疾病基因克隆的策略及主要方法
克隆基因的方法

克隆基因的方法
克隆基因的方法是指利用分子生物学技术对某一基因进行精准而
快速的复制。
其步骤主要包括酶切、DNA片段分离、连接和转化等。
使用这种方法,我们可以快速获取到目标基因,因此对于研究基因功能
和遗传学方面有着重要的意义。
首先,我们需要从目标基因组织中提取出DNA,并使用限制性内切酶将其切成数个片段。
然后,利用凝胶电泳技术将目标片段分离出来,并使用DNA聚合酶将其连接形成目标基因。
接下来,将得到的基因放入一个载体中,并通过化学反应或者电
穿孔等方式将载体直接或间接转化入细胞中。
最后,经过培养和筛选,我们就可以获得到目标基因的克隆。
值
得注意的是,在整个过程中,需要用到一系列不同的分子生物学工具
和技术,例如PCR扩增、DNA测序、化学转化等。
基因克隆的方案

基因克隆的方案在科学领域里,基因克隆一直是一项备受争议的研究领域。
从早期的克隆风波到如今的克隆技术已经取得长足的进展。
基因克隆是指通过人工手段制造与原始DNA完全相同的DNA分子,可以用于研究基因的功能、制造药物、改良农作物等。
然而,如何进行基因克隆,却是一个需要仔细思考和制定方案的问题。
第一步,确定克隆目的。
在基因克隆中,确定克隆的目的至关重要。
无论是研究基因的功能、制造药物、改良农作物,或者是其他用途,都需要首先明确克隆的目的。
这有助于确定后续的步骤和实验方案。
第二步,选择适当的克隆方法。
基因克隆可以通过多种方法实现,如PCR扩增、基因文库构建、限制酶切插入等。
根据克隆的目的和所需的基因片段长度,可以选择适当的克隆方法。
不同的方法有不同的优缺点,需要综合考虑各种因素,以得到最佳的克隆效果。
第三步,设计引物和启动子。
在进行基因克隆时,需要设计适当的引物和启动子。
引物是用于PCR扩增克隆所需的基因片段,启动子则是用于驱动基因在宿主细胞中的表达。
引物和启动子的设计需要考虑到目的基因的长度、序列和特定的实验要求。
合理的设计能够提高克隆的成功率和稳定性。
第四步,选择合适的宿主细胞。
基因克隆需要将目的基因导入到宿主细胞中,宿主细胞的选择对于克隆的成功非常重要。
常用的宿主细胞有大肠杆菌、酵母菌等。
根据克隆的目的和需要,选择适当的宿主细胞,以确保基因的稳定表达和高效生产。
第五步,进行基因导入和转化。
一旦确定了宿主细胞,就需要进行基因导入和转化。
这可以通过质粒转化、病毒载体介导转化等方式实现。
基因导入和转化的方法需要根据实验要求和目的进行选择,以确保基因克隆的成功和宿主细胞的稳定性。
第六步,进行筛选和验证。
在基因克隆完成后,需要进行筛选和验证。
这可以通过PCR扩增、限制酶切、测序等方式来检验所获得的克隆是否准确、稳定和纯净。
筛选和验证的步骤是克隆过程中的重要环节,也是确定克隆的质量和可靠性的关键。
基因克隆的方案不仅仅是一个简单的实验步骤,而是需要全面考虑和制定的复杂过程。
基因克隆的一般程序

基因克隆的一般程序
基因克隆通常包括以下步骤:
1.选择一个目标基因,并设计引物:在开始之前选择要克隆的
基因,并设计引物。
引物通常包括两个寡核苷酸序列,它们与目标基因的两端相匹配,并且在引物的末端含有限制性内切酶识别位点。
2.将目标基因PCR扩增:使用引物进行PCR扩增,从而扩增
目标基因。
PCR扩增过程中,添加限制性内切酶识别位点的
引物,则可以获得含有限制酶切割位点的PCR产物。
3.剪切PCR产物:将PCR产物用限制性内切酶进行切割,因
为PCR产物含有限制性酶切割位点,因此可以选择正确的限
制性内切酶来切割。
4.连接载体:将PCR产物和质粒(或其他载体)用T4 DNA
连接酶连接在一起。
质粒通常被用作载体,因为它们可以在细胞内稳定复制。
