烈刺激性气味的气体,对人体的呼吸器官有着强烈的毒害作用,亦可通过皮肤接触、消化道进入人体而造成危害。

如果SO2遇到水蒸气,形成硫酸雾,就可以长期滞留在空气中,毒性比单纯SO2大10倍左右。

近年来,随着我国经济发展的速度加快,二氧化硫的排放量也逐年增多。

现市场主要的脱硫工艺分为湿法脱硫、半干法脱硫和干法脱硫。

干法脱硫工艺具有:系统简单;稳定;无水、酸等副产物的处理问题且不影响原系统烟温等优势,越来越多的烟气脱硫(如高炉热风炉烟气脱硫)选用的干法脱硫中的固定床干法脱硫技术。

通过分析其脱硫效率的影响因素有助于在反应过程中更好提高脱硫反应效率。

2固定床干法脱硫工艺介绍国内固定床干法脱硫早在2003年前后开始有院校团队关注研究。

随着排放要求的深化与泛化,在低硫、低尘、宽温段、中低规模烟气脱硫中的应用优势日益凸显,市场应用大约从2018年开始爆发式增长。

在热风炉、加热炉、燃气锅炉、焦炉、干熄焦、收尘烟气等烟气脱硫中均已有应用。

固定床干法脱硫是一种用以实现气固相反应过程或液固相反应过程的反应,脱硫效率达95%以上,脱硫过程中压降在2.0kPa左右,基本没有降温。

焦炉煤气脱硫及硫回收工艺分析

焦炉煤气脱硫及硫回收工艺分析

焦炉煤气脱硫及硫回收工艺分析(冶金工业规划研究院; Email:dengdpan@)潘登摘要:简述了几种具有代表性的脱硫、脱氰工艺,分析了不同工艺特点。

介绍了常用的几种硫回收工艺,并总结了脱硫工艺组合硫回收工艺的原则和方法,为企业选择焦炉煤气净化工艺提供参考依据。

关键词:焦炉煤气,脱硫,硫回收,工艺分析一.前言炼焦煤在干馏过程中,煤中全硫的20~45%会转到荒煤气中,荒煤气中的硫以有机硫和无机硫两种形态存在,有机硫主要有二硫化碳、噻吩、硫醇等,煤气中95%以上的硫以H2S无机硫形态存在,由于荒煤气中的有机硫含量很少而且在煤气净化洗涤过程中大部分会被除去,因此焦炉煤气的脱硫主要是脱除煤气中的H2S,同时除去同为酸性的HCN。

据生产统计焦炉炼焦生产的荒煤气中H2S 含量为2~15g/m3,HCN含量为1~2.5 g/m3。

荒煤气中H2S在煤气处理和输送过程中,会腐蚀设备和管道危害生产安全,未经脱硫的煤气作为燃料燃烧时,会生成大量SO2,造成严重的大气污染,同时H2S含量较高的焦炉煤气用在冶炼,将严重影响钢材产品质量,制约高附加值优质钢材品种的开发。

出于生产安全,环保要求及煤气有效利用方面考虑,那种五、六十年代老焦化厂采用荒煤气→冷凝鼓风工段→硫铵工段→粗苯工段的无脱硫工段老三段模式与绿色环保的现代生产理念相悖,这样焦炉煤气脱硫已经成为煤气净化不可或缺的重要组成部分。

焦炉煤气脱硫,不但环保,而且还可以回收硫磺及硫酸等化学品,产生一定的经济效益。

在淘汰落后产能以及清洁生产政策下,对煤气脱硫的要求是越来越高,《焦化行业准入条件》已明确要求焦炉煤气必须脱硫,脱硫后煤气作为工业或其它用时H2S含量应不超过250 mg/Nm3,若用作城市煤气,H2S含量应不超过20mg/Nm3。

本文将对焦炉煤气常用脱硫工艺进行介绍,分析不同工艺的特点,同时对硫回收工艺作简要说明。

二.工艺概述近年来,焦炉煤气脱硫技术经不断发展与完善已日益成熟和广泛应用,脱硫产品以生产硫磺和硫酸工艺为主。

浅谈脱硫工艺内防腐的技术应用

浅谈脱硫工艺内防腐的技术应用

浅谈脱硫工艺内防腐的技术应用编写:杨超①摘要:轻烃回收过程中的脱硫主要是指防止管线、容器、设备的腐蚀,如果在生产运行过程中不对脱硫设备出口含硫的监控,没有后期的相关技术应用就会给伴生气加工行业带来许多困难。

