2011年全国高考文科数学试题及答案-四川
2011年高考数学(全国大纲版)文科真题及答案

2011年高考数学(全国大纲版)文科真题及答案参考答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则。
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给力,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。
4.只给整数分数,选择题不给中间分。
一、选择题16 DBBCAD 712 CCBACD二、填空题13.0 14.15.16.6三、解答题17.解:设的公比为q,由题设得3分解得6分当当10分18.解:由正弦定理得3分由余弦定理得故6分8分故12分19.解:记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D表示事件:该地的1位车主甲、乙两种保险都不购买;E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买。
3分6分9分12分20.解法一:取AB中点E,连结DE,则四边形BCDE为矩形,DE=CB=2,连结SE,则又SD=1,故,所以为直角。
3分由,得平面SDE,所以。
SD与两条相交直线AB、SE都垂直。
所以平面SAB。
6分由平面SDE知,平面平面SED。
作垂足为F,则SF 平面ABCD,作,垂足为G,则FG=DC=1。
连结SG,则,又,故平面SFG,平面SBC 平面SFG。
9分作,H为垂足,则平面SBC。
,即F到平面SBC的距离为由于ED//BC,所以ED//平面SBC,E到平面SBC的距离d也有设AB与平面SBC所成的角为,则12分解法二:以C为坐标原点,射线CD为x轴正半轴,建立如图所示的空间直角坐标系Cxyz。
设D,则A、B。
又设,,由得故x=1。
2011高考试题——数学文(全国卷)解析版

2011高考试题——数学文(全国卷)解析版2011年高考题全国卷II 数学试题·文科全解析题目及解析(1)设集合{}1,2,3,4U =,{}1,2,3,M ={}2,3,4,N =则U=⋂(M N )(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4【思路点拨】解决本题的关键是掌握集合交并补的计算方法,易求{2,3}M N =,进而求出其补集为{}1,4. 【精讲精析】选D.{2,3},(){1,4}U MN MN =∴=.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b ,而由a>b 推不出选项的选项.【精讲精析】选A .即寻找命题P 使P ,a b a b ⇒>>推不出P ,逐项验证可选A 。
(6)设nS 为等差数列{}n a 的前n 项和,若11a=,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )5【思路点拨】思路一:直接利用前n 项和公式建立关于k 的方程解之即可。
思路二: 利用221k k k k SS a a +++-=+直接利用通项公式即可求解,运算稍简。
【精讲精析】选D .22112(21)2(21)224 5.k k k k S S a a a k d k k +++-=+=++=++⨯=⇒=(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13 (B )3 (C )6 (D )9 【思路点拨】此题理解好三角函数周期的概念至关重要,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍。
2011年高考新课标Ⅱ文科数学试题及答案(精校版,解析版,word版)

2011年高考新课标Ⅱ文科数学试题及答案(精校版,解析版,word版)2011年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M ={0, 1, 2, 3, 4},N ={1, 3, 5},P M N =I ,则P 的子集共有()A .2个B .4个C .6个D .8个2.复数512ii=-() A .2i -B .12i -C .2i -+D .12i -+3.下列函数中,既是偶函数又在+∞(0,)单调递增的函数是()A .3y x =B .||1y x =+C .21y x =-+D .||2x y -=4.椭圆221168x y +=的离心率为()A .13B .12CD5.执行右面的程序框图,如果输入的N 是6,那么输出的p 是()A .120B .720C .1440D .50406.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为() A .13B .12C .23D .347.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =() A .45-B .35-C .35D .458.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()A. B. C. D.9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直. l 与C 交于A , B 两点,|AB |=12,P 为C 的准线上一点,则?ABP 的面积为() A .18B .24C .36D .48 10.在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为() A .1(,0)4-B .1(0,)4C .11(,)42D .13(,)2411.