5.转化:将连接好的质粒导入大肠杆菌等推动器中,并将其生
长在培养基上,以让它们自我复制。
6.筛选克隆:使用蓝白斑筛选法确定哪些细菌含有转化的基因。
该方法利用质粒上的LacZ基因,这可以使含有原核素三硝基
甲酸的菌落变成蓝色,而不含此基因的细菌则是白色的。
7.确定序列:将可能的克隆 DNA 提取出来,然后将其进行测序,从而确定克隆基因的精确序列。
8.表达蛋白质:克隆基因的表达,可以用来表达蛋白质。
这可以通过让此基因插入到一个表达载体中来完成,然后将其转化至宿主细胞中,也可对其进行人工表达分析。
基因克隆技术的基本步骤

基因克隆技术的基本步骤随着科技的不断发展,基因克隆技术越来越成为生命科学研究的重要手段。
在生命科学、医学等领域,基因克隆技术的应用十分广泛。
本文将介绍基因克隆技术的基本步骤。
一、选择载体DNA在基因克隆中,载体DNA是将外源DNA(待克隆DNA)转化进细胞的基础。
目前主要的载体DNA是质粒,其一般大小在1至20 kb之间。
质粒的选择应遵循以下几个原则:1. 合适的选体标识。
大多数载体都有一些明显的特征,例如特定的抗生素抗性或颜色,因此选择能够用于筛选的选体标识是基本原则之一。
2. 合适的克隆位点。
载体DNA上应具有克隆位点,以便将待克隆DNA插入到其中。
3. 可重复复制。
质粒必须带有在细胞内自我复制所必需的序列。
二、切割DNA通过限制性内切酶切割将待克隆DNA和载体DNA裂解成短的DNA片段。
这些片段在电泳时可以按照大小区分开,以便以后的克隆工作。
三、将外源DNA插入载体DNA外源DNA和载体DNA的连接需要使用DNA连接酶,如DNA ligase。
方法是将两个DNA片段的末端和连接起来形成一个完整的DNA分子。
连接成功后,形成了一个混合DNA。
由于载体的复制和传递,待克隆DNA也可以被大量复制。
四、将混合DNA转化进宿主细胞将混合DNA转化进宿主细胞是整个克隆过程中至关重要的一步,因为宿主细胞受到质粒的干扰,催化质粒遗传信息的传递与表达。
大多数质粒都需要在易感受性细胞中才能存在并复制。
宿主细胞的选择是非常重要的,有些宿主细胞对外源DNA的吸收和扩增效率非常高,充分利用每一个获得的外源DNA分子。
五、筛选克隆基因最后一步是克隆基因的筛选,筛选克隆基因需要具有合适的筛选方法。
常用的筛选方法是使用抗生素抗性,因为载体上通常带有抗生素基因,能够筛选那些携带载体克隆块的细胞。
克隆基因的筛选方法不止于抗生素抗性,还可以根据不同的克隆目标进行选择。
例如,当克隆目标是蛋白质时,可以使用融合蛋白法克隆兴趣的编码DNA,并利用其蛋白质结构的特点分离出融合蛋白。
基因的克隆方法大全

1.2.3 差异显示PCR〔DD RT-PCR〕
最先由Liang等于1992年报道,目前已广 泛在实验室使用.
主要LY〔A〕结构,在其3`端设计象5`-
T11GA样引物,该引物可与mRNA总数的
十二分之一结合,从而使这部分基因得到
逆转录,同时结合5`端的随机引物〔20条
染色体 T-DNA
染色体 目的基因野生株构建基因组 基因苗构建基因组文 库基因苗
阳性克隆
获得阳性克隆 目的基因
基因序列分析2,4 确定为基因
转座子标签法
转座子又称转座因子或者跳跃因 子,实际上也是DNA片段,它可以在生 物的染色体组中移动,从染色体的一个 位点跳到另一个位点,或从一条染色体 跳到另一条染色体上,引起基因功能的 改变.
8
已发展的相应基因克隆方法:
差减杂交〔SH〕 抑制性差减杂交〔SSH〕 差异显示PCR〔DD RT-PCR〕 DNA代表性差异分析〔DNA RDA〕 扩增限制性片段长度多样性〔AFLP〕 cDNA微阵列
9
差减杂交〔SH〕
最早由Lamar和Palmer于1984年提 出并用于雄鼠Y染色体的DNA研究.
