2018届高三数学(文)二轮复习专题集训:专题五立体几何5.2平行与垂直
立体几何线面平行垂直、面面平行垂直专题练习(高三党必做)

立体几何线面平行垂直、面面平行垂直专题一、解答题(本大题共27小题,共324.0分)1.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.2.如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=AD,∠BAD=∠ABC=90°,E是PD的中点.BC=12(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.3.如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中点.(1)求证:AE⊥B1C;(2)求异面直线AE与A1C所成的角的大小;(3)若G为C1C中点,求二面角C-AG-E的正切值.4.如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,AC∩BD=O,△PAC是边长为2的等边三角形,PB=PD=√6,AP=4AF.(Ⅰ)求证:PO⊥底面ABCD;(Ⅱ)求直线CP与平面BDF所成角的大小;(Ⅲ)在线段PB上是否存在一点M,使得CM∥平面BDF如果存在,求BM的值,如果不存在,请说明理BP由.5.如图,在直三棱柱ABC-A1B l C1中,AC=BC=√2,∠ACB=90°.AA1=2,D为AB的中点.(Ⅰ)求证:AC⊥BC1;(Ⅱ)求证:AC1∥平面B1CD:(Ⅲ)求异面直线AC1与B1C所成角的余弦值.6.如图,正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.7.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=√6,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.8.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=√3,三棱锥P-ABD的体积V=√3,求A到平面PBC的距4离.9.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.10.如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.11.如图,正三角形ABE与菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中点,N是CE的中点.(I)求证:EM⊥AD;(II)求证:MN∥平面ADE;(III)求点A到平面BCE的距离.12.已知几何体ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,FC∥EA,AB=AD=EA=1,CD=CF=2.(Ⅰ)求证:平面EBD⊥平面BCF;(Ⅱ)求点B到平面ECD的距离.13.如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD=2,E、F分别为CD、PB的中点.(1)求证:EF∥平面PAD;(2)求证:平面AEF⊥平面PAB;(3)设AB=√2AD,求直线AC与平面AEF所成角θ的正弦值.14.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ADC=45∘,AD=AC=2,O为AC的中点,PO⊥平面ABCD且PO=6,M为BD的中点.(1)证明:AD⊥平面PAC;(2)求直线AM与平面ABCD所成角的正切值.15.如图,正三棱柱ABC-A1B1C1中,AB=2,AA1=√2,点D为A1C1的中点.(I)求证:BC1∥平面AB1D;(II)求证:A1C⊥平面AB1D;(Ⅲ)求异面直线AD与BC1所成角的大小.16.如图,P-ABD和Q-BCD为两个全等的正棱锥,且A,B,C,D四点共面,其中AB=1,∠APB=90°.(Ⅰ)求证:BD⊥平面APQ;(Ⅱ)求直线PB与平面PDQ所成角的正弦值.17.如图,在三棱柱ABC-A1B1C1中,平面A1ACC1⊥底面ABC,AB=BC=2,∠ACB=30°,∠C1CB=60°,BC1⊥A1C,E为AC的中点,侧棱CC1=2.(1)求证:A1C⊥平面C1EB;(2)求直线CC1与平面ABC所成角的余弦值.18.如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,AB=6,BC=2√3,AC=2√6,D为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;,求点B到平面PAC的距离.(2)若∠PAB=π419.如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,△ABC为正三角形,D是BC边的中点,AA1=AB=1.(1)求证:平面ADB1⊥平面BB1C1C;(2)求点B到平面ADB1的距离.20.如图,在三棱锥P-ABC中,点D,E,F分别为棱PC,AC,AB的中点,已知PA⊥平面ABC,AB⊥BC,且AB=BC.(1)求证:平面BED⊥平面PAC;(2)求二面角F-DE-B的大小;(3)若PA=6,DF=5,求PC与平面PAB所成角的正切值.21.如图,在四棱锥P—ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E为PC的中点,AD=CD=1,DB=2√2.(1)证明PA∥平面BDE;(2)证明AC⊥平面PBD;(3)求直线BC与平面PBD所成的角的正切值.22.如图所示,在四棱台ABCD-A1B1C1D1中,AA1⊥底面ABCD,四边形ABCD为菱形,∠BAD=120°,AB=AA1=2A1B1=2.(Ⅰ)若M为CD中点,求证:AM⊥平面AA1B1B;(Ⅱ)求直线DD1与平面A1BD所成角的正弦值.=√2.23.如图,在直三棱柱ABC−A1B1C1中,∠ACB=90°,E为A1C1的中点,CC1C1E(Ⅰ)证明:CE⊥平面AB1C1;(Ⅱ)若AA1=√6,∠BAC=30°,求点E到平面AB1C的距离.24.如图,在四棱锥E-ABCD中,底面ABCD是边长为√2的正方形,平面AEC⊥平面CDE,∠AEC=90°,F为DE中点,且DE=1.(Ⅰ)求证:BE∥平面ACF;(Ⅱ)求证:CD⊥DE;(Ⅲ)求FC与平面ABCD所成角的正弦值.25.已知:平行四边形ABCD中,∠DAB=45°,AB=√2AD=2√2,平面AED⊥平面ABCD,△AED为等边三角形,EF∥AB,EF=√2,M为线段BC的中点.(1)求证:直线MF∥平面BED;(2)求证:平面BED⊥平面EAD;(3)求直线BF与平面BED所成角的正弦值.26.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=√2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AC=√2,AB=BC=1,E为AD中点.(Ⅰ)求证:PE⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的余弦值;(Ⅲ)求平面PAB与平面PCD所成的二面角.27.如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.答案和解析1.【答案】(1)证明:法一、如图,取PB 中点G ,连接AG ,NG ,∵N 为PC 的中点, ∴NG ∥BC ,且NG =12BC ,又AM =23AD =2,BC =4,且AD ∥BC , ∴AM ∥BC ,且AM =12BC ,则NG ∥AM ,且NG =AM ,∴四边形AMNG 为平行四边形,则NM ∥AG , ∵AG ⊂平面PAB ,NM ⊄平面PAB , ∴MN ∥平面PAB ; 法二、在△PAC 中,过N 作NE ⊥AC ,垂足为E ,连接ME , 在△ABC 中,由已知AB =AC =3,BC =4,得cos ∠ACB =42+32−322×4×3=23,∵AD ∥BC ,∴cos ∠EAM =23,则sin ∠EAM =√53,在△EAM 中,∵AM =23AD =2,AE =12AC =32,由余弦定理得:EM =√AE 2+AM 2−2AE ⋅AM ⋅cos∠EAM =√94+4−2×32×2×23=32,∴cos ∠AEM =(32)2+(32)2−42×32×32=19,而在△ABC 中,cos ∠BAC =32+32−422×3×3=19,∴cos ∠AEM =cos ∠BAC ,即∠AEM =∠BAC , ∴AB ∥EM ,则EM ∥平面PAB .由PA ⊥底面ABCD ,得PA ⊥AC ,又NE ⊥AC , ∴NE ∥PA ,则NE ∥平面PAB . ∵NE ∩EM =E ,∴平面NEM ∥平面PAB ,则MN ∥平面PAB ;(2)解:在△AMC 中,由AM =2,AC =3,cos ∠MAC =23,得CM 2=AC 2+AM 2-2AC •AM •cos ∠MAC =9+4−2×3×2×23=5.∴AM 2+MC 2=AC 2,则AM ⊥MC , ∵PA ⊥底面ABCD ,PA ⊂平面PAD ,∴平面ABCD ⊥平面PAD ,且平面ABCD ∩平面PAD =AD , ∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD .在平面PAD 内,过A 作AF ⊥PM ,交PM 于F ,连接NF ,则∠ANF 为直线AN 与平面PMN 所成角.在Rt△PAC中,由N是PC的中点,得AN=12PC=12√PA2+PC2=52,在Rt△PAM中,由PA•AM=PM•AF,得AF=PA⋅AMPM =√42+22=4√55,∴sin∠ANF=AFAN =4√5552=8√525.∴直线AN与平面PMN所成角的正弦值为8√525.【解析】本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=12BC,再由已知得AM∥BC,且AM=12BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)由勾股定理得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.2.【答案】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF∥AD,EF=12AD,AB=BC=12AD,∠BAD=∠ABC=90°,∴BC∥AD,EF∥BC,EF=BC,∴四边形BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CE⊄平面PAB,∴直线CE∥平面PAB;(2)解:如图所示,取AD中点O,连接PO,CO,由于△PAD为正三角形,则PO⊥AD,因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO⊥CO. 因为AO=AB=BC=12AD,且∠BAD=∠ABC= 90∘,所以四边形ABCO是矩形,所以CO⊥AD,以O为原点,OC为x轴,OD为y轴,OP为z轴建立空间直角坐标系,不妨设AB=BC=12AD=1,则OA=OD=AB=CO=1.