设函数()sin(2)cos(2)44f x x x ππ=+++,则()A .y = f (x )在(0)2,π单调递增,其图像关于直线4x π=对称B .y = f (x )在(0)2,π单调递增,其图像关于直线2x π=对称C .y = f (x )在(0)2,π单调递减,其图像关于直线4x π=对称 D .y = f (x )在(0)2,π单调递减,其图像关于直线2x π=对称 12.已知函数y = f (x )的周期为2,当x ∈[-1,1]时 f (x ) =x 2,那么函数y = f (x )的图像与函数y = |lg x |的图像的交点共有() A .10个B .9个C .8个D .1个第Ⅱ卷本卷包括必考题和选考题两部分. 第13题~第21题为必考题,每个试题考生必须做答. 第22题~第24题为选考题,考生根据要求做答.二、填空题:(本大题共4小题,每小题5分.)13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量k a -b 垂直,则k = .14.若变量x , y 满足约束条件32969x y x y ≤+≤??≤-≤?,则2z x y =+的最小值为 .15.在△ABC 中B =120°,AC =7,AB =5,则△ABC 的面积为 .16.已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的163,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 .三、解答题:(解答应写出文字说明,证明过程或演算步骤.)17.(满分12分)已知等比数列{a n }中,113a =,公比13q =.(I )S n 为{a n }的前n 项和,证明:12nn a S -=;(II )设31323log log log n n b a a a =+++L L ,求数列{b n }的通项公式. 18.(满分12分)如图,四棱锥P -ABCD 中,底面ABCD为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(Ⅰ)证明:P A ⊥BD ;(Ⅱ)若PD =AD =1,求棱锥 D -PBC 的高.19.(满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表B 配方的频数分布表(Ⅱ)已知用B 配方生成的一件产品的利润y (单位:元)与其质量指标值t 的关系式为2(94)2(94102)4(102),t <=""=≤??≥?,估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润。
2011年高考试题——数学文(全国卷)

2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷....上作答无效.....。
3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=⋂(M N ) (A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4(2)函数(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥(3)设向量a,b 满足|a|=|b|=1,则2a b +=(A 2 (B 3 (C 5 (D 7 (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3(5)下面四个条件中,使a>b 成立的充分而不必要的条件是(A) 1a b >+(B) 1a b >-(C) a 2> b 2 (D) a 3> b 3(6) 设S n 为等差数列{}n a 的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =(A)8 (B)7 (C) 6 (D) 5(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13 (B )3 (C )6 (D )9(8) 已知直二面角α- l –β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l,D 为垂足.若AB =2,AC =BD =1,则CD =(A ) 2 (B )3 (C )2 (D )1(9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种(10)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=(A) -12 (B)1 4- (C)14 (D)12(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B)42 (C)8 (D)82(12)已知平面α截一球面得圆M , 过圆心M 且与α成060,二面角的平面β截该球面得圆N.若该球的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (c)11π (D)13π第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年全国高考文科数学试题及答案-新课标

