2018高中数学导数大题集
2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析已知函数2()x f x e ax =-.(1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析:本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。
第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。
官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。
这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。
但是,这种变形对大多数高考考生而言很难想到。
因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。
题目解答:(1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-.当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意.当0a >时,()2x f x e ax '=-,()2x f x e a ''=-.当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-.当02ea <≤时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.当2ea >时,易证2ln 2a a >. (0)10f '=>,(ln 2)0f a '<,由(1)可知,22(2)=(2)10a f a e a '->>.由零点存在性定理可知必然存在一点1(0,ln 2)x a ∈使得1()0f x '=,2(ln 22)x a a ∈,使得2()0f x '=;所以当1(0,)x x ∈时,()0f x '>,()f x 单调递增,12(,)x x x ∈,()0f x '<,()f x 单调递减,2(,)x x ∈+∞,()0f x '>,()f x 单调递增,即当2x x =时()f x 取得极小值2222()x f x e ax =-由2()0f x '=得222x e a x = 从而222222()(2)2x x e f x e ax x =-=-当22x =时,即24e a =时,极小值2()0f x =恰好成立,此时在()f x 在(0,)+∞只有一个零点2x =,满足题意.当224e e a <<时,即212x <<时(易证2xe x在(1,)+∞单调递增),极小值2()0f x >,此时在(0,)+∞无零点,不合题意.x当24e a >时,即22x >时,(0)10f =>,2()0f x <, 32(3)(3)0a f a e a a =-> (易证313x e x >恒成立),由零点存在性定理可知()f x 在区间2(0,)x 和2(,3)x a 各有一根,不合题意.综上所述,24e a =.。
2018年高考压轴题之导数含答案

解(1)当 a =1 时,f (x )=e x -x 2-2x -1,f (-1)= ,所以切点坐标为⎝-1,e ⎭,f ′(x )=e x -2x -2,所以 f ′(-1)= ,故曲线 y =f (x )在点(-1,f (-1))处的切线方程为 y - = [x -(-1)],即 y = x + .①当 2a ≤1,即 a ≤ 时,g ′(x )=e x -2a >1-2a ≥0,所以 f (x )>f (0)=1-0-0-1=0,故 a ≤ 时符合题意.②当 2a >1,即 a > 时,令 g ′(x )=e x -2a =0,得 x =ln 2a >0,综上,a 的取值范围是⎝-∞,2⎦.压轴大题突破练1.导 数1.(2017· 安徽“皖南八校”联考)已知函数 f (x )=e x -ax 2-2ax -1.