在轻烃的储存、输送及生产过程中,要防止含硫气体和液体进入下游,如果不重视塔内本身的防腐就有可能发生因管线、容器、设备腐蚀引发的次生事故,这就需要我们对脱硫设施的内部采取抗硫措施,因此,要有效地预防次生事故的发生,就必须引入内防腐技术从而达到脱硫工艺的安全。

关键词:脱硫、防腐、现状、对策一、含硫现状分析***轻烃厂属长庆油田公司第三采油厂,位于陕西省志丹县顺宁镇印砭子村。

承担***联合站来油处理(主要包括两个方面五里湾一区、五里湾二区来油)加工伴生气处理规模为:3.0×104m3/d,实际处理量1.6×104m3/d。

原油处理规模70×104t/a。

整套装置由原油稳定系统、脱水脱硫系统、加热系统、轻烃回收系统、制冷系统及辅助系统等组成。

2012年改造投运了五里湾一区原油稳定系统,更换原油稳定塔、新增螺杆式抽气压缩机、导热油炉系统等;2013年增加一具原油稳定负压塔及原油加热器处理五里湾二区来油。

由于上游来油原油中含硫较高平均在950 ppm至1100 ppm 之间,如下表所示:表1 上游原稳装置来气含硫统计表二、脱硫系统存在问题2.1 脱硫塔现状①作者:杨超1981年11月出身,2000年毕业于长庆石油学校,采油工程专业,现为伴生气综合利用第三项目部***轻烃厂工艺副队长。

气相脱硫设备主要包括4具脱硫塔,塔设计压力0.8Mpa ,容积20.7m³,属于二类压力容器。

脱硫塔本体及管线均有保温,排污处自加电伴热。

2.2 脱硫塔工艺描述2.2.1 主要工艺流程:压力为0.4MPa 左右温度约35℃至45℃左右的气态原料气经过原料气压缩机一级压缩至0.45MPa 左右;再经过一级冷却,变成40℃左右的气态原料气,经一级分离器分离后,除去液滴,然后进入脱硫塔顶部,压力为0.45MPa ,温度达45℃左右。

电厂锅炉脱硫脱硝及烟气除尘技术

电厂锅炉脱硫脱硝及烟气除尘技术

电厂锅炉脱硫脱硝及烟气除尘技术摘要:近年来,我国的科学技术水平不断进步。

现阶段,按照国家《节能减排行动计划》的要求,在实现“碳中和”远景目标的发展过程中,必须要重视火力发电产业的优化改造。

并且,在提升煤炭热值利用率的同时,要控制好生产时排放烟气中的氮、硫和颗粒物的含量,避免对发电厂的周边环境造成污染和破坏,有效实现火电厂的洁净排放。

因此,大型火电厂要积极构建一体化的锅炉排放综合治理体系,实现绿色环保的发展。

本文系统介绍了大型火电厂锅炉环保化的常规技术,并结合实例详细分析了有效脱硫脱硝和烟气除尘的优化方案。

关键词:电厂锅炉;脱硫脱硝;烟气除尘技术引言燃料发电厂是我国能源消耗和污染物排放量最大的源头,燃料电厂的生产系统急需进行脱硫脱硝改造和烟气除尘技术的改造,以此减少电厂生产过程中排放的污染量,使能源利用效率得以提升。

按照国家有关计划限制电厂的燃煤排放,在满足电厂安全生产的基础下保证电厂锅炉的负荷能力和抗震性,并采用最新技术和设备,保证燃煤发电装置实现超低排放。

1意义和技术特点除了碳之外,原煤还包含其他可能对大气造成危害的元素,例如硫和氮。

这些元素的氧化物会破坏大气环境和生态环境。

倘若直接燃烧原煤,不仅会减少碳元素的利用,原煤中有害元素的氧化物也会直接排放到大气中,这些氧化物被释放到大气中会产生酸雨和光化学烟雾等大气污染现象。

电厂的脱硫脱硝、烟气除尘技术的应用改善了这一现象,不仅大大减少了污染物的排放,而且在一定程度上提高了煤炭资源的利用率,降低了电力成本。

脱硫脱硝和烟气除尘技术具有许多其它技术不具备的独特的优势。

第一,该技术无需大量人力,过程并不复杂,操作方便。

第二,无需大量人力,所需的电力成本也不多,运行成本低是该技术的另外一个优势。

最后,这项技术具有很好的适应性。

该技术可以在任何型号和规模的发电厂锅炉运行中使用,也不会有二次污染的产生,这样一来可以保证在发电过程中产生的污染物排放量处于最低。

2电厂锅炉脱硫、脱硝技术分析2.1干法脱硫技术干法脱硫技术对施工环境的干燥指标要求非常严格,主要使用特定的起到吸附作用的试剂完成污染治理,这种试剂为颗粒或粉末形状,吸附后的状态为干粉末,可以完成毒害气体的治理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