2011 年一般高等学校招生全国一致考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务势必自己的姓名、准考据号填写在答题卡上.2.回答第Ⅰ卷时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12 小题,每题5 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.已知会合 M={0,1, 2, 3, 4},N={1, 3, 5}, P=M N,则 P 的子集共有A.2 个B.4 个C.6 个D.8 个2.复数5i2i1A.2 i B.1 2i C. 2 i D.1 2i3.以下函数中,既是偶函数又在(0,) 单一递加的函数是A.y x3 B.y | x | 1 C.yx2 1D.y 2| x|x2 y 24.椭圆1的离心率为16 81 1A.B.3 23 2C.D.3 25.履行右边的程序框图,假如输入的N 是 6,那么输出的p 是A. 120 B. 720C. 1440 D. 50406.有 3 个兴趣小组,甲、乙两位同学各自参加此中一个小组,每位同学参加各个小组的可能性同样,则这两位同学参加同一个兴趣小组的概率为1 1A.B.3 22 3C.D.3 47.已知角 的极点与原点重合,始边与x 轴的正半轴重合,终边在直线y 2x 上,则 cos2 = 4 3 C .3 4 A .B .D .55558.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图能够为9.已知直线 l 过抛物线 C 的焦点,且与C 的对称轴垂直, l 与 C 交于 A , B 两点, | AB | 12 ,P为 C 的准线上一点,则 ABP 的面积为A . 18B . 24C . 36D . 4810.在以下区间中,函数f (x)e x 4 x 3的零点所在的区间为A .( 1,0)B . (0,1)C .(1,1)D .(1 , 3)444 2 2 411.设函数 f ( x) sin(2 x)cos(2 x) ,则44A . yf ( x) 在 (0, ) 2B . yf ( x) 在 (0, ) 2C . yf ( x) 在 (0, ) 2D . yf (x) 在 (0, ) 2单一递加,其图象对于直线x 对称4单一递加,其图象对于直线x 对称2单一递减,其图象对于直线x 对称4单一递减,其图象对于直线x对称212.已知函数 y f ( x) 的周期为 2,当 x[ 1,1] 时 f (x) x 2 ,那么函数 yf ( x) 的图象与函数 y|lg x | 的图象的交点共有A .10 个B .9 个C .8 个D .1 个第Ⅱ卷本卷包含必考题和选考题两部分.第13 题 -第 21 题为必考题,每个试题考生都一定做答.第22 题 -第 24 题为选考题,考生依据要求做答. 二、填空题:本大题共4 小题,每题5 分.13.已知 a 与 b 为两个不共线的单位向量,k=_____________.k 为实数,若向量a+b与向量ka-b垂直,则3 2 x y 9 14.若变量 x ,y 知足拘束条件x y,则 z x 2 y 的最小值是 _________.6915. ABC 中, B 120 , AC 7, AB 5 ,则 ABC 的面积为 _________ .16.已知两个圆锥有公共底面,且两圆锥的极点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的3,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为16______________.三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分 12 分)1 1已知等比数列 { a n } 中, a 1,公比 q.331 a n( I ) S n 为 { a n } 的前 n 项和,证明: S n2( II )设 b n log 3 a 1 log 3 a 2log 3 a n ,求数列 {b n } 的通项公式.18.(本小题满分 如图,四棱锥 底面 ABCD .12 分) P ABCD中,底面ABCD 为平行四边形,DAB60 ,AB2 AD,PD( I )证明: PA BD ;( II )设 PD=AD=1,求棱锥 D-PBC 的高.19.(本小题满分 12 分)某种产品的质量以其质量指标值权衡,质量指标越大表示质量越好,且质量指标值大于或等于 102 的产品为优良品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了 100 件这类产品,并丈量了每产品的质量指标值,获得时下边试验结果:A 配方的频数散布表指标值分组[90, 94)[94 ,98)[98, 102)[102 ,106)[106 ,110]频数 8 20 42 22 8 B 配方的频数散布表指标值分组[90, 94)[94 ,98)[98, 102)[102 ,106)[106 ,110]频数 4 12 42 32 10( I)分别预计用 A 配方, B 配方生产的产品的优良品率;( II)已知用 B 配方生产的一种产品收益y(单位:元)与其质量指标值t 的关系式为2,t 94y 2,94 t 1024, t 102预计用 B 配方生产的一件产品的收益大于0 的概率,并求用 B 配方生产的上述100 件产品平均一件的收益.20.(本小题满分12 分)在平面直角坐标系xOy 中,曲线y x26x 1与坐标轴的交点都在圆 C 上.( I)求圆 C 的方程;( II)若圆 C 与直线x y a 0 交于A,B两点,且 OA OB, 求a的值.21.(本小题满分12 分)已知函数 f ( x) a ln x b,曲线 y f (x) 在点 (1, f (1)) 处的切线方程为 x 2 y 3 0 .x 1 x( I)求 a, b 的值;( II)证明:当 x>0,且x 1 时, f ( x) ln x .x 1请考生在第22、23、24 三题中任选一题做答,假如多做,则按所做的第一题计分.