10-mer〕,可m以RN使A不同长度的基因得到扩
增5. `
RP
A T C G
AAAAAAAA
A C
TTTTTTTTTT
G
3`
15
mRNA
5` RP
A T C G
AAAAAAAA
A C
TTTTTTTTTT
G
3`
AATTTTTTTT
ACTTTTTTTT
AGTTTTTTTT
TATTTTTTTT
TCTTTTTTTT
41
基因克隆方案

基因克隆方案基因克隆是现代生物学中一项重要的技术手段,可以帮助科学家们研究和理解基因在生物体内的功能以及相互作用关系。
本文将介绍一种基因克隆的方案,包括所需材料、实验步骤以及预期结果。
材料准备:1. 原核或真核生物DNA样本2. 大肠杆菌或其他合适的宿主细胞3. 抗生素培养基4. 离心管和显微管5. 高速离心机6. 热循环仪7. DNA聚合酶、限制性内切酶、连接酶等相关试剂实验步骤:1. DNA片段的制备a. 提取所需的DNA样本,并利用限制性内切酶进行酶切,得到所需的目标DNA片段。
b. 进行DNA片段的纯化,通过凝胶电泳确认目标DNA片段的大小,并将其收集起来。
2. 载体的制备a. 准备合适的载体,如质粒或病毒。
b. 利用限制性内切酶对载体进行酶切,以开放载体的多个切位。
c. 将目标DNA片段与载体进行连接,使用连接酶催化反应使其稳定结合。
3. DNA的转化与筛选a. 将连接好的DNA测序样本转化到合适的宿主细胞中,如大肠杆菌。
b. 将转化后的细胞培养于含有抗生素的培养基上,以筛选带有目标DNA的克隆。
c. 通过PCR等方法检测筛选出的克隆是否携带目标基因,确认克隆是否成功。
4. 克隆的扩增与提取a. 选择带有目标基因的克隆进行扩增培养。
b. 利用高速离心机将细胞进行离心分离,提取出目标DNA。
预期结果:经过以上步骤,我们可以获得目标基因的克隆并进行扩增。
在实验结果中,我们能够观察到目标DNA片段在凝胶电泳图谱中的特定带状条带,同时,通过PCR验证可以进一步确认克隆是否成功。
此外,最终扩增的目标基因克隆可以用于后续的实验研究,如转基因生物的构建或基因功能的研究。
总结:通过以上实验方案,我们可以使用基因克隆技术获得目标基因的克隆,并获得扩增后的纯净DNA样本。
这项技术在现代生物学和医学研究中具有广泛的应用前景,为科学家们研究基因的功能及其在人类健康中的意义提供了关键的工具。
然而,需要注意的是,基因克隆技术的操作需要严格遵守实验室安全规范,并经过充分的训练,以确保实验的准确性和安全性。
植物基因克隆的策略及方法

植物基因克隆的策略与方法基因的克隆就是利用体外重组技术,将特定的基因和其它DNA顺序插入到载体分子中。
基因克隆的主要目标是识别、别离特异基因并获得基因的完整的全序列,确定染色体定位,说明基因的生化功能,明确其对特定性状的遗传控制关系。
通过几十年的努力由于植物发育,生理生化,分子遗传等学科的迅速开展,使人们掌握了大量有关植物优良性状基因的生物学和遗传学知识,再运用先进的酶学和生物学技术已经克隆出了与植物抗病、抗虫、抗除草剂、抗逆,育性、高蛋白质及与植物发育有关的许多基因。
我们实验室对天麻抗真菌蛋白基因作了功能克隆的研究(舒群芳等,1995;舒群芳等,1997),为了克隆植物基因也探讨了其它克隆方法,本文论述基因克隆的策略、方法及取得的一些进展。
1 功能克隆(functional Cloning)功能克隆就是根据性状的根本生化特性这一功能信息,在鉴定和基因的功能后克隆(Collis,1995)。
其具体作法是:在纯化相应的编码蛋白后构建cDNA文库或基因组文库,DNA文库中基因的筛选根据情况主要可用二种方法进展,(1)将纯化的蛋白质进展氨基酸测序,据此合成寡核苷酸探针从cDNA库或基因组文库中筛选编码基因,(2)将相应的编码蛋白制成相应抗体探针,从cDNA入载体表达库中筛选相应克隆。
功能克隆是一种经典的基因克隆策略,很多基因的别离利用这种策略。
Hain等从葡萄中克隆了两个编码白藜芦醇合成的二苯乙烯合成酶基因(Vst1和Vst2),葡萄中抗菌化合物白藜芦醇的存在,可以提高对灰质葡萄孢(Botrytis cinerce)的抗性,在烟草和其它一些植物中无二苯乙烯合成酶,因此克隆该基因经过转基因后,对有些植物产生对灰质葡萄孢的抗性很有意义(Hain等,1985)。