干法脱硫工艺技术分析 摘 要:火电厂排放的二氧化硫形成的酸雨已严重危害人类的生存环境,国家强制要求火电厂必须安装烟气脱硫装置。但是,受技术和经济等条件的限制,必须发展脱硫率高、系统可利用率高、流程简化、系统电耗低、投资和运行费用低的脱硫技术和工艺。在这种形势下,干法脱硫工艺应运而生。为此,结合国内外目前比较成熟、大型商业化运行的几种干法、半干法脱硫工艺,分析了干法、半干法脱

硫工艺在大型化发展、控制调节、预除尘器和脱硫除尘器设置的技术要点,最后指

出干法脱硫工艺具有广阔的应用前景。

关键词:烟气脱硫;干法脱硫工艺; 技术要点;前景 1烟气脱硫技术的发展和现状 世界上烟气脱硫技术的发展经历了以下3个阶段: a) 20世纪70年代,以石灰石湿法为代表第一代烟气脱硫。 b) 20世纪80年代,以干法、半干法为代表的第二代烟气脱硫。主要有喷雾干燥法、炉内喷钙加炉后增湿活化(LIFAC)、烟气循环流化床(CFB)、循环半干法脱硫工艺(NID)等。这些脱硫技术基本上都采用钙基吸收剂,如石灰或消石灰等。随着对工艺的不断改良和发展,设备可靠性提高,系统可用率达到97%,脱硫率一般为70%~95%,适合燃用中低硫煤的中小型锅炉 c) 20世纪90年代,以湿法、半干法和干法脱硫工艺同步发展的第三代烟气脱

硫。

由于技术和经济上的原因,一些烟气脱硫工艺已被淘汰,而主流工艺,如石灰石-石膏湿法、烟气循环流化床、炉内喷钙加炉后增湿活化、喷雾干燥法、气体悬浮吸收脱硫工艺(GSA)以及改进后的NID却得到了进一步的发展,并趋于成熟。这些烟气脱硫工艺的优点是:脱硫率高(可达95%以上);系统可利用率高;工艺流程简化;系统电耗低;投资和运行费用低。从20世纪90年代开始,中国先后从国外引进了各种类型的脱硫技术,建成了6个示范工程项目,涉及湿法、半干法和干法烟气脱硫技术,见表1。