做答是用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10 分)选修 4-1:几何证明选讲如图, D, E 分别为ABC 的边AB,AC上的点,且不与ABC 的极点重合.已知AE 的长为m, AC 的长为n, AD,AB 的长是对于x 的方程x2 14x mn 0 的两个根.( I)证明:C, B, D, E 四点共圆;( II)若 A 90 ,且 m 4, n6, 求C,B,D,E所在圆的半径.23.(本小题满分10 分)选修 4-4:坐标系与参数方程在直角坐标系 xOy 中,曲线C1x 2cos为参数),M 为C1上的动点,的参数方程为(y 2 2sinP 点知足OP 2OM,点 P 的轨迹为曲线C2.( I)求C2的方程;( II)在以 O 为极点, x 轴的正半轴为极轴的极坐标系中,射线与 C1的异于极点的交3点为 A,与C2的异于极点的交点为B,求 |AB| .24.(本小题满分10 分)选修 4-5:不等式选讲设函数 f ( x) | x a | 3x ,此中a 0 .( I)当a=1 时,求不等式 f ( x) 3x 2 的解集.( II)若不等式 f ( x) 0 的解集为{x| x 1} ,求a 的值.参照答案一、选择题( 1)B ( 2)C ( 3)B ( 4)D (5) B ( 6)A ( 7)B ( 8)D (9) C(10)C(11)D(12) A二、填空题(13)1(14) -6(15)15 3(16)143三、解答题 ( 17)解:(Ⅰ)因为 a n1 (1) n 1 1 .3 3 3n1 11 1(1 n )nS n3 3 3 ,1 123所以 S n1 a n ,2(Ⅱ) b n log 3 a 1 log 3 a 2log 3 a n(1 2 n)n(n1)2所以 {b n } 的通项公式为 b nn(n 1) .2(18)解:(Ⅰ)因为DAB 60 ,AB2AD , 由余弦定理得 BD3AD进而 BD 2+AD 2= AB 2 ,故 BD AD又 PD 底面 ABCD ,可得 BD PD所以BD平面PAD.故 PABD(Ⅱ) 如图, 作 DEPB ,垂足为E 。
2011年高考课标卷文科数学试题WORD版

2011年普通高等学校招生全国统一考试文科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}{}0,1,2,3,4,1,3,5,,M N P MN ===则P 的子集共有(A )2个 (B )4个 (C)6个 (D )8个 【解析】:{}1,3,5P =,利用组合数公式01233333328C C C C +++==.子集中包括真子集∅。
(2)复数512ii=- (A )2i - (B )12i - (C )2i -+ (D )12i -+【解析】:2255(12)5(2)5(2)212(12)(12)1(2)5i i i i i i i i i i +--====---+-。
【解析2】假设选项A 成立,则5212ii i=--去分母得5(2))(12)5i i i i =--=-不成立,但是我们知道C 成立。
(3)下列函数中,既是偶函数又在()0,+∞单调递增的函数是 A. 3y x = B. 1y x =+ C 。
21y x =-+ D 。
2xy -=【解析】:A 是奇函数排除.C 是减函数排除。
对于D 在(0,)+∞上12()2x x y -==为减函数排除。
选择B(4).椭圆221168x y +=的离心率为 A. 13 B. 12C 。
33 D.22 【解析】22242c e a ===。
注意2216,16.88a a b b ≠=≠=而是而是 (5)执行右面得程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B )720 (C )1440 (D )5040(6)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B ) 12 (C ) 23 (D ) 34【解析】本题是逻辑相悖的题。
题目提供的数字很小,数一数就可以了。
2011年高考试题数学文(全国2卷)以及答案
2011年一般高等学校招生全国一致考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水署名笔将自己的姓名、准考据号填写清楚,并贴好条形码。
请仔细批准条形码上的准考据号、姓名和科目。
2.每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需变动, 用橡皮擦洁净后,再选涂其余答案标号,在试题卷上.....作答无效....。
3.第Ⅰ卷共l2小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