(1)当 a =1 时,求曲线 y =f (x )在点(-1,f (-1))处的切线方程; (2)当 x >0 时,f (x )>0 恒成立,求实数 a 的取值范围.1 e⎛ 1⎫1e1 1 1 2e e e e(2)f (x )=e x -ax 2-2ax -1 求导得 f ′(x )=e x -2ax -2a ,令 g (x )=f ′(x )=e x -2ax -2a ,则 g ′(x )=e x -2a (x >0).12所以 g (x )=f ′(x )=e x -2ax -2a 在(0,+∞)上为增函数,g (x )>g (0)=1-2a ≥0,即 g (x )=f ′(x )≥0,所以 f (x )=e x -ax 2-2ax -1 在(0,+∞)上为增函数,1212xg ′(x )g (x )(0,ln 2a )-减函数 ln 2a极小值 (ln 2a ,+∞)+增函数当 x ∈(0,ln 2a )时,g (x )<g (0)=1-2a <0,即 f ′(x )<0,所以 f (x )在(0,ln 2a )上为减函数,所以 f (x )<f (0)=0,与条件矛盾,故舍去.⎛ 1⎤2.(2017· 广东惠州调研)已知函数 f (x )=x 2-(a -2)x -a ln x (a ∈R ).(1)求函数 y =f (x )的单调区间;f ′(x )=2x -(a -2)- = = .当 a >0 时,由 f ′(x )>0,得 x > ,由 f ′(x )<0,得 0<x < ,所以函数 f (x )在区间⎝2,+∞⎭上单调递增,在区间⎝0,2⎭上单调递减.令 g ′(x )=e x - =0,得 e x = ,容易知道该方程有唯一解,不妨设为 x 0,则 x 0 满足 e x 0 = ,g (x )min =g (x 0)= e x 0 -ln x 0-2= +x 0-2, f ′(x )= -1= =0 x =1,(2)当 a =1 时,证明:对任意的 x >0,f (x )+e x >x 2+x +2.(1)解 函数 f (x )的定义域是(0,+∞),a 2x 2-(a -2)x -a (x +1)(2x -a )x xx当 a ≤0 时,f ′(x )>0 对任意 x ∈(0,+∞)恒成立,所以函数 f (x )在区间(0,+∞)上单调递增.a2a2⎛a ⎫ ⎛ a ⎫(2)证明 当 a =1 时,f (x )=x 2+x -ln x ,要证明 f (x )+e x >x 2+x +2,只需证明 e x -ln x -2>0,设 g (x )=e x -ln x -2,则问题转化为证明对任意的 x >0,g (x )>0,11xx1 x 0当 x 变化时,g ′(x )和 g (x )的变化情况如下表:xg ′(x )g (x )(0,x 0)-单调递减 x 0(x 0,+∞)+单调递增1 x 0 因为 x 0>0,且 x 0≠1,所以 g (x )min >2 1-2=0,因此不等式得证. 3.(2017· 荆、荆、襄、宜四地七校联考)已知函数 f (x )=ln x -x .(1)求函数 f (x )的单调区间;(2)若方程 f (x )=m (m <-2)有两个相异实根 x 1,x 2,且 x 1<x 2,证明:x 1· x 22<2. (1)解 f (x )=ln x -x 的定义域为(0,+∞),1 1-xxx当 x ∈(0,1)时,f ′(x )>0,所以 y =f (x )在(0,1)上单调递增,当 x ∈(1,+∞)时,f ′(x )<0,所以 y =f (x )在(1,+∞)上单调递减.(2)证明 由(1)可知,f (x )=m 的两个相异实根 x 1,x 2 满足 ln x -x -m =0, 且 0<x 1<1,x 2>1,ln x 1-x 1-m =ln x 2-x 2-m =0,所以 0<x 1<1,0< 2<1.2=(lnx 1-x 1)-ln 2-2则 g (x 1)-g ⎝x ⎭ ⎝ x x ⎭- 2)=-x 2+ 2+3ln x 2-ln 2,当 t >2 时,h ′(t )<0,h (t )在(2,+∞)上单调递减,所以 h (t )<h (2)=2ln 2- <0.2<0,即g (x 1)<g2,所以当 x 2>2 时,g (x 1)-g ⎝x ⎭ ⎝x ⎭因为 0<x 1<1,0< 2<1,g (x )在(0,1)上单调递增, 所以 x 1< 2,故 x 1· x 22<2. (2)若函数 y =f (x )的图象在点 (2,f (2))处的切线的倾斜角为 45°,且函数 g (x )= x 2+nx +2- ,所以 g (x )= x 2+nx +m ⎝ x ⎭=(ln x 2-x 2)-(ln 2 解 (1)f ′(x )=(x >0),= t 3 =- t 3由题意可知 ln x 2-x 2=m <-2<ln 2-2,又由(1)可知 f (x )=ln x -x 在(1,+∞)上单调递减,故 x 2>2,2 x2令 g (x )=ln x -x -m ,⎛ 2 ⎫ ⎛ 2 2 ⎫ 22 2 2 2 x 2 x 2 x 22令 h (t )=-t +t 2+3ln t -ln 2(t >2),4 3 -t 3+3t 2-4 (t -2)2(t +1)则 h ′(t )=-1-t 3+ t .32⎛ 2 ⎫ ⎛ 2 ⎫ 2 2 2 x22 x2综上所述,x 1· x 2<2.4.(2017 届重庆市一中月考)已知函数 f (x )=a ln x -ax -3(a ∈R ).(1)当 a >0 时,求函数 f (x )的单调区间;12mf ′(x )(m ,n ∈R ),当且仅当在 x =1 处取得极值,其中 f ′(x )为 f (x )的导函数,求 m 的取值范围.a (1-x )x当 a >0 时,令 f ′(x )>0,得 0<x <1,令 f ′(x )<0,得 x >1,故函数 f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)因为函数 y =f (x )的图象在点(2,f (2))处的切线的倾斜角为 45°, 则 f ′(2)=1,即 a =-2,1 ⎛ 2⎫2-ln x +2k 则 g ′(x )= = ,-(2)设 g (x )= ,对任意 x >0,证明:(x +1)· g (x )<e x +e x 2. (1)解 因为 f ′(x )= (x >0), 由已知得 f ′(1)= =0,所以 k =- .x 1 1 1(2)证明 因为 x >0,要证原式成立即证 x < 成立.当 0<x <1 时,e x >1,且由(1)知,g (x )>0,所以 g (x )=<1-x ln x -x ,x 2e x -ln x -1,则 k ′(x )=-2m x 3+nx 2+2m所以 g ′(x )=x +n + x 2 = , 因为 g (x )在 x =1 处有极值,故 g ′(1)=0,从而可得 n =-1-2m ,x 3+nx 2+2m (x -1)(x 2-2mx -2m ) x 2 x 2又因为 g (x )仅在 x =1 处有极值,所以 x 2-2mx -2m ≥0 在(0,+∞)上恒成立,当 m >0 时,-2m <0,易知 x 0∈(0,+∞),使得 x 20-2mx 0-2m <0, 所以 m >0 不成立,故 m ≤0,当 m ≤0 且 x ∈(0,+∞)时,x 2-2mx -2m ≥0 恒成立,所以 m ≤0.综上,m 的取值范围是(-∞,0].5.(2017· 湖北沙市联考)已知函数 f (x )=e -x (ln x -2k )(k 为常数,e =2.718 28…是自然对数的底 数),曲线 y =f (x )在点(1,f (1))处的切线与 y 轴垂直. (1)求 f (x )的单调区间;1-x (ln x +1)e x 1xe x1+2k 1e 21-ln x -1所以 f ′(x )= ,设 k (x )=x x 2-x <0 在(0,+∞)上恒成立,即 k (x )在(0,+∞)上单调递减,由 k (1)=0 知,当 0<x <1 时,k (x )>0,从而 f ′(x )>0,当 x >1 时,k (x )<0,从而 f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),单调递减区间是(1,+∞).g (x ) 1+e -2e x +1当 x ≥1 时,由(1)知 g (x )≤0<1+e -2 成立;1-x ln x -xe x设 F (x )=1-x ln x -x ,x ∈(0,1),则 F ′(x )=-(ln x +2),当 x ∈(0,e -2)时,F ′(x )>0, 当 x ∈(e -2,1)时,F ′(x )<0,所以当 x =e -2 时,F (x )取得最大值 F (e -2)=1+e -2,所以 g (x )<F (x )≤1+e -2,即 0< x < . 