 本文根据几种干法、半干法脱硫工艺的基本原理,对干法工艺的几个重要方面进行分析。

2脱硫塔大型化的要点 2.1尽量使用单塔脱硫 随着机组容量的增大,脱硫塔的直径也随着增大。在能使用单塔的情况下,尽量不要使用双塔和多塔,因为单一吸收塔技术提高了系统的可靠性和脱硫率,而且初期投资费可降低30%~50%。脱硫副产品回收利用的研究开发,也拓宽了其商业应用的途径。 2.2脱硫塔大型化的主要问题 脱硫塔大型化最主要的问题是要保证塔内流场中温度的均匀性和调节的灵敏性。 a) 塔内流场中温度均匀性的要求 在塔的高度方向的各个断面上,各点的温度趋于一致,不能有高、低温差异太大的情况出现。因为高温处的SO2吸收反应效果较差,高温时吸收剂的活性较小,反应温度与烟气露点温度的差值较大(AST),反应率就低;而低温处,尤其出现低于露点温度,即AST<0时,容易出现局部的结露、粘连和筒壁腐蚀,这就是为什么有些脱硫工艺需要在反应塔内加装内衬的原因,其实,这种情况的危害性较大,反应塔可以通过内衬防腐,但烟气下游的设备和烟气管道却难以防腐,且花费较大。 b) 脱硫塔调节的灵敏性要求 随着负荷、工况的变化,各参数的负荷应变时间短,较少滞后,使脱硫效率随着工况的变化而变化,从而保证各种工况下脱硫率稳定。 2.3循环流化床烟气脱硫塔 为保证脱硫反应塔温度的均匀性和调节灵敏性,要求塔内有良好的传质特性。物料的传质往往比传热更重要,而且能更快达到更好的效果,单纯的传热速度较慢,而且热力场有热力梯度,很难使各点的温度在短时间内很均匀,利用循环流化床的原理而设计的脱硫塔,在这一方面比较能够达到这一要求,它使反应塔内的传热传质非常强烈。 2.3.1循环流化床脱硫塔的特点 根据循环流化床原理而设计制造的脱硫反应塔,其烟气进入反应塔底部时,塔内文丘里的加速,将喷入塔内的吸收剂和循环回流的物料吹起,形成沸腾床体,气体和物料无论处于流化床的过渡段还是稳定段,都处于强烈的紊流状态,物料之间的碰撞、摩擦、反应、传热等物理化学过程非常强烈,任何工况变化所引起的波动都会在这个强烈的传热传质状态下迅速达到新的平衡。这样,布置在塔顶的温度测点产生假信号或几个测点的温度信号不一致而使控制系统无法及时进行各种物料的调节的可能性大为减少,同时也使脱硫设备出现低温、结露、腐蚀的概率大为减少。 2.3.2回流式循环流化床烟气脱硫塔的特点 尤其是德国WULFF公司的回流式烟气循环流化床(RCFB),其独特的流场和塔顶结构设计,在RCFB吸收塔中,烟气和吸收剂颗粒的向上运动中会有一部分因回流(Reflux)而从塔顶向下返回塔中。这股向下的回流固体与烟气的方向相反,而且,它是一股很强的内部湍流,从而增强了烟气与吸收剂的接触时间。实际上可以认为这是一种与外部再循环相似的内部再循环。在内部再循环的作用下,RCFB工艺的脱硫效率得到了优化。也许很多脱硫工艺都很难避免腐蚀情况的出现,但这种概率和趋向则可以把握。 2.4脱硫塔内烟气湿度的控制 温度的控制,实质上是对烟气湿度的控制。脱硫工艺中,烟气的湿度对脱硫效率的影响很大。例如炉内喷钙尾部增湿工艺,其炉内喷钙脱硫效率为25%~35%,尾部增湿效率为40%~50%,总效率为75%左右,这说明了烟气湿度对脱硫效率的影响。在相对湿度为40%~50%时,消石灰活性增强,能够非常有效地吸收SO2,烟气的相对湿度是利用向炉内给烟气喷水的方法来提高。半干法烟气脱硫

工艺中,水和石灰以浆液的状态注入烟气,浆液中固态物的质量分数为35%~

50%,而干法脱硫工艺,如RCFB和NID,加入的水量相同,但水分布在粉料微粒的表面,用于蒸发的表面积很大。烟气湿度的提高,可以使烟气脱硫操作温度接近或高于露点温度10~20 ℃(实践中,这一温度范围为65~75 ℃),激活消石灰吸收SO2。SO2是烟气中反应较慢的成分,保持床温接近露点温度(即较高的相对湿度),可以保持微粒表面的湿膜有较长的停留时间,促进SO2和Ca2化学成分之间的反应,使吸收的程度和石灰的利用率达到最佳。SO3和卤化酸类(HCl、HF等)的酸性比SO2强,所以SO3,HCL,HF成分在装置中的去除率达99%,因其活性强,几乎能全部与SO2同时被吸收,适量的卤化酸类因钙的吸湿性、因雾滴在湿润环境中的干燥时间较长,有助脱除SO2,这也是采用接近露点温度的另一好处。