一、选择题(1)设会合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U C =⋂(M N )(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4(2)函数2(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥(3)设向量a,b 知足|a|=|b|=1,则2a b +=(A 2 (B 3 (C 5 (D 7(4)若变量x ,y 知足拘束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3(5)下边四个条件中,使a>b 建立的充足而不用要的条件是(A) 1a b >+(B) 1a b >-(C) a 2> b 2 (D) a 3> b 3(6) 设S n 为等差数列{}n a 的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =(A)8 (B)7 (C) 6 (D) 5(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13 (B )3 (C )6 (D )9(8) 已知直二面角α- l –β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l,DAB =2,AC =BD =1,则CD =(A ) 2 (B )3 (C )2 (D )1(9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不一样选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种(10)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=(A) -12 (B)1 4- (C)14 (D)12(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B)42 (C)8 (D)82(12)已知平面α截一球面得圆M , 过圆心M 且与α成060,二面角的平面β截该球面得圆N.若该球的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (c)11π (D)13π第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水署名笔将自己的姓名、准考 证号填写清楚,而后贴好条形码。
2011年高考试题数学文(全国2卷)以及答案
2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷....上作答无效.....。
3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U C =⋂(M N )(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4(2)函数2(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥(3)设向量a,b 满足|a|=|b|=1,则2a b +=(A 2 (B 3 (C 5 (D 7 (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3(5)下面四个条件中,使a>b 成立的充分而不必要的条件是(A) 1a b >+(B) 1a b >-(C) a 2> b 2 (D) a 3> b 3(6) 设S n 为等差数列{}n a 的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =(A)8 (B)7 (C) 6 (D) 5(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13 (B )3 (C )6 (D )9(8) 已知直二面角α- l –β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l,D 为垂足.若AB =2,AC =BD =1,则CD =(A ) 2 (B )3 (C )2 (D )1(9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种(10)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=(A) -12 (B)1 4- (C)14 (D)12(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B)42 (C)8 (D)82(12)已知平面α截一球面得圆M , 过圆心M 且与α成060,二面角的平面β截该球面得圆N.若该球的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (c)11π (D)13π第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年全国统一高考数学试卷(文科)(大纲版)
0.5,购
(Ⅰ)求该地 1 位车主至少购买甲、乙两种保险中的 1 种的概率;
(Ⅱ)求该地的 3 位车主中恰有 1 位车主甲、乙两种保险都不购买的概率.
第 2页(共 17页)
20.(12 分)( 2011? 大纲版)如图,四棱锥 S﹣ ABCD 中, AB∥ CD,BC⊥ CD ,侧面 SAB 为 等边三角形, AB=BC =2, CD=SD= 1. (Ⅰ)证明: SD⊥平面 SAB; (Ⅱ)求 AB 与平面 SBC 所成的角的大小.
,则 z= 2x+3y 的最小值为
() A . 17
B .14
C.5
D.3
【分析】 我们先画出满足约束条件
的平面区域,然后求出平面区域内各个顶
点的坐标,再将各个顶点的坐标代入目标函数,比较后即可得到目标函数的最值.
【解答】 解:约束条件
的平面区域如图所示:
由图可知,当 x= 1, y=1 时,目标函数 z= 2x+3y 有最小值为 5 故选: C.
21.( 12 分)( 2011? 大纲版)已知函数 f( x)= x3+3ax2+( 3﹣ 6a)x+12 a﹣ 4( a∈R) (Ⅰ)证明:曲线 y= f( x)在 x= 0 处的切线过点( 2, 2); (Ⅱ)若 f( x)在 x= x0 处取得极小值, x0∈(1, 3),求 a 的取值范围.