当 x ≥1 时,有 x ≤0< ;当 0<x <1 时,由①②式, x < . 综上所述,当 x >0 时, x < 成立,故原不等式成立.6.(2017· 西安模拟)已知函数 f (x )=⎝k +k ⎭ln x + ,其中常数 k >0. 4⎫ 4⎫ ⎛ ⎛ 且 f ′(x )= - =- =- (k >0).①当 0<k <2 时, >k >0,且 >2,②当 k =2 时, =k =2,f ′(x )<0 在区间(0,2)内恒成立,③当 k >2 时,0< <2,k > ,所以当 x ∈⎝0,k ⎭时,f ′(x )<0;x ∈⎝k ,2⎭时,f ′(x )>0,所以函数在⎝0,k ⎭上是减函数,在⎝k ,2⎭上是增函数.k 4 k 4 4⎫ 即-2-1=-2-1,化简得,4(x 1+x 2)=⎝k +k ⎭x 1x 2.由 x 1x 2<⎝ 2 ⎭ ,k x 2+4即当 0<x <1 时,g (x )<1+e -2.①综上所述,对任意 x >0,g (x )<1+e -2 恒成立.令 G (x )=e x -x -1(x >0),则 G ′(x )=e x -1>0 恒成立,所以 G (x )在(0,+∞)上单调递增,G (x )>G (0)=0 恒成立,即 e x >x +1>0,1 1 e x +1g (x ) 1+e -2 e x +1g (x ) 1+e -2e x +1g (x ) 1+e -2e x +1②⎛ 4⎫ 4-x 2x(1)讨论 f (x )在(0,2)上的单调性;(2)当 k ∈[4,+∞)时,若曲线 y =f (x )上总存在相异的两点 M (x 1,y 1),N (x 2,y 2),使曲线 y =f (x )在 M ,N 两点处的切线互相平行,试求 x 1+x 2 的取值范围. 解 (1)由已知得,f (x )的定义域为(0,+∞),4 k + x 2-⎝k +k ⎭x +4 (x -k )⎝x -k ⎭ xx 2x 2 x 24 4kk所以 x ∈(0,k )时,f ′(x )<0;x ∈(k ,2)时,f ′(x )>0.所以函数 f (x )在(0,k )上是减函数,在(k ,2)上是增函数;4k所以 f (x )在(0,2)上是减函数;4 4kk⎛ 4⎫ ⎛4 ⎫⎛ 4⎫ ⎛4 ⎫(2)由题意,可得 f ′(x 1)=f ′(x 2),x 1x 2>0 且 x 1≠x 2, 4 4k + k + ⎛ x 1x 1x 2x 2⎛x 1+x 2⎫21k +得4(x 1+x 2)<⎝k ⎭⎝ k + k + 故 x 1+x 2 的取值范围为⎝ 5 ,+∞⎭.2 ⎭ ,4 54 ,则 g ′(k )=1-⎛4⎫⎛x +x 2⎫216即(x 1+x 2)>对 k ∈[4,+∞)恒成立, k4 4 k 2-4令 g (k )=k +k k 2= k 2 >0 对 k ∈[4,+∞)恒成立.所以 g (k )在[4,+∞)上是增函数,则 g (k )≥g (4)=5,1616所以≤ ,k16所以(x 1+x 2)> 5 ,⎛16⎫。
2018年全国各地高考数学试题及解答分类大全(导数及其应用)

(2)方法一:由(1)得 f x ax2 a 1 x 1 ex ax 1 x 1 ex .
若
a
1 ,则当
x
1 a
,1
时,
f
x
0
;当
x
1,
时,
f
x
0
.
所以 f x 在 x 1处取得极小值.
若 a 1,则当 x 0,1 时, ax 1 x 1 0 , f x 0 . 所以 1 不是 f x 的极小值点. 综上可知, a 的取值范围是 1, .
第 4页 (共 12页)
4.(2018 浙江)已知函数 f(x)= x −lnx. (Ⅰ)若 f(x)在 x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2; (Ⅱ)若 a≤3−4ln2,证明:对于任意 k>0,直线 y=kx+a 与曲线 y=f(x)有唯一公共点.
2
2
所以 2 不是 f x 的极小值点.
综上可知,
a
的取值范围是
1 2
,
.
3.(2018 江苏)记 f (x), g(x) 分别为函数 f (x), g(x) 的导函数.若存在 x0 R ,满足 f (x0 ) g(x0 ) 且 f (x0 ) g(x0 ) ,则称 x0 为函数 f (x) 与 g(x) 的一个“S 点”.
4..答案:(1)略;(2)略.