Kondo等1989年对编码水稻巯基蛋白酶抑制剂的基因组DNA做了克隆和序列分析(Kondo 等,1989)。
周兆斓等构建了水稻cDNA文库,别离了编码水稻巯基蛋白酶抑制剂的cDNA(周兆斓等,1996)。
植物基因克隆的策略及方法

植物基因克隆的策略及方法首先,PCR是植物基因克隆的重要策略之一、PCR(聚合酶链反应)是一种体外复制DNA片段的方法,可以在短时间内扩增大量的特定DNA序列。
通过PCR可以快速准确地克隆植物基因。
PCR的基本原理是利用DNA 聚合酶酶学合成原理,在DNA片段两侧设计引物,将其与DNA片段的两侧结合,在适当的条件下进行DNA的聚合酶链反应,从而扩增目标基因。
PCR方法主要包括加热解性、引物连接、扩增和酶切等步骤。
其次,限制性酶切也是植物基因克隆的重要方法。
限制性酶切是指利用特定的限制性酶将DNA分子切割成特定序列的片段。
通过限制性酶切,可以将目标基因从植物DNA中剪切出来,然后进行进一步处理。
限制性酶切的基本原理是将特定的限制性酶加入反应体系中,该酶能识别和切割DNA的特定序列,从而将目标基因从DNA中剪切出来。
限制性酶切方法主要包括选择合适的限制性酶、反应条件的优化、酶切产物的回收和检测等步骤。
连接是植物基因克隆的另一种重要方法。
连接是指将目标基因连接到特定的载体DNA上,以便在目标植物中稳定地表达。
连接方法主要包括两个步骤:首先,需要处理载体DNA和目标基因的末端,以便它们能够相互连接;其次,利用DNA连接酶将载体和目标基因连接起来。
连接步骤中的处理涉及到DNA末端的修饰和处理,可以通过多种方法如限制性内切酶切割、引物扩增、酶切等进行。
最后,转化是植物基因克隆的最后一步。
转化是指将连接好的目标基因插入到目标植物的基因组中,使其能够在植物体内稳定表达。
转化的方法有多种,包括农杆菌介导的转化、基因枪转化、电穿孔转化等。
其中,农杆菌介导的转化是最常用的方法之一、农杆菌介导的转化是利用农杆菌作为载体将外源DNA导入到目标植物细胞中,通过农杆菌的自然寄生习性以及在植物细胞中特定的植物基因的活性表达,实现目标基因的稳定表达。
总的来说,植物基因克隆的策略和方法包括PCR、限制性酶切、连接和转化。
通过这些方法,可以快速准确地克隆植物基因,实现对植物遗传特性的改变和优化,为农业生产和植物遗传研究提供有力的技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
疾病基因克隆的策略及主要方法申海鹰周元国(第三军医大学野战外科研究所分子生物学中心,重庆400042)摘要疾病基因的分离和克隆是功能基因组学的研究热点,具体策略的选择取决于疾病背景资料的掌握程度,为能快速、准确地克隆出目的基因,本文介绍两类常用的基因克隆策略——定位克隆策略、功能克隆策略——及其主要方法,如:家系连锁分析、等位基因共占法、人群相关分析法、抑制性消减杂交、差示反转录PCR、差异消减显示法、代表性差异分析法、比较基因组杂交等,并作简要的评价。
关键词基因;定位克隆;消减杂交学科分类号Q785Strategies and methods for cloning pathogenic gene SHEN Hai-ying, ZHOU Yuan-guo. (C enter of Molecular Biology, Research Institute of Surgery and Daping Hospital, Third Milit ary Medical University, Chongqing 400042)Abstract Isolation and cloning of pathogenic gene is a hot spot in functional genome stu dy, while it is the disease background which decides the selection of the strategies. Tw o strategies, mapping strategy and functional cloning strategy, which can clone the obje ctive gene rapidly and accurately were introduced. Some main methods including