9.( 5 分)(2011? 大纲版) 4 位同学每人从甲、乙、丙
修课程甲的不同选法共有(
)
3 门课程中选修 1 门,则恰有 2 人选
第 1页(共 17页)
A . 12 种
B .24 种
C. 30 种
D. 36 种
10.( 5 分)( 2011? 大纲版)设 f( x)是周期为 2 的奇函数,当 0≤ x≤1 时, f( x)= 2x( 1
2011年全国高考文科数学试题及答案(含解析)-全国2
绝密★使用完毕前 2011年6月7日15:00~17:00 あ★珍爱★ゑ2011年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式(+)()+()P A B P A P B = S=4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ∙=∙ 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34V R 3π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径一、选择题(1)设集合}4,3,2,1{=U ,}3,2,1{=M ,}4,3,2{=N ,则=)(N M C u(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥(3)权向量b a ,满足21,1-=∙==b a b a 则2a b +=(A (B (C (D(4)若变量x 、y 满足约束条件6321x y x y x +⎧⎪-≤⎨⎪≥⎩,则y x z 32+=的最小值为(A )17 (B )14 (C )5 (D )3(5)下面四个条件中,使a >b 成立的充分而不必要的条件是(A )a >b +1 (B )a >b -1 (C )2a >2b (D )3a >3b(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差d = 2,224k k S S +-=,则k =(A ) 8 (B ) 7 (C ) 6 (D ) 5(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 (8)已知直二面角βα--l , 点,α∈A ,l AC ⊥ C 为垂足,,β∈B l BD ⊥,D 为垂足,若2=AB ,1==BD AC ,则CD=( )(A )2 (B )3 (C ) 2 (D ) 1(9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A )12种 (B )24种 (C )30种 (D )36种(10)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=(A ) -12 (B )1 4- (C )14 (D )12(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A )4 (B) (C )8 (D)(12)已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为(A )7π (B )9π (C )11π (D )13π 绝密★使用完毕前 2011年6月7日15:00~17:00 あ★珍爱★ゑ2011年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
www.zgxzw.com 中国校长网 中国校长网资源频道 http://zy.zgxzw.com 绝密★启用前
2011年普通高等学校招生全国统一考试(四川卷) 数 学(文史类)
本试题卷分第一部分(选择题)和第二部分(非选择题)两部分.第1部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案打在答题卡上,在本试题卷、草稿纸上答题无效,满分150分,考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.
参考公式: 如果事件A、B互斥,那么 球是表面积公式 ()()()PABPAPB 24SR
如果事件A、B相互独立,那么 其中R表示球的半径 ()()()PABPAPB 球的体积公式
如果事件A在一次试验中发生的概率是P,那么 343VR n次独立重复试验中恰好发生k次的概率 其中R表示球的半径 ()(1)kknknnPkCPP
第一部分(选择题 共60分) 1.选择题必须使用2B铅笔将答案标号填涂在答题卡上对应题目标号的位置上. 2.本大题共12小题,每小题5分,共60分.
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目的要求的. 1.若全集{1,2,3,4,5}M,{2,4}N,则MNð
(A) (B){1,3,5} (C){2,4} (D){1,2,3,4,5} 答案:B 解析:∵{1,2,3,4,5}M,则MNð{1,3,5},选B.
2.有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,大于或等于31.5的数据约占
(A)211 (B) 13 (C)12 (D)23 答案:B 解析:大于或等于31.5的数据共有12+7+3=22个,约占221663,选B.
3.圆22460xyxy的圆心坐标是 (A)(2,3) (B)(-2,3) (C)(-2,-3) (D)(2,-3) 答案:D 解析:圆方程化为22(2)(3)13xy,圆心(2,-3),选D. www.zgxzw.com 中国校长网 中国校长网资源频道 http://zy.zgxzw.com 4.函数1()12xy的图象关于直线y=x对称的图象像大致是
答案:A 解析:1()12xy图象过点(0,2),且单调递减,故它关于直线y=x对称的图象过点(2,0)
且单调递减,选A. 5.“x=3”是“x2=9”的 (A)充分而不必要的条件 (B)必要而不充分的条件 (C)充要条件 (D)既不充分也不必要的条件
答案:A 解析:若x=3,则x 2=9,反之,若x 2=9,则3x,选A. 6.1l,2l,3l是空间三条不同的直线,则下列命题正确的是
(A)12ll,23ll13//ll (B)12ll,23//ll13ll (C)233////lll1l,2l,3l共面 (D)1l,2l,3l共点1l,2l,3l共面 答案:B 解析:由12ll,23//ll,根据异面直线所成角知1l与3l所成角为90°,选B.