又因为△POC为直角三角形,|OC|=√33|OP|,所以∠PCO=60∘.作MN⊥CO,垂足为N,连接BN,因为PO ⊥CO ,所以MN //PO ,且PO ⊥平面ABCD ,所以MN ⊥平面ABCD ,所以∠MBN 即为直线BM 与平面ABCD 所成的角, 设CN =t ,因为∠PCO =60∘,所以MN =√3t ,BN =√BC 2+CN 2=√t 2+1. 因为∠MBN =45∘,所以MN =BN ,即√3t =√t 2+1,解得t =√22,所以ON =1−√22,MN =√62,所以A (0,−1,0),B (1,−1,0),M (1−√22,0,√62),D (0,1,0),则AB ⃗⃗⃗⃗⃗ =(1,0,0),AD⃗⃗⃗⃗⃗⃗ =(0,2,0),AM ⃗⃗⃗⃗⃗⃗ =(1−√22,1,√62). 设平面MAB 和平面DAB 的法向量分别为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),n 2⃗⃗⃗⃗ =(x 2,y 2,z 2), 则{AB ⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0AM ⃗⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0,即{x 1=0(1−√22)x 1+y 1+√62z 1=0, 可取z 1=−2,则n 1⃗⃗⃗⃗ =(0,√6,−2), 同理可得n 2⃗⃗⃗⃗ =(0,0,1),所以.因为二面角M -AB -D 是锐角,所以其余弦值为√105.【解析】本题考查直线与平面平行的判定定理的应用,空间向量求二面角夹角,考查空间想象能力以及计算能力,属于中档题.(1)取PA 的中点F ,连接EF ,BF ,通过证明CE ∥BF ,利用直线与平面平行的判定定理证明即可.(2)取AD 中点O ,连接PO ,CO ,作MN ⊥CO ,垂足为N ,以O 为原点,OC 为x 轴,OD 为y 轴,OP 为z 轴建立空间直角坐标系,即可求出二面角M -AB -D 的余弦值.3.【答案】证明:(1)因为BB 1⊥面ABC ,AE ⊂面ABC ,所以AE ⊥BB 1,由AB =AC ,E 为BC 的中点得到AE ⊥BC , ∵BC ∩BB 1=B ,BC 、BB 1⊂面BB 1C 1C , ∴AE ⊥面BB 1C 1C ,,∴AE ⊥B 1C ;解:(2)取B 1C 1的中点E 1,连A 1E 1,E 1C ,则AE ∥A 1E 1, ∴∠E 1A 1C 是异面直线AE 与A 1C 所成的角, 设AC =AB =AA 1=2,则由∠BAC =90°, 可得A 1E 1=AE =√2,A 1C =2√2,E 1C 1=EC =12BC =√2,∴E 1C =√E 1C 12+C 1C 2=√6,∵在△E 1A 1C 中,cos ∠E 1A 1C =2+8−62⋅√2⋅2√2=12, 所以异面直线AE 与A 1C 所成的角为π3;(3)连接AG ,设P 是AC 的中点,过点P 作PQ ⊥AG 于Q ,连EP ,EQ ,则EP ⊥AC ,又∵平面ABC ⊥平面ACC 1A 1,平面ABC ∩平面ACC 1A 1=AC ∴EP ⊥平面ACC 1A 1, 而PQ ⊥AG ∴EQ ⊥AG .∴∠PQE 是二面角C -AG -E 的平面角, 由(2)假设知:EP =1,AP =1, Rt △ACG ∽Rt △AQP ,PQ =CG·AP AG=1√5,故tan ∠PQE =PEPQ =√5,所以二面角C -AG -E 的平面角正切值是√5.【解析】本题考查异面直线的夹角,线线垂直的判定,属于中档题,熟练掌握线面垂直,线线垂直与面面垂直之间的转化及异面直线夹角及二面角的定义,是解答本题的关键,属于较难题.(1)由BB 1⊥面ABC 及线面垂直的性质可得AE ⊥BB 1,由AC =AB ,E 是BC 的中点,及等腰三角形三线合一,可得AE ⊥BC ,结合线面垂直的判定定理可证得AE ⊥面BB 1C 1C ,进而由线面垂直的性质得到AE ⊥B 1C ;(2)取B 1C 1的中点E 1,连A 1E 1,E 1C ,根据异面直线夹角定义可得,∠E 1A 1C 是异面直线A 与A 1C 所成的角,设AC =AB =AA 1=2,解三角形E 1A 1C 可得答案. (3)连接AG ,设P 是AC 的中点,过点P 作PQ ⊥AG 于Q ,连EP ,EQ ,则EP ⊥AC ,由直三棱锥的侧面与底面垂直,结合面面垂直的性质定理,可得EP ⊥平面ACC 1A 1,进而由二面角的定义可得∠PQE 是二面角C -AG -E 的平面角.4.【答案】(Ⅰ)证明:因为底面ABCD 是菱形,AC ∩BD =O ,所以O 为AC ,BD 中点.-------------------------------------(1分)又因为PA =PC ,PB =PD ,所以PO ⊥AC ,PO ⊥BD ,---------------------------------------(3分)所以PO ⊥底面ABCD .----------------------------------------(4分)(Ⅱ)解:由底面ABCD 是菱形可得AC ⊥BD , 又由(Ⅰ)可知PO ⊥AC ,PO ⊥BD .如图,以O 为原点建立空间直角坐标系O -xyz .由△PAC 是边长为2的等边三角形,PB =PD =√6,可得PO =√3,OB =OD =√3.所以A(1,0,0),C(−1,0,0),B(0,√3,0),P(0,0,√3).---------------------------------------(5分)所以CP ⃗⃗⃗⃗⃗ =(1,0,√3),AP ⃗⃗⃗⃗⃗ =(−1,0,√3). 由已知可得OF ⃗⃗⃗⃗⃗ =OA⃗⃗⃗⃗⃗ +14AP ⃗⃗⃗⃗⃗ =(34,0,√34)-----------------------------------------(6分) 设平面BDF 的法向量为n −=(x ,y ,z ),则{√3y =034x +√34z =0令x =1,则z =−√3,所以n ⃗ =(1,0,-√3).----------------------------------------(8分) 因为cos <CP ⃗⃗⃗⃗⃗ ,n ⃗ >=CP ⃗⃗⃗⃗⃗ ⋅n ⃗⃗|CP ⃗⃗⃗⃗⃗ ||n ⃗⃗ |=-12,----------------------------------------(9分) 所以直线CP 与平面BDF 所成角的正弦值为12,所以直线CP 与平面BDF 所成角的大小为30°.-----------------------------------------(10分)(Ⅲ)解:设BMBP =λ(0≤λ≤1),则CM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +λBP ⃗⃗⃗⃗⃗ =(1,√3(1−λ),√3λ).---------------------------------(11分)若使CM ∥平面BDF ,需且仅需CM −⋅n ⃗ =0且CM ⊄平面BDF ,---------------------(12分) 解得λ=13∈[0,1],----------------------------------------(13分) 所以在线段PB 上存在一点M ,使得CM ∥平面BDF . 此时BM BP =13.-----------------------------------(14分)【解析】(Ⅰ)证明PO ⊥底面ABCD ,只需证明PO ⊥AC ,PO ⊥BD ;(Ⅱ)建立空间直角坐标系,求出直线CP 的方向向量,平面BDF 的法向量,利用向量的夹角公式可求直线CP 与平面BDF 所成角的大小;(Ⅲ)设BMBP =λ(0≤λ≤1),若使CM ∥平面BDF ,需且仅需CM −⋅n ⃗ =0且CM ⊄平面BDF ,即可得出结论.本题考查线面垂直,考查线面平行,考查线面角,考查向量知识的运用,正确求出向量的坐标是关键.5.【答案】解:(I )证明:∵CC 1⊥平面ABC ,AC ⊂平面ABC ,∠ACB =90°, ∴CC 1⊥AC ,AC ⊥BC ,又BC ∩CC 1=C ,∴AC ⊥平面BCC 1,BC 1⊂平面BCC 1, ∴AC ⊥BC 1.(II )证明:如图,设CB 1∩C 1B =E ,连接DE , ∵D 为AB 的中点,E 为C 1B 的中点,∴DE ∥AC 1, ∵DE ⊂平面B 1CD ,AC 1⊄平面B 1CD , ∴AC 1∥平面B 1CD .(III )解:由DE ∥AC 1,∠CED 为AC 1与B 1C 所成的角,在△CDE 中,DE =12AC 1=12√AC 2+CC 12=√62, CE =12B 1C =12√BC 2+BB 12=√62,CD =12AB =12√AC 2+BC 2=1,cos ∠CED =CE 2+DE 2−CD 22×CE×DE=32+32−12×√62×√62=23,∴异面直线AC 1与B 1C 所成角的余弦值为23.【解析】本题考查线线垂直的判定、线面平行的判定、异面直线及其所成的角. (I )先证线面垂直,再由线面垂直证明线线垂直即可; (II )作平行线,由线线平行证明线面平行即可;(III )先证明∠CED 为异面直线所成的角,再在三角形中利用余弦定理计算即可. 6.【答案】解:如图,在正三棱柱ABC -A 1B 1C 1中, 设AC ,A 1C 1的中点分别为O ,O 1, 则,OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,故以{OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底, 建立空间直角坐标系O -xyz ,∵AB =AA 1=2,A (0,-1,0),B (√3,0,0), C (0,1,0),A 1(0,-1,2),B 1(√3,0,2),C 1(0,1,2).(1)点P 为A 1B 1的中点.∴P(√32,−12,2),∴BP ⃗⃗⃗⃗⃗ =(−√32,−12,2),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2). |cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |=|−1+4|√5×2√2=3√1020.∴异面直线BP 与AC 1所成角的余弦值为:3√1020; (2)∵Q 为BC 的中点.∴Q (√32,12,0)∴AQ ⃗⃗⃗⃗⃗ =(√32,32,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),CC 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2),设平面AQC 1的一个法向量为n⃗ =(x ,y ,z ), 由{AQ ⃗⃗⃗⃗⃗ ·n ⃗ =√32x +32y =0AC 1⃗⃗⃗⃗⃗⃗⃗ ·n⃗ =2y +2z =0,可取n⃗ =(√3,-1,1), 设直线CC 1与平面AQC 1所成角的正弦值为θ, sinθ=|cos|=|CC 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||CC 1⃗⃗⃗⃗⃗⃗⃗ |⋅|n⃗ |=2√5×2=√55, ∴直线CC 1与平面AQC 1所成角的正弦值为√55.