family-based linkage analysis, allele sharing method, population association analysis, suppressio n subtractive hybridization (SSH), differential display reverse-transcription PCR (DD-RT-PC R), differential subtraction display (DSD), representational difference analysis (RDA), com parative genome hybridization (CEH) were elucidated briefly.Key words: Gene; Mapping clone; Subtractive hybridization基因组全序列测定可望提前完成,而以功能鉴定为中心的功能基因组学应运而生,将人类5~10万个基因定位及克隆是一项庞大而艰巨的任务。
自1911年Wilson将色盲基因定位于X染色体起,随着连锁分析方法的发展和体细胞杂交、重组DNA、分子杂交以及PCR技术的发现和应用,陆续出现了几种改进或全新的遗传学基因定位和克隆方法。
与此同时,另一类以消减杂交为基本原理的代表性差异分析、基因组错配扫描、比较基因组杂交及mRNA差示等方法的出现和应用,使一些多基因遗传病相关致病基因的筛查和定位面临突破。
迄今为止,约有5000个遗传性状被定位,其中400多个为致病基因[1]。
根据不同的背景资料,人类基因克隆可采取的思路有以下四种(见附图):目前人类基因克隆的主要策略有三种:一是反向遗传学定位克隆策略,它通过RFLP、微卫星D NA等遗传标记,先获得某一表型基因在染色体上的定位,再在候选区域内选择已知基因,进行致病突变的筛选,并获得cDNA及全基因;另一类是从蛋白质功能着手的功能克隆策略,采用以消减杂交为策略的多种分子生物学手段,先通过消减获得特异表达或缺失的基因片段,然后进行染色体定位乃至获得全基因。
本文拟就前两种主要策略和各自方法的优缺点作一介绍和分析。
此外,尚有介于两者之间的候选克隆策略,包括定位候选克隆和功能候选克隆,前者是在将疾病基因以连锁分析和染色体分析基本定位以后,再在候选区域内选择所有已知基因进行致病突变的筛选。
后者是根据致病基因的可能功能,检测Genbank中的基因功能区域,将含有接近功能域的基因用于致病的突变检测。
1. 定位克隆(positional cloning)策略其基本思路是通过连锁分析(linkage analysis)原理进行基因定位。
若多态标记与待定基因距离较远,则它们在向子代传递时会发生自由分离,呈“连锁平衡”;反之,则不发生自由分离,而呈现“共分离(co segregation)”现象,即“连锁不平衡”。
据此可在染色体上定位与某一DNA标记相连锁的基因。
两基因间连锁程度以遗传距离表示:1厘摩(cM)=1%重组率,即1000kb。
D NA标记的选择经历了从致病基因→ABO、HLA多态位点→RFLP→微卫星DNA的发展过程。
微卫星DNA(microsatellite DNA),是一种遍布于真核基因组的短重复序列、长度2~10bp之间、按孟德尔方式遗传、呈高度多态,能进行PCR扩增。
除DNA标记的进展外,基因定位也得益于连锁分析方法和理论的改进,目前主要有:家系连锁分析、等位基因共占法及人群相关性分析等。
1.1家系连锁分析(family-based linkage analysis)法是以二代或二代以上的家系材料为基础,观察标记位点与疾病致病基因位点在家系内是否呈共分离,并计算出遗传距离及连锁程度。
目前最常用的方法是优势对数计分(Lods)法,Lod值代表两位点连锁的机率与不呈连锁的机率比的对数值,>3肯定连锁,<-2否定连锁,介于1与-2之间则需增加家系材料。
该法优点在于对连锁的判断能力强,能确定连锁程度,适于呈孟德尔遗传、外显率高、纯一的单基因突变病分析[2],如糖尿病中的一种亚型MODY及少数呈多代多发患者的IDDM及NIDDM家系。
缺点是需要完整的系谱材料,结果受遗传模型设定的影响,对遗传参数如基因频率、基因传递率、外显率及表型模拟率等依赖较大,故对一些复杂多基因疾病进行家系连锁分析很难获得满意结果[3]。