7.如图,正六边形ABCDEF中,BACDEF
(A)0 (B)BE (C)AD (D)CF 答案:D 解析:BACDEFCDDEEFCF,选D. 8.在△ABC中,222sinsinsinsinsinABCBC,则A的取值范围是
(A)(0,]6 (B)[,)6 (C)(0,]3 (D)[,)3 答案:C 解析:由222sinsinsinsinsinABCBC得222abcbc,即222122bcabc,
∴1cos2A,∵0A,故03A,选C. 9.数列{an}的前n项和为Sn,若a1=1,an+1 =3Sn(n ≥1),则a6= (A)3 × 44 (B)3 × 44+1 (C)44 (D)44+1 www.zgxzw.com 中国校长网 中国校长网资源频道 http://zy.zgxzw.com 答案:A 解析:由an+1 =3Sn,得an =3Sn-1(n ≥ 2),相减得an+1-an =3(Sn-Sn-1)= 3an,则an+1=4an
(n ≥ 2),a1=1,a2=3,则a6= a2·44=3×44,选A.
10.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A地至少72吨的货物,派用的每辆车需满载且只运送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司合理计划当天派用两类卡车的车辆数,可得最大利润为 (A)4650元 (B)4700元 (C)4900元 (D)5000元 答案:C 解析:设派用甲型卡车x(辆),乙型卡车y(辆),获得的利润为u(元),450350uxy,
由题意,x、y满足关系式12,219,10672,08,07,xyxyxyxy作出相应的平面区域,45035050(97)uxyxy在由12,219xyxy确定的交点(7,5)处取得最大值4900元,选C. 11.在抛物线25(0)yxaxa上取横坐标为14x,22x的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536xy相切,则抛物线顶点的坐标为 (A)(2,9) (B)(0,5) (C)(2,9) (D)(1,6) 答案:A 解析:令抛物线上横坐标为14x、22x的点为(4,114)Aa、(2,21)Ba,则2ABka,由22yxaa,故切点为(1,4)a,切线方程为(2)60axy,
该直线又和圆相切,则2665(2)1da,解得4a或0a(舍去),则抛物线为
2245(2)9yxxx,定点坐标为(2,9),选A.
12.在集合{1,2,3,4,5}中任取一个偶数a和一个奇数b构成以原点为起点的向量(,)ab,从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的
平行四边形的个数为n,其中面积等于2的平行四边形的个数为m,则mn
(A)215 (B)15 (C)415 (D)13 答案:B 解析:∵以原点为起点的向量(,)ab有(2,1)、(2,3)、(2,5)、(4,1)、
(4,3)、(4,5)共6个,可作平行四边形的个数2615nC个,结合图形进行计算,其中由(2,1)(4,1)、(2,1)(4,3)、(2,3)(4,5)确定的平行四边
形面积为2,共有3个,则31155mn,选B. www.zgxzw.com 中国校长网 中国校长网资源频道 http://zy.zgxzw.com 第二部分(非选择题 共90分)
注意事项: 1.必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效. 2.本部分共10小题,共90分.
二、填空题:本大题共4小题,每小题4分,共16分. 13.9(1)x的展开式中3x的系数是_________.(用数字作答) 答案:84 解析:∵9(1)x的展开式中3x的系数是639984CC.
14.双曲线2216436xy上一点P到双曲线右焦点的距离是4,那么P到左准线的距离是____. 答案:16 答案:16
解析:离心率54e,设P到右准线的距离是d,则454d,则165d,则
P到左准线的距离等于2641616105. 15.如图,半径为4的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是_________. 答案:32π 解析:如图,设球一条半径与圆柱相应的母线夹角为α,圆柱侧面积
24sin24cosS=32sin2,当4时,S取最大值32,此时球的表面积与
该圆柱的侧面积之差为32. 16.函数()fx的定义域为A,若12,xxA且12()()fxfx时总有12xx,则称()fx为单函数.例如,函数()fx=2x+1(xR)是单函数.下列命题: ①函数2()fxx(xR)是单函数; ②指数函数()2xfx(xR)是单函数; ③若()fx为单函数,12,xxA且12xx,则12()()fxfx; ④在定义域上具有单调性的函数一定是单函数. 其中的真命题是_________.(写出所有真命题的编号) 答案:②③④ 解析:对于①,若12()()fxfx,则12xx,不满足;②是单函数;命题③实际上是单函数命题的逆否命题,故为真命题;根据定义,命题④满足条件.
三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题共l2分) 本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙人互相独立来该租车点租车骑游(各租一车一
次).设甲、乙不超过两小时还车的概率分别为14、12;两小时以上且不超过三小时还