【解析】本题考查了向量法求空间角,属于中档题.设AC ,A 1C 1的中点分别为O ,O 1,以{OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底,建立空间直角坐标系O -xyz ,(1)由|cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |可得异面直线BP 与AC 1所成角的余弦值;(2)求得平面AQC 1的一个法向量为n⃗ ,设直线CC 1与平面AQC 1所成角的正弦值为θ,可得sinθ=|cos <CC 1⃗⃗⃗⃗⃗⃗⃗ ,n⃗ >|=|CC 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||CC 1⃗⃗⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ |,即可得直线CC 1与平面AQC 1所成角的正弦值.7.【答案】(1)证明:如图,设AC ∩BD =O ,∵ABCD 为正方形,∴O 为BD 的中点,连接OM ,∵PD ∥平面MAC ,PD ⊂平面PBD ,平面PBD ∩平面AMC =OM , ∴PD ∥OM ,则BOBD =BM BP,即M 为PB 的中点;(2)解:取AD 中点G , ∵PA =PD ,∴PG ⊥AD ,∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD , ∴PG ⊥平面ABCD ,则PG ⊥AD ,连接OG ,则PG ⊥OG ,由G 是AD 的中点,O 是AC 的中点,可得OG ∥DC ,则OG ⊥AD .以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系, 由PA =PD =√6,AB =4,得D (2,0,0),A (-2,0,0),P (0,0,√2),C (2,4,0),B (-2,4,0),M (-1,2,√22),DP ⃗⃗⃗⃗⃗ =(−2,0,√2),DB⃗⃗⃗⃗⃗⃗ =(−4,4,0). 设平面PBD 的一个法向量为m ⃗⃗⃗ =(x ,y ,z),则由{m ⃗⃗⃗ ⋅DP ⃗⃗⃗⃗⃗ =0m⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,得{−2x +√2z =0−4x +4y =0,取z =√2,得m ⃗⃗⃗ =(1,1,√2). 取平面PAD 的一个法向量为n ⃗ =(0,1,0).∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗ |m ⃗⃗⃗ ||n ⃗⃗ |=12×1=12. ∴二面角B -PD -A 的大小为60°;(3)解:CM ⃗⃗⃗⃗⃗⃗ =(−3,−2,√22),平面BDP 的一个法向量为m ⃗⃗⃗ =(1,1,√2).∴直线MC 与平面BDP 所成角的正弦值为|cos <CM ⃗⃗⃗⃗⃗⃗ ,m ⃗⃗⃗ >|=|CM ⃗⃗⃗⃗⃗⃗⋅m ⃗⃗⃗|CM ⃗⃗⃗⃗⃗⃗ ||m ⃗⃗⃗ ||=|−2√9+4+12×1|=2√69.【解析】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.(1)设AC ∩BD =O ,则O 为BD 的中点,连接OM ,利用线面平行的性质证明OM ∥PD ,再由平行线截线段成比例可得M 为PB 的中点;(2)取AD 中点G ,可得PG ⊥AD ,再由面面垂直的性质可得PG ⊥平面ABCD ,则PG ⊥AD ,连接OG ,则PG ⊥OG ,再证明OG ⊥AD .以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系,求出平面PBD 与平面PAD 的一个法向量,由两法向量所成角的大小可得二面角B -PD -A 的大小;(3)求出CM⃗⃗⃗⃗⃗⃗ 的坐标,由CM ⃗⃗⃗⃗⃗⃗ 与平面PBD 的法向量所成角的余弦值的绝对值可得直线MC 与平面BDP 所成角的正弦值.8.【答案】解:(Ⅰ)证明:设BD 与AC 的交点为O ,连结EO , ∵ABCD 是矩形, ∴O 为BD 的中点 ∵E 为PD 的中点, ∴EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ∴PB ∥平面AEC ;(Ⅱ)∵AP =1,AD =√3,三棱锥P -ABD 的体积V =√34,∴V =16PA ⋅AB ⋅AD =√36AB =√34,∴AB =32,PB =√1+(32)2=√132.作AH ⊥PB 交PB 于H , 由题意可知BC ⊥平面PAB , ∴BC ⊥AH ,故AH ⊥平面PBC .又在三角形PAB 中,由射影定理可得:AH =PA⋅AB PB=3√1313A 到平面PBC 的距离3√1313.【解析】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.(Ⅰ)设BD 与AC 的交点为O ,连结EO ,通过直线与平面平行的判定定理证明PB ∥平面AEC ;(Ⅱ)通过AP =1,AD =√3,三棱锥P -ABD 的体积V =√34,求出AB ,作AH ⊥PB 角PB于H ,说明AH 就是A 到平面PBC 的距离.通过解三角形求解即可. 9.【答案】证明:(I )∵PA ⊥底面ABCD ,AD ⊥AB , 以A 为坐标原点,建立如图所示的空间直角坐标系,∵AD =DC =AP =2,AB =1,点E 为棱PC 的中点. ∴B (1,0,0),C (2,2,0),D (0,2,0), P (0,0,2),E (1,1,1)∴BE⃗⃗⃗⃗⃗ =(0,1,1),DC ⃗⃗⃗⃗⃗ =(2,0,0) ∵BE ⃗⃗⃗⃗⃗ •DC ⃗⃗⃗⃗⃗ =0, ∴BE ⊥DC ;(Ⅱ)∵BD ⃗⃗⃗⃗⃗⃗ =(-1,2,0),PB ⃗⃗⃗⃗⃗ =(1,0,-2),设平面PBD 的法向量m⃗⃗⃗ =(x ,y ,z ), 由{m ⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0m⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =0,得{−x +2y =0x −2z =0, 令y =1,则m⃗⃗⃗ =(2,1,1), 则直线BE 与平面PBD 所成角θ满足: sinθ=m⃗⃗⃗ ⋅BE ⃗⃗⃗⃗⃗⃗ |m ⃗⃗⃗ |⋅|BE ⃗⃗⃗⃗⃗⃗ |=2√6×√2=√33, 故直线BE 与平面PBD 所成角的正弦值为√33.(Ⅲ)∵BC⃗⃗⃗⃗⃗ =(1,2,0),CP ⃗⃗⃗⃗⃗ =(-2,-2,2),AC ⃗⃗⃗⃗⃗ =(2,2,0), 由F 点在棱PC 上,设CF⃗⃗⃗⃗⃗ =λCP ⃗⃗⃗⃗⃗ =(-2λ,-2λ,2λ)(0≤λ≤1), 故BF ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CF⃗⃗⃗⃗⃗ =(1-2λ,2-2λ,2λ)(0≤λ≤1), 由BF ⊥AC ,得BF ⃗⃗⃗⃗⃗ •AC ⃗⃗⃗⃗⃗ =2(1-2λ)+2(2-2λ)=0, 解得λ=34,即BF ⃗⃗⃗⃗⃗ =(-12,12,32), 设平面FBA 的法向量为n ⃗ =(a ,b ,c ), 由{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0n ⃗ ⋅BF ⃗⃗⃗⃗⃗ =0,得{a =0−12a +12b +32c =0令c =1,则n⃗ =(0,-3,1), 取平面ABP 的法向量i =(0,1,0), 则二面角F -AB -P 的平面角α满足: cosα=|i ⋅n ⃗⃗ ||i|⋅|n ⃗⃗ |=3√10=3√1010,故二面角F -AB -P 的余弦值为:3√1010【解析】本题考查的知识点是空间二面角的平面角,建立空间直角坐标系,将二面角问题转化为向量夹角问题,是解答的关键.(I )以A 为坐标原点,建立空间直角坐标系,求出BE ,DC 的方向向量,根据BE ⃗⃗⃗⃗⃗ •DC ⃗⃗⃗⃗⃗ =0,可得BE ⊥DC ;(II )求出平面PBD 的一个法向量,代入向量夹角公式,可得直线BE 与平面PBD 所成角的正弦值;(Ⅲ)根据BF ⊥AC ,求出向量BF ⃗⃗⃗⃗⃗ 的坐标,进而求出平面FAB 和平面ABP 的法向量,代入向量夹角公式,可得二面角F -AB -P 的余弦值. 10.【答案】证明:(Ⅰ)取AD 的中点F ,连接EF ,CF ,∵E 为PD 的中点,∴EF ∥PA ,EF ∥平面PAB ,在四边形ABCD 中,BC ∥AD ,AD =2DC =2CB ,F 为中点,∴四边形CBAF 为平行四边形,故CF ∥AB ,CF ∥平面PAB ,∵CF ∩EF =F ,EF ∥平面PAB ,CF ∥平面PAB , ∴平面EFC ∥平面ABP , ∵EC ⊂平面EFC , ∴EC ∥平面PAB .解:(Ⅱ)连接BF ,过F 作FM ⊥PB 于M ,连接PF , ∵PA =PD ,∴PF ⊥AD ,∵DF ∥BC ,DF =BC ,CD ⊥AD ,∴四边形BCDF 为矩形,∴BF ⊥AD , 又AD ∥BC ,故PF ⊥BC ,BF ⊥BC ,又BF ∩PF =F ,BF 、PF ⊂平面PBF ,BC ⊄平面PBF , ∴BC ⊥平面PBF ,∴BC ⊥PB ,设DC =CB =1,由PC =AD =2DC =2CB ,得AD =PC =2, ∴PB =√PC 2−BC 2=√4−1=√3, BF =PF =1,∴MF =√12−(√32)2=12,又BC ⊥平面PBF ,∴BC ⊥MF ,又PB ∩BC =B ,PB 、BC ⊂平面PBC ,MF ⊄平面PBC , ∴MF ⊥平面PBC ,即点F 到平面PBC 的距离为12,∵MF =12,D 到平面PBC 的距离应该和MF 平行且相等,均为12, E 为PD 中点,E 到平面PBC 的垂足也为所在线段的中点,即中位线, ∴E 到平面PBC 的距离为14,在△PCD 中,PC =2,CD =1,PD =√2,,故由余弦定理得CE =√2, 设直线CE 与平面PBC 所成角为θ,则sinθ=14CE=√28.【解析】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、能力,考查数形结合思想、化归与转化思想,属于中档题.(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.11.【答案】证明:(Ⅰ)∵EA=EB,M是AB的中点,∴EM⊥AB,∵平面ABE⊥平面ABCD,平面ABE∩平面ABCD=AB,EM⊂平面ABE,∴EM⊥平面ABCD,∵AD⊂平面ABCD,∴EM⊥AD;(Ⅱ)取DE的中点F,连接AF,NF,∵N是CE的中点,∴NF=//12CD,∵M是AB的中点,∴AM=//12CD,∴NF=//AM,∴四边形AMNF是平行四边形,∴MN∥AF,∵MN⊄平面ADE,AF⊂平面ADE,∴MN∥平面ADE;解:(III)设点A到平面BCE的距离为d,由(I)知ME⊥平面ABC,BC=BE=2,MC=ME=√3,则CE=√6,BN=√BE2−EN2=√102,∴S△BCE=12CE⋅BN=√152,S△ABC=12BA×BC×sin60°=√3,∵V A-BCE=V E-ABC,即13S△BCE×d=13S△ABC×ME,解得d=2√155,故点A到平面BCE的距离为2√155.