1.2等位基因共占(allele sharing method)法基于观察受累同胞或家系成员间标记位点等位基因的共占情况[4],即来源于同一祖先的致病基因由受累的亲属共占的机率大于随机分布的机率,包括受累同胞对(Affected sib pair, ASP)分析及家系成员(APM)分析。
在ASP中,当标记位点与疾病无连锁时,双亲的标记位点等位基因随机分配给子代;若存在连锁,则受累同胞间共有等位基因机率将高于连锁时的预期值。
A PM是ASP的延伸,通过观察家系内所有患病成员标记位点等位基因的共有情况,来提高每个家系的信息量。
原则上,若具备双亲样本材料,可据此判定受累同胞的相同等位基因片段是否同源,即传递一致性(identical-by-descent, IBD)分析;若无双亲资料,则只能通过同胞间等位基因比较来推测其是否共有,即状态一致性(identical-by-state, IBS)分析。
若双亲均为纯合子以致判断困难者,可经统计处理用最大拟然实验估测出最可能的传递情况[5]。
该法优点是:①不受遗传模式等遗传参数影响,为非参数分析法;②对系谱材料要求低,只需一代或二代的家系内患病成员资料,而不需非患病成员资料;③可进行定量性状研究[6];④可研究两个不相连锁位点对疾病的联合作用,以解决复杂病易感基因间的相互关系;⑤对遗传异质性容许度大;⑥在候选基因研究中可应用间距较远(~20cM)的标记,故特别适合多基因遗传病及参数情况多数未明的复杂病研究。
采用此法已发现在染色体6p24-22区域存在起很小效应的精神分裂症致病基因。
缺点在于:①对连锁的判别效能弱于家系连锁分析,不能确定连锁程度;②检出力低于相关分析;③若家系中双亲均为患者的机率较高时,因易感基因可由双亲传递给子代,会影响分析正确性。
1.3人群相关分析(association analysis)法原理是在一定人群中设置患者组和对照组,在可能的候选致病基因附近选择遗传标记,通过观察标记位点与致病基因位点间存在连锁不平衡现象,得到某一遗传标记和引起疾病基因关联的相对危险度,又称连锁不平衡定位(linkage disequilibrium mapping, LDM)法[7]。
显然,标记位点与致病基因越近,且突变率越低,杂合度越高,则用标记检测致病基因位点的机率越高。
L DM法假设在人群中某一致病基因起源于同一远祖,经过若干代的传递,那些与致病基因紧密连锁的基因或DNA标记被一起分配到不同的患病个体。
研究那些表面上无亲缘关系的患者是否有相同的DNA标记的等位基因,根据该DNA标记可以得到待研究基因在染色体上的定位。
LDM法适合在人口流动极小,相对同源的人群中进行。
该类人群遗传背景及环境相近,但患者间亲缘关系远(较家系分析而言),故其连锁不平衡作用大,此时定位基因所需遗传标记及研究的患者数较一般人群相关性分析少。
其优点有:①无亲缘关系患者样本容易随机采集,并完全符合群体中疾病的临床谱;②为非参数分析;③检出力高于家系连锁分析,在复杂病研究中不但可以检出主效基因,而且可以检出相对风险率小于5.0的次效基因;④检出的相关位点与致病突变的距离多在1cM以内,而家系连锁分析则为2~10cM;⑤可提示相关位点或基因的传递方式及效应性质(致病或保护作用),并可由亚组分析发现疾病的遗传异质性。
但相关分析亦有缺点:在种群组成差异的两组间,会因标记位点等位基因频率及易感基因频率差异导致假阳性结果,即群体分层(population stratificati on)现象。
对此,一些新的研究方法如:患者家系对照者分析(affected family-based control, AFBAC)、单倍型相对风险率分析(haplotype relative risk, HRR)以及倍受推崇的家系传递连锁不平衡检验(transmission disequilibrium test, TDT)得以应用。
TDT法是在家系内进行相关分析[8],观察双亲(至少一个为杂合子)是否有某种等位基因传递给患者的频率明显增高,而呈现连锁不平衡。
TDT有以下优点:①可完全消除种族分层引起的误差;②可用于分析父、母在基因传递上的差异,如遗传印记(imprinting)的影响;③可分析相关位点参与发病程度及基因间相互关系,TDT法的应用解决了胰岛素基因是否与IDDM相关的长期争论。