3干法脱硫工艺的运行调节 干法脱硫工艺的系统控制和调节主要取以下3个信号,用以前馈或反馈到各个调节回路,相互配合,达到脱硫的最佳工况条件,保证脱硫的效果。 3.1控制好脱硫塔内的温度及高度重视塔内的加水方式 a) 监测脱硫塔内的温度,以此来调节喷水系统的开度和喷水量的大小,保持适当的AST值,使床温在各种负荷和工况条件下,烟气的酸露点温度始终保持在较高处,这样,吸收剂的活性最佳,能够较好地捕捉SO2,并发生化学反应,提高脱硫率。 在大型化商业运行的脱硫塔中,温度的控制是比较困难的,它是制约脱硫装置大型化发展的主要因素之一。当脱硫塔直径越来越大时,要各个大面积截面上的温度保持均匀性,需采取大量的有效措施,目前,干法、半干法脱硫装置还没有在较大容量机组上使用的业绩,与此有很大关系。较为成熟的脱硫技术,如旋转喷雾法,GSA法,其单塔容量一般都在100 MW机组以下,单塔直径4 500 mm以下,而NID法则做得更小一些。各国公司都在围绕干法、半干法脱硫装置大型化发展进行开发和研究,德国WULFF公司利用流化床和带内回流的循环流化床技术(RCFB),在解决传热传质这一问题上,取得了一定的成绩,效果明显。目前,RCFB单塔用于奥地利1台300 MW机组烟气脱硫并获得成功。 b) 给脱硫塔内加水的方式颇为讲究。在旋转喷雾,GSA半干法中,由于吸收剂以浆液形式喷入时带有水,运行时又需加调节,造成由温度信号而引起的水路调节变得复杂化,因为在喷浆工艺中,所加入的水与吸收剂的量有比例关系,使喷水调节受其它因素影响。NID法的水完全与吸收剂、再循环料一道加入反应塔(视垂直烟道为反应塔)。RCFB法吸收剂直接以干粉形态喷入,水路另外单独喷入,就喷水调温而言,RCFB法显然要更方便一些。 3.2监测SO2排放量 监测SO2排放量信号,用于调节脱硫剂的加入量。当SO2排放量较大时,就应加入更多的吸收剂去吸收更多的SO2;当SO2的排放量较小时,就应减少吸收剂的使用,使系统运行经济合理,降低成本。 3.3监测吸收塔的压降 监测吸收塔的压降,用于调节再循环量的大小,使脱硫渣的循环量和循环次数控制在设计范围之内,这样既可控制下游脱硫除尘器的入口灰尘的质量浓度和烟囱烟尘质量浓度的排放,又可提高吸收剂的利用率,降低碱酸比。 控制这三个监测量及其相关的信号去调节各运行回路,使脱硫系统的运行达到最优化,这是干法、半干法脱硫工艺控制系统的基本要求。就控制的灵敏性、可靠性而言,如果三个控制回路能完全独立,各行其是,互不影响则最理想,而RCFB技术的控制原理最能符合这一要求,由于其吸收剂、水和脱硫渣的再循环是独立加入到脱硫塔的,这样就避免了其它工艺三者的互相牵连,避免了增加脱硫剂时附加了水而使温度下降或加水降温时附加了脱硫剂,从而增加再循环量而增大碱酸比的情况。当然,以上三个参数总是相互影响、协同调节的,但三路系统的参数分别调节,会更方便灵活一些。

4预除尘器设置的探讨 对于是否使用预除尘器,很多文献或资料并没有详细说明。据国外一些资料指出,一般干法或半干法都设有预除尘器,但国内很多电厂没有设预除尘器。不设预除尘器,笔者认为起码会影响以下2方面。 4.1不利于燃料灰和脱硫灰的再循环 根据计算,锅炉燃煤产生的燃料灰的量比较多,而用于脱硫产生的脱硫灰的量比较少,通常前者是后者的三倍左右。以200 MW机组为例,耗煤量约95 t/h,产生的燃料灰约22 t(灰分的质量分数以25%计),而脱硫灰量(硫的质量分数以0.85%计)约7 t;以300 MW机组为例,耗煤量约140 t/h,产生的燃料灰约32 t,而脱硫灰量约11 t。这就是说,如果没有预除尘器,当脱硫灰和燃料灰混在一起再循环时,将有75%的再循环物是燃料灰,而这些大量的燃烧灰对提高脱硫率和降低碱酸比值并没有帮助,还会减少吸收剂、脱硫灰与SO2的接触,消耗动力,增大反应塔容量;由于再循环量变大,还会提高烟气喷射的初始速度以达到同样的流化状态,这一初始速度的提高,还会带来以下2个问题: a) 减小烟气在塔内的停留时间,使气体很快通过吸收塔,降低了塔内的反应率,将部分脱硫反应留在了下游设备中。 b) 一般燃料灰比脱硫灰要粗一些,燃料灰的平均粒径大致为15μm±5μm,脱硫灰的平均粒径大致为10μm±5μm;燃料灰的体积质量一般为700~1 000 kg/m3,而脱硫灰的体积质量一般为500~1 000 kg/m3,烟气流速的加大,将大量的细微粒带出了反应塔,不利于吸收剂的有效利用,影响了碱酸比。 4.2影响脱硫塔下游的脱硫除尘器 是否设置预除尘器,对脱硫塔下游的脱硫除尘器会产生较大的影响。如果没有预除尘,大量燃煤灰混在脱硫灰中一起循环,使得循环量变大,脱硫除尘器的入口质量浓度也随之增大,在除尘器排放指标一定的情况下,脱硫除尘器的入口质量浓度是有限度的,太高的入口粉尘质量浓度也会使除尘器的造价上升,这样势必减少循环次数,降低吸收剂利用率,使碱酸比值变大。如果有预除尘器,这

相关文档
最新文档