【解析】本题考查线线垂直、线面平行的证明,考查点到平面的距离的求法,涉及到力、数据处理能力,考查数形结合思想,是中档题.(Ⅰ)推导出EM ⊥AB ,从而EM ⊥平面ABCD ,由此能证明EM ⊥AD ;(Ⅱ)取DE 的中点F ,连接AF ,NF ,推导出四边形AMNF 是平行四边形,从而MN ∥AF ,由此能证明MN ∥平面ADE ;(III )设点A 到平面BCE 的距离为d ,由V A -BCE =V E -ABC ,能求出点A 到平面BCE 的距离.12.【答案】(I )证明:∵AB ∥CD ,AD ⊥DC ,AB =AD =1,CD =2,∴BD =BC =√2, ∴BD 2+BC 2=CD 2, ∴BD ⊥BC ,∵EA ⊥平面ABCD ,BD ⊂平面ABCD , ∴EA ⊥BD ,∵EA ∥FC , ∴FC ⊥BD ,又BC ⊂平面BCF ,FC ⊂平面BCF ,BC ∩CF =C , ∴BD ⊥平面FBC , 又BD ⊂平面BDE ,∴平面BDE ⊥平面BCF .(II )解:过A 作AM ⊥DE ,垂足为M , ∵EA ⊥平面ABCD ,CD ⊂平面ABCD , ∴EA ⊥CD ,又CD ⊥AD ,EA ∩AD =A , ∴CD ⊥平面EAD ,又AM ⊂平面EAD , ∴AM ⊥CD ,又AM ⊥DE ,DE ∩CD =D , ∴AM ⊥平面CDE ,∵AD =AE =1,EA ⊥AD ,∴AM =√22,即A 到平面CDE 的距离为√22,∵AB ∥CD ,CD ⊂平面CDE ,AB ⊄平面CDE , ∴AB ∥平面CDE ,∴B 到平面CDE 的距离为√22.【解析】(I )先计算BD ,BC ,利用勾股定理的逆定理证明BD ⊥BC ,再利用EA ⊥平面ABCD 得出AE ⊥BD ,从而有CF ⊥BD ,故而推出BD ⊥平面FBC ,于是平面EBD ⊥平面BCF ;(II )证明AB ∥平面CDE ,于是B 到平面CDE 的距离等于A 到平面CDE 的距离,过A 作AM ⊥DE ,证明AM ⊥平面CDE ,于是AM 的长即为B 到平面CDE 的距离. 本题考查了线面垂直、面面垂直的判定与性质,空间距离的计算,属于中档题. 13.【答案】证明:方法一:(1)取PA 中点G ,连结DG 、FG . ∵F 是PB 的中点, ∴GF ∥AB 且GF =12AB ,又底面ABCD 为矩形,E 是DC 中点, ∴DE ∥AB 且DE =12AB∴GF ∥DE 且GF =DE ,∴EF ∥DG∵DG ⊂平面PAD ,EF ⊄平面PAD , ∴EF ∥平面PAD .(2)∵PD ⊥底面ABCD ,AB ⊂面ABCD ∴PD ⊥AB又底面ABCD 为矩形 ∴AD ⊥AB 又PD ∩AD =D ∴AB ⊥平面PAD ∵DG ⊂平面PAD ∴AB ⊥DG∵AD =PD ,G 为AP 中点 ∴DG ⊥AP又AB ∩AP =A , ∴DG ⊥平面PAB又由(1)知EF ∥DG ∴EF ⊥平面PAB ,又EF ⊂面AEF ∴平面AEF ⊥平面PAB .证法二:(1)以D 为坐标原点,DA 、DC 、DP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系.设AB =a . ∵AD =PD =2,∴A (2,0,0),B (2,a ,0),C (0,a ,0),P (0,0,2), ∵E 、F 分别为CD ,PB 的中点 ∴E (0,a2,0),F (1,a2,0).∴EF ⃗⃗⃗⃗⃗ =(1,0,1), ∵DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =(0,0,2)+(2,0,0)=(2,0,2), ∴EF ⃗⃗⃗⃗⃗ =12(DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ )=12DP ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ , 故EF ⃗⃗⃗⃗⃗ 、DP ⃗⃗⃗⃗⃗ 、DA ⃗⃗⃗⃗⃗ 共面, 又EF ⊄平面PAD ∴EF ∥平面PAD .(2)由(1)知EF ⃗⃗⃗⃗⃗ =(1,0,1),AB ⃗⃗⃗⃗⃗ =(0,a ,0),AP⃗⃗⃗⃗⃗ =(−2,0,2). ∴EF ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,EF ⃗⃗⃗⃗⃗ •AP ⃗⃗⃗⃗⃗ =-2+0+2=0, ∴EF ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ ⊥AP ⃗⃗⃗⃗⃗ , 又AB ∩AP =A ,∴EF ⊥平面PAB , 又EF ⊂平面AEF ,∴平面AEF ⊥平面PAB , (3)AB =2√2由(1)知,∴AE ⃗⃗⃗⃗⃗ =(-2,√2,0),EF⃗⃗⃗⃗⃗ =(1,0,1)设平面AEF 的法向量n ⃗ =(x ,y ,z),则{n⃗ ⋅AE ⃗⃗⃗⃗⃗ =0n ⃗ ⋅EF ⃗⃗⃗⃗⃗ =0即−2x +√2y =0令x =1,则y =√2,z =-1, ∴n⃗ =(1,√2,-1), 又AC⃗⃗⃗⃗⃗ =(-2,2√2,0), ∴cos <AC⃗⃗⃗⃗⃗ ,n ⃗ >=−2+4+02√12=√36, ∴sinθ=|cos <AC⃗⃗⃗⃗⃗ ,n ⃗ >|=√36.【解析】方法一;(1)取PA 中点G ,连结DG 、FG ,要证明EF ∥平面PAD ,我们可以证明EF 与平面PAD 中的直线AD 平行,根据E 、F 分别是PB 、PC 的中点,利用中位线定理结合线面平行的判定定理,即可得到答案. (2)根据线面垂直的和面面垂直的判断定理即可证明.方法二:(1)求出直线EF 所在的向量,得到EF ⃗⃗⃗⃗⃗ =12(DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ )=12DP ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ ,即可证明EF ∥平面PAD .(2)再求出平面内两条相交直线所在的向量,然后利用向量的数量积为0,根据线面垂直的判定定理得到线面垂直,即可证明平面AEF ⊥平面PAB(3)求出平面的法向量以及直线所在的向量,再利用向量的有关运算求出两个向量的夹角,进而转化为线面角,即可解决问题.本题考查了本题考查的知识点是直线与平面平行的判定,面面垂直,直线与平面所成的角,解决此类问题的关键是熟练掌握几何体的结构特征,进而得到空间中点、线、面的位置关系,利于建立空间之间坐标系,利用向量的有关知识解决空间角与空间距离以及线面的位置关系等问题,属于中档题.14.【答案】解:(1)证明:∵PO ⊥平面ABCD ,且AD ⊂平面ABCD , ∴PO ⊥AD , ∵∠ADC =45°且AD =AC =2, ∴∠ACD =45°, ∴∠DAC =90°, ∴AD ⊥AC ,∵AC ⊂平面PAC ,PO ⊂平面PAC ,且AC ∩PO =O , ∴由直线和平面垂直的判定定理知AD ⊥平面PAC . (2)解:取DO 中点N ,连接MN ,AN , 由PO ⊥平面ABCD ,得MN ⊥平面ABCD , ∴∠MAN 是直线AM 与平面ABCD 所成的角, ∵M 为PD 的中点, ∴MN ∥PO ,且MN =12PO =3, AN =12DO =√52,在Rt △ANM 中,tan ∠MAN =MNAN =3√52=6√55, 即直线AM 与平面ABCD 所成角的正切值为6√55.【解析】(1)由PO ⊥平面ABCD ,得PO ⊥AD ,由∠ADC =45°,AD =AC ,得AD ⊥AC ,从而证明AD ⊥平面PAC .(2)取DO 中点N ,连接MN ,AN ,由M 为PD 的中点,知MN ∥PO ,由PO ⊥平面出直线AM 与平面ABCD 所成角的正切值.本题考查直线与平面垂直的证明,考查直线与平面所成角的正切值的求法.解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题. 15.【答案】证明:(I )在三棱柱ABC -A 1B 1C 1中,连接A 1B ,交AB 1于O 点,连接OD∵在△A 1BC 1中,A 1D =DC 1,A 1O =OB , ∴OD ∥BC 1,又∵OD ⊂平面AB 1D ,BC 1⊄平面AB 1D ; ∴BC 1∥平面AB 1D ;(II )在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1; ∵B 1D ⊂平面A 1B 1C 1; ∴A 1A ⊥B 1D在△A 1B 1C 1中,D 为A 1C 1的中点 ∴B 1D ⊥A 1C 1又∵A 1A ∩A 1C 1=A 1,A 1A ,A 1C 1⊂平面AA 1C 1C , ∴B 1D ⊥平面AA 1C 1C , 又∵A 1C ⊂平面AA 1C 1C , ∴B 1D ⊥A 1C又∵A 1D AA 1=AA1AC =√22∴∠DA 1A =∠A 1AC =90°∴△DA 1A ∽△A 1AC ,∠ADA 1=∠CA 1A∵∠DA 1C +∠CA 1A =90° ∴∠DA 1C +∠ADA 1=90°∴A 1C ⊥AD又∵B 1D ∩AD =D ,B 1D ,AD ⊂平面AB 1D ; ∴A 1C ⊥平面AB 1D ;解:(III )由(I )得,OD ∥BC 1, 故AD 与BC 1所成的角即为∠ADO在△ADO 中,AD =√3,OD =12BC 1=√62,AO =12A 1B =√62,∵AD 2=OD 2+AO 2,OD =AO∴△ADO 为等腰直角三角形故∠ADO =45°即异面直线AD 与BC 1所成角等于45°【解析】(I )连接A 1B ,交AB 1于O 点,连接OD ,由平行四边形性质及三角形中位线定理可得OD ∥BC 1,进而由线面平行的判定定理得到BC 1∥平面AB 1D ;(II )由直棱柱的几何特征可得A 1A ⊥B 1D ,由等边三角形三线合一可得B 1D ⊥A 1C 1,进而由线面垂直的判定定理得到B 1D ⊥平面AA 1C 1C ,再由三角形相似得到A 1C ⊥AD 后,可证得A 1C ⊥平面AB 1D .(III )由(I )中OD ∥BC 1,可得异面直线AD 与BC 1所成角即∠ADO ,解△ADO 可得答案.本题考查的知识点是直线与平面垂直的判定,异面直线及其所成的角,直线与平面平行的判定,(I )的关键是证得OD ∥BC 1,(II )的关键是熟练掌握线面垂直与线线垂直之间的转化,(III )的关键是得到异面直线AD 与BC 1所成角即∠ADO .16.【答案】(Ⅰ)证明:由P -ABD ,Q -BCD 是相同正三棱锥,且∠APB =90°,分别过P 、Q 作PE ⊥平面ABD ,QF ⊥平面BCD ,垂足分别为E 、F ,则E 、F 分别为底面正三角形ABD 与BCD 的中心. 连接EF 交BD 于G ,则G 为BD 的中点,连接PG 、QG ,则PG ⊥BD ,QG ⊥BD ,又PG ∩QG =G ,∴BD ⊥平面PQG ,则BD ⊥PQ , 再由正三棱锥的性质可得PA ⊥BD , 又PQ ∩PA =P ,∴BD ⊥平面APQ ;(Ⅱ)∵正三棱锥的底面边长为1,且∠APB =90°,∴PQ =EF =2EG =2×13AG =2×13×√32=√33, PE =√(√22)2−(√33)2=√66,则V B−PQD =13×12×√33×√66×1=√236.△PDQ 底边PQ 上的高为√(√22)2−(√36)2=√156,∴S △PDQ =12×√33×√156=√512.设B 到平面PQD 的距离为h ,则13×√512ℎ=√236,得h =√105.∴直线PB 与平面PDQ 所成角的正弦值为√105√22=2√55.【解析】(Ⅰ)由题意分别过P 、Q 作PE ⊥平面ABD ,QF ⊥平面BCD ,可得E 、F 分别为底面正三角形ABD 与BCD 的中心.连接EF 交BD 于G ,可得PG ⊥BD ,QG ⊥BD ,由线面垂直的判定及性质可得BD ⊥PQ ,再由正三棱锥的性质可得PA ⊥BD ,则BD ⊥平面APQ ;(Ⅱ)由已知求得PQ ,PE 的长,求得四面体B -PQD 的体积,利用等积法求出B 到平面PQD 的距离,则直线PB 与平面PDQ 所成角的正弦值可求.本题考查直线与平面所成的角,考查线面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题. 17.【答案】(1)证明:如图:∵AB =BC ,E 为AC 的中点,∴BE ⊥AC ,∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC , ∴BE ⊥平面A 1ACC 1,∵A 1C ⊂平面A 1ACC 1,∴BE ⊥A 1C .(2)解:∵面A1ACC1⊥面ABC,∴C1在面ABC上的射影H在AC上,∴∠C1CA为直线C1C与面ABC所成的角.过H作HM⊥BC于M,连C1M,在Rt△C1CM中,CM=CC1cos∠C1CM=2cos60°=1.在Rt△CMH中,CH=CMcos∠ACB =2√33.∴在Rt△C1CH中,cos∠C1CH=CHCC1=23√32=√33.∴直线C1C与面ABC所成的角的余弦值为√33.【解析】(1)证明BE⊥平面A1ACC1,可得BE⊥A1C,即可证明:A1C⊥平面C1EB;(2)判断∠C1CA为直线C1C与面ABC所成的角.过H作HM⊥BC于M,连C1M,即可求直线CC1与平面ABC所成角的余弦值.本题考查线面垂直的判定与性质,考查线面角,考查学生分析解决问题的能力,属于中档题.18.【答案】证明:(1)连接CD,据题知AD=4,BD=2,∵AC2+BC2=AB2,∴∠ACB=90°,∴cos∠ABC=2√36=√33,∴CD2=4+12−2×2×2√3cos∠ABC=8,∴CD=2√2,∴CD2+AD2=AC2,∴CD⊥AB,又∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,CD⊂平面ABC,∴CD⊥平面PAB,∵PD⊂平面PAB,∴CD⊥PD,∵PD⊥AC,CD∩AC=C,CD、AC⊂平面ABC,∴PD⊥平面ABC.解:(2)∵∠PAB=π4,∴PD=AD=4,∴PA=4√2,在Rt△PCD中,PC=√PD2+CD2=2√6,∴△PAC是等腰三角形,∴S△PAC=8√2,设点B到平面PAC的距离为d,由V B-PAC=V P-ABC,得13S△PAC×d=13S△ABC×PD,∴d==3,故点B到平面PAC的距离为3.【解析】本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)连接CD,推导出CD⊥AB,CD⊥PD,由此能证明PD⊥平面ABC.(2)设点B到平面PAC的距离为d,由V B-PAC=V P-ABC,能求出点B到平面PAC的距离.19.【答案】解:(1)证明:∵ABC-A1B1C1中,A1A⊥平面ABC,又BB 1⊂平面BB 1C 1C , ∴平面BB 1C 1C ⊥平面ABC ,∵△ABC 为正三角形,D 为BC 的中点, ∴AD ⊥BC ,又平面BB 1C 1C ∩平面ABC =BC , ∴AD ⊥平面BB 1C 1C , 又AD ⊂平面ADB 1,∴平面ADB 1⊥平面BB 1C 1C ;(2)由(1)可得△ADB 1为直角三角形, 又AD =√32,B 1D =√52,∴S △ADB 1=12×AD ×B 1D =√158,又S △ADB =12S △ABC =√38,设点B 到平面ADB 1的距离为d , 则V B−ADB 1=V B 1−ADB , ∴13S △ADB 1⋅d =13S △ADB ⋅BB 1, ∴点B 到平面ADB 1的距离d =S △ADB ⋅BB 1S △ADB 1=√3√15=√55.【解析】本题考查面面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.(1)推导出BB 1⊥平面ABC ,从而平面BB 1C 1C ⊥平面ABC ,推导出AD ⊥BC ,从而AD ⊥平面BB 1C 1C ,由此能证明平面ADB 1⊥平面BB 1C 1C ;(2)设点B 到平面ADB 1的距离为d ,由V B−ADB 1=V B 1−ADB ,能求出点B 到平面ADB 1的距离.20.【答案】证明:(1)∵PA ⊥平面ABC ,BE ⊂平面ABC , ∴PA ⊥BE .∵AB =BC ,E 为AC 的中点, ∴BE ⊥AC ,又PA ⊂平面PAC ,AC ⊂平面PAC ,PA ∩AC =A , ∴BE ⊥平面PAC ,又BE ⊂平面BED , ∴平面BED ⊥平面PAC .(2)∵D ,E 是PC ,AC 的中点, ∴DE ∥PA ,又PA ⊥平面ABC ,∴DE ⊥平面ABC ,∵EF ⊂平面ABC ,BE ⊂平面ABC , ∴DE ⊥EF ,DE ⊥BE .∴∠FEB 为二面角F -DE -B 的平面角.∵E ,F 分别是AC ,AB 的中点,AB =AC , ∴EF =12BC =12AB =BF ,EF ∥BC .又AB ⊥BC ,∴BF ⊥EF ,∴△BEF 为等腰直角三角形,∴∠FEB =45°. ∴二面角F -DE -B 为45°.∴PA⊥BC,又BC⊥AB,PA⊂平面PAB,AB⊂平面PAB,PA∩AB=A,∴BC⊥平面PAB.∴∠CPB为直线PC与平面PAB所成的角.∵PA=6,∴DE=12PA=3,又DF=5,∴EF=√DF2−DE2=4.∴AB=BC=8.∴PB=√PA2+AB2=10.∴tan∠CPB=BCPB =4 5.【解析】(1)通过证明BE⊥平面PAC得出平面BED⊥平面PAC;(2)由DE∥PA得出DE⊥平面ABC,故DE⊥EF,DE⊥BE,于是∠FEB为所求二面角的平面角,根据△BEF为等腰直角三角形得出二面角的度数;(3)证明BC⊥平面PAB得出∠CPB为所求角,利用勾股定理得出BC,PB,即可得出tan∠CPB.本题考查了线面垂直,面面垂直的判定,空间角的计算,做出空间角是解题关键,属于中档题.21.【答案】解:(1)证明:设AC∩BD=H,连接EH,在△ADC中,因为AD=CD,且DB平分∠ADC,所以H为AC的中点,又有题设,E为PC的中点,故EH∥PA,又HE⊂平面BDE,PA⊄平面BDE,所以PA∥平面BDE(2)证明:因为PD⊥平面ABCD,AC⊂平面ABCD,所以PD⊥AC由(1)知,BD⊥AC,PD∩BD=D,故AC⊥平面PBD(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,所以∠CBH为直线与平面PBD所成的角.由AD⊥CD,AD=CD=1,DB=2√2,可得DH=CH=√22,BH=3√22在Rt△BHC中,tan∠CBH=CHBH =13,所以直线BC与平面PBD所成的角的正切值为13.【解析】(1)欲证PA∥平面BDE,根据直线与平面平行的判定定理可知只需证PA与平面BDE内一直线平行,设AC∩BD=H,连接EH,根据中位线定理可知EH∥PA,而又HE⊂平面BDE,PA⊄平面BDE,满足定理所需条件;(2)欲证AC⊥平面PBD,根据直线与平面垂直的判定定理可知只需证AC与平面PBD内两相交直线垂直,而PD⊥AC,BD⊥AC,PD∩BD=D,满足定理所需条件;(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,则∠CBH为直线与平面PBD所成的角,在Rt△BHC中,求出此角即可.本小题主要考查直线与平面平行.直线和平面垂直.直线和平面所成的角等基础知识,考查空间想象能力、运算能力和推理能力.。
新课标2018届高考数学二轮复习专题五立体几何5.2空间中的平行与垂直课件

-7-
命题热点一
命题热点二
命题热点三
对点训练1如图,四棱锥P-ABCD中,PA⊥底面 ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一 点,AM=2MD,N为PC的中点.
(1)证明MN∥平面PAB; (2)求直线AN与平面PMN所成角的正弦值.
-8-
命题热点一
命题热点二
5 2 5 2
,1,2 ,
,1,-2 , ������������ =
5 2
,1,2 .
设 n=(x,y,z)为平面 PMN 的法向量 , 2������-4������ = 0, ������· ������������ = 0, 则 即 5 ������ + ������-2������ = 0, ������· ������������ = 0,
(2017全国Ⅰ,理18)如图,在四棱锥P-ABCD中,AB∥CD,且 ∠BAP=∠CDP=90°. (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.
-11-
命题热点一
命题热点二
命题热点三
(1)证明: 由已知∠BAP=∠CDP=90°,得AB⊥AP,CD⊥PD. 由于AB∥CD,故AB⊥PD,从而AB⊥平面PAD. 又AB⊂平面PAB,所以平面PAB⊥平面PAD. (2)解: 在平面PAD内作PF⊥AD,垂足为F. 由(1)可知,AB⊥平面PAD,故AB⊥PF,可得PF⊥平面ABCD.
题型
命题规律 高考对空间点、 线、面位置关系 的考查主要有两 种形式:一是对 命题真假的判 断,通常以选择 题、填空题的形 式考查,难度不 大,也不是高考 的热点;
2018届高考数学(全国通用)二轮复习中档大题精品课件 第5讲 空间中的平行与垂直

(1)利用线面垂直定义. (2)利用线面垂直的判定定理,一条直线与平面内两条相交直线 都垂直,则这条直线与平面垂直. (3)利用线面垂直的性质,两平行线中的一条垂直于平面,则另 一条也垂直于这个平面. (4)利用面面垂直的性质定理,两平面垂直,在一个平面内垂直
于交线的直线必垂直于另一个平面.
核心考点突破练
规范解答
模板答题规范练
研透考点
核心考点突破练
考点一 空间中的平行关系
方法技巧 (1)平行关系的基础是线线平行,比较常见的是利用
三角形中位线构造平行关系,利用平行四边形构造平行关系. (2)证明过程中要严格遵循定理中的条件,注意推证的严谨性.
1. 如图,在正方体 ABCD - A1B1C1D1 中,点 N 在 BD 上,点 M 在
∵Байду номын сангаасF⊂平面PFE,
∴EF∥平面SAD.
5 6 7 8
证明
(2)试确定点M的位置,使得平面EFM⊥底面ABCD.
5
6
7
8
解答
考点三 平行和垂直的综合应用
方法技巧 空间平行、垂直关系证明的主要思想是转化,即通
过判定、性质定理将线线、线面、面面之间的平行、垂直关系
相互转化.
9. 如图,在四棱锥 P - ABCD 中,平面 PAD⊥ 平面 ABCD , AB =
AD,∠BAD=60°,E,F分别是AP,AD的中点. 求证:(1)直线EF∥平面PCD; 证明 在△PAD中,∵E,F分别为AP,AD的中点, ∴EF∥PD.
又∵EF⊄平面PCD,PD⊂平面PCD,
∴直线EF∥平面PCD.
9 10 11 12
证明
(新课标)高考数学二轮复习专题五立体几何专题能力训练14空间中的平行与垂直理(2021学年)

(新课标)2018届高考数学二轮复习专题五立体几何专题能力训练14空间中的平行与垂直理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((新课标)2018届高考数学二轮复习专题五立体几何专题能力训练14 空间中的平行与垂直理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(新课标)2018届高考数学二轮复习专题五立体几何专题能力训练14空间中的平行与垂直理的全部内容。
专题能力训练14空间中的平行与垂直能力突破训练1.如图,O为正方体ABCD—A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是()A.A1DﻩB。
AA1ﻩC.A1D1ﻩD。
A1C12。
如图,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,点P在△AEF内的射影为O.则下列说法正确的是()A.O是△AEF的垂心B。
O是△AEF的内心C.O是△AEF的外心ﻩD。
O是△AEF的重心(第1题图)(第2题图)3。
α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β。
②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等。
其中正确的命题有。
(填写所有正确命题的编号)4.已知正四棱锥S-ABCD的底面边长为2,高为2,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为.5。
下列命题中正确的是.(填上你认为正确的所有命题的序号)①空间中三个平面α,β,γ,若α⊥β,γ⊥β,则α∥γ;②若a,b,c为三条两两异面的直线,则存在无数条直线与a,b,c都相交;③若球O与棱长为a的正四面体各面都相切,则该球的表面积为a2;④在三棱锥P-ABC中,若PA⊥BC,PB⊥AC,则PC⊥AB.6.在正三棱柱A1B1C1—ABC中,点D是BC的中点,BC=BB1.设B1D∩BC1=F。
2018届高考数学复习—立体几何:(二)空间直线、平面关系的判断与证明—2.平行与垂直关系的证明(试题版)

【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质【典型例题】[例1]►(1)如图,在四面体P ABC中,点D,E,F,G分别是棱AP,AC,BC,PB的中点.求证:DE∥平面BCP.►(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC. ►(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF.[例2]►(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG.►(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:①EG∥平面BB1D1D;②平面BDF∥平面B1D1H. 【变式训练】1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.2.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F.题型2:直线、平面垂直的判断及性质【典型例题】[例1]►(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE.►(2)如图所示,在四棱锥P-ABCD中,AB⊥平面P AD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△P AD中AD边上的高.①证明:PH⊥平面ABCD;②证明:EF⊥平面P AB.[例2]►(1)[2014·辽宁文]如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(I)求证:EF⊥平面BCG;(II)求三棱锥D -BCG的体积.►(2)(2012·课标全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(I)证明:平面BDC1⊥平面BDC;(II)平面BDC1分此棱柱为两部分,求这两部分体积的比.►(3)(2015·大庆质检) 如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.①求证:PC⊥BC;②求点A到平面PBC的距离. 【变式训练】1.如图,四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,点E 在线段AD上,且CE∥AB.(1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.2.[2014·福建文]如图所示,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.3.(2015·唐山统考)如图,在三棱锥P-ABC中,P A=PB=AB =BC,∠PBC=90°,D为AC的中点,AB⊥PD.(1)求证:平面P AB⊥平面ABC;(2)如果三棱锥P-BCD的体积为3,求P A.4.[2014·课标Ⅰ文]如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.☆题型3:直线、平面平行与垂直关系的综合【典型例题】[例1]►(1)已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是(写出序号).①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.►(2)(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α►(3)(2015·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面►(4)(2013·课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l►(5)(2016·课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号) [例2]►(1)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(I)求证:平面ABE⊥平面B1BCC1;(II)求证:C1F∥平面ABE;(III)求三棱锥E-ABC的体积.►(2)[2014江苏文]如图,三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(I)直线P A∥平面DEF;(II)平面BDE⊥平面ABC. [例3]►(1)[2014·陕西文]四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(I)求四面体ABCD的体积;(II)证明:四边形EFGH是矩形.►(2)(2012·北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【变式训练】1.(2016·浙江联考)已知a,b,c为三条不同的直线,α,β是空间两个平面,且a⊂α,b⊂β,α∩β=c.给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β. 其中正确命题的个数是()A.0B.1C.2D.32.(2012·四川)下列命题正确的是()A.若两直线和同一平面所成的角相等,则这两条直线平行B.若一平面内有三点到另一平面的距离相等,则这两平面平行C.若一直线平行于两相交平面,则这条直线与这两平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2016·山东济南一模)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.(2016·浙江温州联考)关于直线a,b,l及平面α,β,下列命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,b⊥a,则b⊥αC.若a⊂α,b⊂α,且l⊥a,l⊥b,则l⊥αD.若a⊥α,a∥β,则α⊥β6.(2015·山东二模)设m,n是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是()A.当n⊥α时,“n⊥β”是“α∥β”的充要条件B.当m⊂α时,“m⊥β”是“α⊥β”的充分不必要条件C.当m⊂α时,“n∥α”是“m∥n”的必要不充分条件D.当m⊂α时,“n⊥α”是“m⊥n”的充分不必要条件7.(2016·浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n8.(2013北京)如图,四棱锥P-ABCD中,AB∥CD,AB⊥AD, CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.9.[2014·山东文]如图,四棱锥P-ABCD中,AP⊥平面PCD, AD∥BC,AB=BC=12AD,E,F分别为线段AD,PC的中点.(1)求证:AP∥平面BEF;(2)求证:BE⊥平面P AC.10.(2013全国Ⅱ文)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)设AA1=AC=CB=2,AB=22,求三棱锥C-A1DE的体积. 11.(2013·辽宁)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.12.[2014·课标Ⅱ文]如图,四棱锥P-ABCD中,底面ABCD 为矩形,P A⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P -ABD的体积V=34,求A 到平面PBC的距离.13.(2015江苏)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.14.(2015广东文)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.15.(2015课标Ⅱ)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.16.(2015陕西)如图,直角梯形ABCD中,AD∥B C,∠BAD=π2,AB=BC=12AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到如图2中△A1BE的位置,得到四棱锥A1﹣BCDE.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1﹣BCDE的体积为362,求a的值.17.(2016·课标Ⅱ文)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.(1)证明:AC⊥HD′(2)若AB=5,AC=6,AE=54,OD′=22,求五棱锥D′ABCFE的体积.18.(2016·课标Ⅲ文)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面P AB;(2)求四面体N-BCM的体积.19.[2017全国I文]如图,在四棱锥P-ABCD中,AB//CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠ADP=90°,且四棱锥P-ABCD的体积为83,求该四棱锥的侧面积.20.[2017全国II文]如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为27,求四棱锥P-ABCD的体积.21.[2017全国III文]在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC22.[2017全国III文]如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D 不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE 的体积比.。
《平行与垂直》说课稿(5篇)

《平行与垂直》说课稿(5篇) 《平行与垂直》说课稿篇一一、从角考虑通过证明被第三条直线截得的同位角相等、内错角相等、同旁的内角互补确定两直线平行二、从线考虑证明两直线同垂直(或者同平行)另一条直线三、从形考虑通过证两直线上的线段是某些特殊图形,如平行四边形、()、()、()的一组对边三角形或者梯形的中位线和底边等来确定平行。
四、从比例式考虑通过证对应线成比例来确定过对应分点的直线平行(平行线分线段成比例定理)《平行与垂直》说课稿篇二一、说教材(一)教材分析:《探索直线平行的条件(一)》是六年级下册第八章《平行线与相交线》中的第三课时。
在上学期,学生已经学习了平行线的定义、性质(过直线外一点有且只有一条直线与已知直线平行)、以及平行线的传递性(平行于同一条直线的两条直线是平行线)。
会用三角板过直线外一点作已知直线的平行线,在前一节课又学习了对顶角的概念和性质,这些为本节课的学习起着铺垫作用。
本节课《探索直线平行的条件(一)》是本章的重点,在处理同位角概念及三线八角上也是本章的难点,而且为后面学习习近平行四边形起着重要的铺垫作用。
(二)教学目标:知识与能力目标1.掌握直线平行的条件:同位角相等.2.会用三角板过已知直线外一点画这条直线的平行线.过程与方法目标1.经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题.2.会用三角板过已知直线外一点画这条直线的平行线.3.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力.情感与态度目标1.在探索和交流的活动中,培养学生与人协作的习惯.2.培养学生理论联系实际的观点.(三)教学重点难点动手实践、自主探索、合作交流是重要的数学学习方式,因此我认为本节课的重点是在操作、观察的基础上总结出直线平行的条件.在我十多年的几何教学中,学生对“三线八角”很头疼,有的学生到了初四还区分不清,因此我把同位角的概念确定为本节课的难点。
精选江苏专用2018版高考数学专题复习专题8立体几何第52练平行与垂直综合练练习文
(江苏专用)2018版高考数学专题复习专题8 立体几何第52练平行与垂直综合练练习文1.(2016·南通、扬州联考)如图,在正方体ABCD-A1B1C1D1中,M,N,P分别为棱AB,BC,C1D1的中点.(1)求证:AP∥平面C1MN;(2)求证:平面B1BDD1⊥平面C1MN.2.如图所示,在四面体ABCD中,平面BAD⊥平面CAD,∠BAD=90°,M,N,Q分别为棱AD,BD,AC的中点.(1)求证:CD∥平面MNQ;(2)求证:平面MNQ⊥平面CAD.3.如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分別是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点,求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.4.(2016·北京海淀区下学期期中)如图1,在梯形ABCD中,AD∥BC,AD⊥DC,BC=2AD,四边形ABEF是矩形,将矩形ABEF沿AB折起到四边形ABE1F1的位置,使平面ABE1F1⊥平面ABCD,M为AF1的中点,如图2.(1)求证:BE1⊥DC;(2)求证:DM∥平面BCE1;(3)判断直线CD与ME1的位置关系,并说明理由.答案精析1.证明(1)在正方体ABCD-A1B1C1D1中,因为M,P分别为棱AB,C1D1的中点,所以AM=PC1.又AM∥CD,PC1∥CD,故AM∥PC1,所以四边形AMC1P为平行四边形,所以AP∥C1M.又AP⊄平面C1MN,C1M⊂平面C1MN,所以AP∥平面C1MN.(2)连结AC,在正方形ABCD中,AC⊥BD.又M,N分别为棱AB,BC的中点,所以MN∥AC,所以MN⊥BD.在正方体ABCD-A1B1C1D1中,DD1⊥平面ABCD,MN⊂平面ABCD,所以DD1⊥MN.又DD1∩DB=D,DD1⊂平面B1BDD1,DB⊂平面B1BDD1,所以MN⊥平面BDD1B1.又MN⊂平面C1MN,所以平面B1BDD1⊥平面C1MN.2.证明(1)因为M,Q分别为棱AD,AC的中点,所以MQ∥CD.又CD⊄平面MNQ,MQ⊂平面MNQ,故CD∥平面MNQ.(2)因为M,N分别为棱AD,BD的中点,所以MN∥AB.又∠BAD=90°,所以MN⊥AD.因为平面BAD⊥平面CAD,平面BAD∩平面CAD=AD,且MN⊂平面ABD,所以MN⊥平面CAD.又MN⊂平面MNQ,所以平面MNQ⊥平面CAD.3.证明(1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.又AD⊂平面ABC,所以CC1⊥AD.又因为AD⊥DE,CC1,DE⊂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1.又AD ⊂平面ADE ,所以平面ADE ⊥平面BCC 1B 1.(2)因为A 1B 1=A 1C 1,F 为B 1C 1的中点,所以A 1F ⊥B 1C 1.因为CC 1⊥平面A 1B 1C 1,且A 1F ⊂平面A 1B 1C 1, 所以CC 1⊥A 1F .又因为CC 1,B 1C 1⊂平面BCC 1B 1,CC 1∩B 1C 1=C 1, 所以A 1F ⊥平面BCC 1B 1.由(1)知AD ⊥平面BCC 1B 1,所以A 1F ∥AD .又AD ⊂平面ADE ,A 1F ⊄平面ADE ,所以A 1F ∥平面ADE .4.(1)证明 因为四边形ABE 1F 1为矩形,所以BE 1⊥AB .因为平面ABCD ⊥平面ABE 1F 1,且平面ABCD ∩平面ABE 1F 1=AB ,BE 1⊂平面ABE 1F 1,所以BE 1⊥平面ABCD .因为DC ⊂平面ABCD ,所以BE 1⊥DC .(2)证明 因为四边形ABE 1F 1为矩形,所以AM ∥BE 1.因为AD ∥BC ,AD ∩AM =A ,BC ∩BE 1=B ,AD ⊂平面ADM ,AM ⊂平面ADM ,BC ⊂平面BCE 1,BE 1⊂平面BCE 1, 所以平面ADM ∥平面BCE 1.因为DM ⊂平面ADM ,所以DM ∥平面BCE 1.(3)解 直线CD 与ME 1相交,理由如下:取BC 的中点P ,CE 1的中点Q ,连结AP ,PQ ,QM ,所以PQ ∥BE 1,且PQ =12BE 1. 在矩形ABE 1F 1中,M 为AF 1的中点,所以AM ∥BE 1,且AM =12BE 1, 所以PQ ∥AM ,且PQ =AM .所以四边形APQM 为平行四边形,所以MQ ∥AP ,MQ =AP .因为四边形ABCD为梯形,P为BC的中点,BC=2AD,所以AD∥PC,AD=PC,所以四边形ADCP为平行四边形.所以CD∥AP且CD=AP.所以CD∥MQ且CD=MQ.所以四边形CDMQ是平行四边形.所以DM∥CQ,即DM∥CE1.因为DM≠CE1,所以四边形DME1C是以DM,CE1为底边的梯形,所以直线CD与ME1相交.。
2018高考新课标数学文二轮专题复习课件:专题四第2讲空间中的平行与垂直 精品
因此直线 m 与 n 所成的角即直线 B1D1 与 CD1 所成的
角.在正方体 ABCD-A1B1C1D1 中,△CB1D1 是正三角形,
故直线
B1D1
与
CD1
所成角为
60°,其正弦值为
3 2.
答案:A
2.(2016·江苏卷)如图,在直三棱柱 ABC-A1B1C1 中, D,E 分别为 AB,BC 的中点,点 F 在侧棱 B1B 上,且 B1D⊥A1F,A1C1⊥A1B1.
又 PA⊥平面 ABCD, ∴FO⊥平面 ABCD. 又 FO⊂平面 BEF, ∴平面 BEF⊥平面 ABCD.
[迁移探究 2] 在本例条件下,若 AB=BC,求证: BE⊥平面 PAC.
证明:连接 AC,AC∩BE=O. AB∥CD,CD=2AB,且 E 为 CD 的中点.
∴AB 綊 CE.
又∵AB=BC, ∴四边形 ABCE 为菱形, ∴BE⊥AC. 又∵PA⊥平面 ABCE, ∴BE⊥PA. 又 PA∩AC=A, ∴BE⊥平面 PAC.
(导学号 53130030)
(1)证明:AC⊥HD′; (2)若 AB=5,AC=6,AE=54,OD′=2 2,求五 棱锥 D′-ABCFE 的体积.
(1)证明:由已知得 AC⊥BD,AD=CD. 又由 AE=CF 得AADE=CCDF, 故 AC∥EF.
由此得 EF⊥HD, 故 EF⊥HD′,∴AC⊥HD′. (2)解:由 EF∥AC 得ODHO=AADE=14. 由 AB=5,AC=6 得 DO=BO= AB2-AO2=4. ∴OH=1,D′H=DH=3. 于是 OD′2+OH2=(2 2)2+12=9=D′H2,
DO,
在 Rt△AC′B,Rt△ADB 中,AB=2,则 C′O=DO=1, 又∵C′D= 2, ∴C′O2+DO2=C′D2, 即 C′O⊥OD, 又∵C′O⊥AB,AB∩OD=O,AB,OD⊂平面 ABD, ∴C′O⊥平面 ABD,
高考数学大二轮复习 专题五 立体几何 第2讲 空间中的平行与垂直练习 理-人教版高三全册数学试题
第二篇专题五第2讲空间中的平行与垂直[限时训练·素能提升](限时50分钟,满分76分)一、选择题(本题共6小题,每小题5分,共30分)1.(2018·潍坊模拟)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l解析若α∥β,则m∥n,这与m、n为异面直线矛盾,所以A不正确.将已知条件转化到正方体中,易知α与β不一定垂直,但α与β的交线一定平行于l,从而排除B、C.故选D.答案 D2.(2018·乌鲁木齐二模)关于直线a,b及平面α,β,下列命题中正确的是A.若a∥α,α∩β=b,则a∥bB.若α⊥β,m∥α,则m⊥βC.若a⊥α,a∥β,则α⊥βD.若a∥α,b⊥a,则b⊥α解析A是错误的,因为a不一定在平面β内,所以a,b有可能是异面直线;B是错误的,若α⊥β,m∥α,则m与β可能平行,可能相交,也可能线在面内,故B错误;C 是正确的,由直线与平面垂直的判断定理能得到C正确;D是错误的,直线与平面垂直,需直线与平面中的两条相交直线垂直.答案 C3.(2018·全国卷Ⅱ)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为A.22B.32C.52D.72解析如图,连接BE ,因为AB ∥CD ,所以异面直线AE 与CD 所成的角等于相交直线AE 与AB 所成的角,即∠EAB .不妨设正方体的棱长为2,则CE =1,BC =2,由勾股定理得BE = 5.又由AB ⊥平面BCC 1B 1可得AB ⊥BE ,所以tan ∠EAB =BE AB =52.故选C. 答案 C4.如图,在三棱锥P -ABC 中,不能证明AP ⊥BC 的条件是 A .AP ⊥PB ,AP ⊥PC B .AP ⊥PB ,BC ⊥PBC .平面BPC ⊥平面APC ,BC ⊥PCD .AP ⊥平面PBC解析 A 中,因为AP ⊥PB ,AP ⊥PC ,PB ∩PC =P ,所以AP ⊥平面PBC .又BC ⊂平面PBC ,所以AP ⊥BC ,故A 正确;C 中,因为平面BPC ⊥平面APC ,BC ⊥PC ,所以BC ⊥平面APC .又AP ⊂平面APC ,所以AP ⊥BC ,故C 正确;D 中,由A 知D 正确;B 中条件不能判断出AP ⊥BC ,故选B.答案 B5.(2018·某某质检)设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m ⊂α,n ∥α,则m ∥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若α∩β=n ,m ∥n ,m ∥α,则m ∥β; ④若α⊥γ,β⊥γ,则α∥β 其中真命题的个数是A .0B .1C .2D .3解析 ①m ∥n 或m ,n 异面,故①错误;易知②正确;③m ∥β或m ⊂β,故③错误;④α∥β或α与β相交,故④错误.答案 B6.(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A.334 B.233 C.324 D.32解析记该正方体为ABCD -A ′B ′C ′D ′,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱A ′A ,A ′B ′,A ′D ′与平面α所成的角都相等.如图,连接AB ′,AD ′,B ′D ′,因为三棱锥A ′-AB ′D ′是正三棱锥,所以A ′A ,A ′B ′,A ′D ′与平面AB ′D ′所成的角都相等.分别取C ′D ′,B ′C ′,BB ′,AB ,AD ,DD ′的中点E ,F ,G ,H ,I ,J ,连接EF ,FG ,GH ,IH ,IJ ,JE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面AB ′D ′平行,且截正方体所得截面的面积最大.又EF =FG =GH =IH =IJ =JE =22,所以该正六边形的面积为6×34×⎝ ⎛⎭⎪⎫222=334,所以α截此正方体所得截面面积的最大值为334,故选A.答案 A二、填空题(本题共2小题,每小题5分,共10分)7.(2018·全国卷Ⅲ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为________.解析 由题意画出图形,如图,设AC 是底面圆O 的直径,连接SO ,则SO 是圆锥的高.设圆锥的母线长为l ,则由SA ⊥SB ,△SAB 的面积为8,得12l 2=8,得l =4.在Rt △ASO 中,由题意知∠SAO =30°,所以SO =12l =2,AO =32l =2 3.故该圆锥的体积V =13π×AO 2×SO =13π×(23)2×2=8π.答案 8π8.(2018·某某模拟)如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,请你补充一个条件________,使平面MBD ⊥平面PCD .①DM ⊥PC ;②DM ⊥BM ;③BM ⊥PC ;④PM =MC (填写你认为是正确的条件对应的序号).解析 因为在四棱锥A -ABCD 中,PA ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,所以BD ⊥PA ,BD ⊥AC ,因为PA ∩AC =A ,所以BD ⊥平面PAC ,所以BD ⊥PC . 所以当DM ⊥PC (或BM ⊥PC )时,即有PC ⊥平面MBD . 而PC ⊂平面PCD ,所以平面MBD ⊥平面PCD . 答案 ①(或③)三、解答题(本题共3小题,每小题12分,共36分)9.(2018·某某期末)如图,三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,∠ACB =90°,AC =CB =CC 1=2,M 是AB 的中点.(1)求证:平面A 1CM ⊥平面ABB 1A 1; (2)求点M 到平面A 1CB 1的距离.解析 (1)证明 由A 1A ⊥平面ABC ,CM ⊂平面ABC ,得A 1A ⊥CM .由AC =CB ,M 是AB 的中点,得AB ⊥CM .又A 1A ∩AB =A ,则CM ⊥平面ABB 1A 1,又CM ⊂平面A 1CM ,所以平面A 1CM ⊥平面ABB 1A 1. (2)设点M 到平面A 1CB 1的距离为h .连接MB 1.由题意可知A 1C =CB 1=A 1B 1=2MC =22,A 1M =B 1M =6, 则S △A 1CB 1=23,S △A 1MB 1=2 2.由(1)可知CM ⊥平面ABB 1A 1,则CM 是三棱锥C -A 1MB 1的高,由VC -A 1MB 1=13MC ·S △A 1MB 1=VM -A 1CB 1=13h ·S △A 1CB 1,得h =2×2223=233,即点M 到平面A 1CB 1的距离为233.10.(2018·全国卷Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.解析 (1)由已知可得,∠BAC =90°,BA ⊥AC . 又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =3 2. 又BP =DQ =23DA ,所以BP =2 2.作QE ⊥AC ,垂足为E ,则QE 綊13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q -ABP 的体积为V Q -ABP =13×QE ×S △ABP =13×1×12×3×22sin 45°=1.11.(2018·某某模拟)如图所示的空间几何体ABCDEFG 中,四边形ABCD 是边长为2的正方形,AE ⊥平面ABCD ,EF ∥AB ,EG ∥AD ,EF =EG =1.(1)求证:平面CFG ⊥平面ACE ;(2)在AC 上是否存在一点H ,使得EH ∥平面CFG ?若存在,求出CH 的长,若不存在,请说明理由.解析(1)证明 连接BD 交AC 于点O ,则BD ⊥AC . 设AB ,AD 的中点分别为M ,N , 连接MN ,则MN ∥BD .连接FM,GN,则FM∥GN,且FM=GN,所以四边形FMNG为平行四边形,所以MN∥FG,所以BD∥FG,所以FG⊥AC.因为AE⊥平面ABCD,所以AE⊥BD.所以FG⊥AE,又AC∩AE=A,所以FG⊥平面ACE,又FG⊂平面CFG,所以平面CFG⊥平面ACE.(2)设平面ACE交FG于点Q,则Q为FG的中点,连接EQ,CQ,连接BD交AC于点O,取CO的中点为H,连接EH,则CH∥EQ,CH=EQ=22,所以四边形EQCH为平行四边形,所以EH∥CQ,所以EH∥平面CFG.所以在AC上存在一点H,使得EH∥平面CFG,且CH=22.。
高考数学大二轮复习专题五立体几何第2讲空间中的平行与垂直课件理
【解析】
(1)因为在矩形ABCD中,AB=8,BC=4,
E 为 DC 的中点,所以在折起过程中, D 点在平面 BCE 上的投影如图.
因为 DE 与 AC 所成角不能为直角,所以 DE 不会垂直 于平面ACD,故①错误; 只 有 D 点 投 影 位 于 O2 位 置 时 , 即 平 面 AED 与 平 面 AEB 重 合 时,才有 BE⊥CD , 此时 CD 不垂直于平面
判断空间线面位置关系应注意的问题 解决空间点、线、面位置关系的判断题,主要是根 据平面的基本性质、空间位置关系的各种情况,以及
空间线面垂直、平行关系的判定定理和性质定理进行
判断,必要时可以利用正方体、长方体、棱锥等几何 模型辅助判断,同时要注意平面几何中的结论不能引 用到立体几何中.
◎通关题组
1 . (2017· 全国卷 Ⅲ) 在正方体 ABCD - A1B1C1D1 中, E为棱CD的中点,则 A.A1E⊥DC1 B.A1E⊥BD
数是
A.0 B.1 C.2 D.3
解析
①若α∥β,则m∥n或m,n异面,故①不正确;
②若α∥β,根据平面与平面平行的性质,可得m∥β, 故②正确;③直线m,n同时垂直于公共棱,不能推出 两个平面垂直,故③不正确;④若α∩β=l,且m⊥l, m ⊥ n , l 与 n 相交则 α ⊥ β ,若 l∥n ,则 α , β 不一定垂
到三棱锥、四棱锥等几何体,从而把问题转化到我们
熟悉的几何体中解决.
2.探索性问题求解的途径和方法
(1)对命题条件探索的二种途径: ①先猜后证,即先观察,再证明; ②将几何问题转化为代数问题,探索出命题成立的 条件. (2)对命题结论的探索方法: 从条件出发,探索出要求的结论是什么,对于探索
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A级1.设α,β是两个不同的平面,m是直线且m⊂α,“m∥β”是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥β⇒/ α∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β”是“α∥β”的必要而不充分条件.答案: B2.(2017·全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()解析:B选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;C选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;D选项中,AB∥NQ,且AB⊄平面MNQ,NQ⊂平面MNQ,则AB∥平面MNQ.故选A.答案: A3.(2017·新疆第二次适应性检测)设m,n是不同的直线,α,β,γ是不同的平面,有以下四个命题:①若α∥β,α∥γ,则β∥γ②若α⊥β,m∥α,则m⊥β③若m⊥α,m∥β,则α⊥β④若m∥n,n⊂α,则m∥α其中正确命题的序号是()A.①③B.①④C.②③D.②④解析:对于①,因为平行于同一个平面的两个平面相互平行,所以①正确;对于②,当直线m位于平面β内,且平行于平面α,β的交线时,满足条件,但显然此时m与平面β不垂直,因此②不正确;对于③,在平面β内取直线n平行于m,则由m⊥α,m∥n,得n ⊥α,又n⊂β,因此有α⊥β,③正确;对于④,直线m可能位于平面α内,显然此时m与平面α不平行,因此④不正确.综上所述,正确命题的序号是①③,选A.答案: A4.如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是()A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC解析:A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BPC⊥平面APC,BC⊥PC,所以BC⊥平面APC,AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B中条件不能判断出AP⊥BC,故选B.答案: B5.在正方体ABCD-A1B1C1D1的侧面ABB1A1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在的曲线的形状为()解析:由题意可知点P到点B的距离等于到直线A1B1的距离,根据抛物线的定义可知,动点P的轨迹是以点B为焦点,以A1B1为准线的过点A的抛物线的一部分.A选项中的图象为直线,排除A.C选项中点B不是抛物线的焦点,排除C.D选项中的图象不过A点,排除D.故选B.答案: B6.如图,在空间四边形ABCD 中,M ∈AB ,N ∈AD ,若AM MB =ANND ,则直线MN 与平面BDC 的位置关系是________.解析: 由AM MB =ANND ,得MN ∥BD .而BD ⊂平面BDC ,MN ⊄平面BDC , 所以MN ∥平面BDC . 答案: 平行7.已知α,β表示两个不同的平面,m ,n 表示两条不同的直线,且m ⊥β,α⊥β,给出下列四个结论:①∀n ⊂α,n ⊥β; ②∀n ⊂β,m ⊥n ; ③∀n ⊂α,m ∥n ; ④∃n ⊂α,m ⊥n .则上述结论正确的为________.(写出所有正确结论的序号)解析: 由于m ⊥β,α⊥β,所以m ⊂α或m ∥α.∀n ⊂α,则n ⊥β或n ⊂β或n ∥β或n 与β斜交,所以①不正确;∀n ⊂β,则由直线与平面垂直的性质,知m ⊥n ,②正确;∀n ⊂α,则m ∥n 或m ,n 相交或m ,n 互为异面直线,③不正确;当m ⊂α或m ∥α时,∃n ⊂α,m ⊥n ,④正确.答案: ②④ 8.如图,P A ⊥圆O 所在的平面,AB 是圆O 的直径,C 是圆O 上的一点,E 、F 分别是点A 在PB 、PC 上的正投影,给出的下列结论正确的是________.①AF ⊥PB ;②EF ⊥PB ; ③AF ⊥BC ;④AE ⊥平面PBC .解析: 由题意知P A ⊥平面ABC ,所以P A ⊥BC . 又AC ⊥BC ,P A ∩AC =A , 所以BC ⊥平面P AC . 所以BC ⊥AF .因为AF ⊥PC ,BC ∩PC =C ,所以AF ⊥平面PBC ,PB ⊂平面PBC , 所以AF ⊥PB ,又AE ⊥PB ,AE ∩AF =A , 所以PB ⊥平面AEF ,所以PB ⊥EF . 故①②③正确. 答案: ①②③9.(2017·惠州市第三次调研考试)在如图所示的多面体ABCDE 中,已知ABCD 是边长为2的正方形,平面ABCD ⊥平面ABE ,∠AEB =90°,AE =BE .(1)若M 是DE 的中点,试在AC 上找一点N ,使得MN ∥平面ABE ,并给出证明; (2)求多面体ABCDE 的体积.解析: (1)连接BD ,交AC 于点N ,则点N 即为所求,证明如下: ∵ABCD 是正方形,∴N 是BD 的中点, 又M 是DE 的中点,∴MN ∥BE , ∵BE ⊂平面ABE ,MN ⊄平面ABE , ∴MN ∥平面ABE .(2)取AB 的中点F ,连接EF ,∵△ABE 是等腰直角三角形,且AB =2, ∴EF ⊥AB ,EF =12AB =1,∵平面ABCD ⊥平面ABE , 平面ABCD ∩平面ABE =AB , EF ⊂平面ABE ,∴EF ⊥平面ABCD ,即EF 为四棱锥E -ABCD 的高, ∴V 四棱锥E -ABCD =13S 正方形ABCD ·EF =13×22×1=43.10.如图,过底面是矩形的四棱锥F -ABCD 的顶点F 作EF ∥AB ,使AB =2EF ,且平面ABFE ⊥平面ABCD ,若点G 在CD 上且满足DG =GC .(1)求证:FG ∥平面AED ; (2)求证:平面DAF ⊥平面BAF .证明: (1)因为DG =GC ,AB =CD =2EF ,AB ∥EF ∥CD , 所以EF ∥DG ,EF =DG .所以四边形DEFG 为平行四边形, 所以FG ∥ED .又因为FG ⊄平面AED ,ED ⊂平面AED , 所以FG ∥平面AED .(2)因为平面ABFE ⊥平面ABCD ,平面ABFE ∩平面ABCD =AB ,AD ⊥AB ,AD ⊂平面ABCD ,所以AD ⊥平面BAF ,又AD ⊂平面DAF ,所以平面DAF ⊥平面BAF .B 级1.(2017·成都市第二次诊断性检测)把平面图形M 上的所有点在一个平面上的射影构成的图形M ′称为图形M 在这个平面上的射影.如图,在长方体ABCD -EFGH 中,AB =5,AD =4,AE =3.则△EBD 在平面EBC 上的射影的面积是( )A .234B .252C .10D .30解析: 连接HC ,过D 作DM ⊥HC ,连接ME ,MB ,因为BC ⊥平面HCD ,又DM ⊂平面HCD ,所以BC ⊥DM ,因为BC ∩HC =C ,所以DM ⊥平面HCBE ,即D 在平面HCBE 内的射影为M ,所以△EBD 在平面HCBE 内的射影为△EBM ,在长方体中,HC ∥BE ,所以△MBE 的面积等于△CBE 的面积,所以△EBD 在平面EBC 上的射影的面积为12×52+32×4=234,故选A.答案: A2.(2017·惠州市第三次调研考试)如图是一几何体的平面展形图,其中四边形ABCD 为正方形,E ,F 分别为P A ,PD 的中点,在此几何体中,给出下面4个结论:①直线BE 与直线CF 异面; ②直线BE 与直线AF 异面; ③直线EF ∥平面PBC ; ④平面BCE ⊥平面P AD . 其中正确的有( ) A .1个 B .2个 C .3个D .4个解析: 将展开图还原为几何体(如图),因为E ,F 分别为P A ,PD 的中点,所以EF ∥AD ∥BC ,即直线BE 与CF 共面,①错;因为B ∉平面P AD ,E ∈平面P AD ,E ∉AF ,所以BE 与AF 是异面直线,②正确;因为EF ∥AD ∥BC ,EF ⊄平面PBC ,BC ⊂平面PBC ,所以EF ∥平面PBC ,③正确;平面P AD 与平面BCE 不一定垂直,④错.故选B.答案: B3.如图所示,平行四边形ABCD 中,∠DAB =60°,AB =2,AD =4.将△CBD 沿BD 折起到△EBD 的位置,使平面EBD ⊥平面ABD .(1)求证:AB ⊥DE ;(2)求三棱锥E -ABD 的侧面积和体积.解析: (1)证明:在△ABD 中,因为AB =2,AD =4,∠DAB =60°,所以BD =AB2+AD2-2AB·AD cos ∠DAB=23,所以AB2+BD2=AD2,所以AB⊥BD.又平面EBD⊥平面ABD,平面EBD∩平面ABD=BD,AB⊂平面ABD,所以AB⊥平面EBD.又DE⊂平面EBD,所以AB⊥DE.(2)由(1)知AB⊥BD.因为CD∥AB,所以CD⊥BD,从而DE⊥BD.在Rt△DBE中,因为DB=23,DE=DC=AB=2,所以S△EDB=12BD·DE=2 3.因为AB⊥平面EBD,BE⊂平面EBD,所以AB⊥BE.因为BE=BC=AD=4,所以S△EAB=12AB·BE=4.因为DE⊥BD,平面EBD⊥平面ABD,平面EBD∩平面ABD=BD,所以DE⊥平面ABD,而AD⊂平面ABD,所以DE⊥AD,故S△EAD=12AD·DE=4.故三棱锥E-ABD的侧面积S=S△EDB+S△EAB+S△EAD=8+2 3. 因为DE⊥平面ABD,且S△ABD=S△EBD=23,DE=2,所以V三棱锥E-ABD=13S△ABD×DE=13×23×2=433.4.在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB =AD=1,CD=2,AC=EC= 5.(1)求证:平面EBC⊥平面EBD;(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT ∥平面BDE,若存在,试指出点T的位置;若不存在,请说明理由.解析:(1)证明:因为AD=1,CD=2,AC=5,所以AD2+CD2=AC2,所以△ADC为直角三角形,且AD⊥DC.同理,因为ED=1,CD=2,EC=5,所以ED2+CD2=EC2,所以△EDC 为直角三角形,且ED ⊥DC . 又四边形ADEF 是正方形,所以AD ⊥DE , 又AD ∩DC =D , 所以ED ⊥平面ABCD .又BC ⊂平面ABCD ,所以ED ⊥BC .在梯形ABCD 中,过点B 作BH ⊥CD 于点H , 故四边形ABHD 是正方形,所以∠ADB =45°,BD = 2. 在Rt △BCH 中,BH =CH =1,所以BC =2, 故BD 2+BC 2=DC 2,所以BC ⊥BD .因为BD ∩ED =D ,BD ⊂平面EBD ,ED ⊂平面EBD , 所以BC ⊥平面EBD ,又BC ⊂平面EBC ,所以平面EBC ⊥平面EBD .(2)在线段BC 上存在一点T ,使得MT ∥平面BDE ,此时3BT =BC .连接MT ,在△EBC 中,因为BT BC =EM EC =13,所以MT ∥EB .又MT ⊄平面BDE ,EB ⊂平面BDE ,所以MT ∥平面BDE .。