解答:(1)
f
( x)
1 2x
1 x
,不妨设
f
( x1 )
f
(x2 )
t ,即 x1, x2 是方程
1 2x
1 x
t 的两
根,即
x1 ,
2018全国高考试题分类汇编-导数部分(含解析)

2018年全国高考试题分类汇编-导数部分(含解析)1.(2018·全国卷I高考理科·T5)同(2018·全国卷I高考文科·T6)设函数f=x3+-x2+ax.若f为奇函数,则曲线y=f在点处的切线方程为()A.y=-2xB.y=-xC.y=2xD.y=x2.(2018·全国卷II高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为3.(2018·全国卷II高考文科·T13)曲线y=2ln x在点(1,0)处的切线方程为4.(2018·全国Ⅲ高考理科·T14)曲线y=e x在点处的切线的斜率为-2,则a=.5.(2018·天津高考文科·T10)已知函数f(x)=e x ln x,f′(x)为f(x)的导函数,则f′(1)的值为.6.(2018·全国卷I高考理科·T16)已知函数f=2sin x+sin2x,则f的最小值是.7.(12分)(2018·全国卷I高考文科·T21)已知函数f=a e x-ln x-1.(1)设x=2是f的极值点.求a,并求f的单调区间.(2)证明:当a≥时,f≥0.8.(2018·全国Ⅲ高考理科·T21)(12分)已知函数f=ln-2x.(1)若a=0,证明:当-1<x<0时,f<0;当x>0时,f>0.(2)若x=0是f的极大值点,求a.9.(2018·全国Ⅲ高考文科·T21)(12分)已知函数f=-.(1)求曲线y=f在点-处的切线方程.(2)证明:当a≥1时,f+e≥0.10.(本小题13分)(2018·北京高考理科·T18)设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线方程与x轴平行,求a.(2)若f(x)在x=2处取得极小值,求a的取值范围.11.(本小题13分)(2018·北京高考文科·T19)设函数f(x)=[ax2-(3a+1)x+3a+2]e x.(1)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求a.(2)若f(x)在x=1处取得极小值,求a的取值范围.12.(12分)(2018·全国卷I高考理科·T21)已知函数f=-x+a ln x.(1)讨论f的单调性.(2)若f存在两个极值点x1,x2,证明:-<a-2.-13.(2018·全国卷II高考理科·T21)(12分)已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1.(2)若f(x)在(0,+∞)只有一个零点,求a.14.(2018·全国卷II高考文科·T21)(12分)已知函数f=x3-a.(1)若a=3,求f(x)的单调区间.(2)证明:f(x)只有一个零点.15.(本小题满分14分)(2018·天津高考理科·T20)已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)-x ln a的单调区间.(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=-.(Ⅲ)证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.16.(本小题满分14分)(2018·天津高考文科·T20)设函数f(x)=(x-t1)(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点,求d的取值范围.17.(本小题满分14分)(2018·江苏高考·T17)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围.(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4∶3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)(2018·江苏高考·T19)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x-2不存在“S点”.(2)若函数f(x)=ax2-1与g(x)=ln x存在“S点”,求实数a的值.(3)已知函数f(x)=-x2+a,g(x)=,对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.19.(2018·浙江高考T22)(本题满分15分)已知函数f(x)=-ln x.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8-8ln2.(Ⅱ)若a≤3-4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.1.【解析】选D.因为f(x)为奇函数,所以f(-x)=-f(x),即a=1,所以f(x)=x3+x,所以f′(0)=1,所以切线方程为y=x.2.【解析】y′=,k==2,所以切线方程为y-0=2(x-0),即y=2x.答案:y=2x3.【解析】y′=,k==2,所以切线方程为y-0=2(x-1)即y=2x-2.答案:y=2x-24.【解析】由y=(ax+1)e x,所以y′=a e x+(ax+1)e x=(ax+1+a)e x,故曲线y=(ax+1)e x在(0,1)处的切线的斜率为k=a+1=-2,解得a=-3.答案:-35.【解析】因为f(x)=e x ln x,所以f′(x)=(e x ln x)′=(e x)′ln x+e x(ln x)′=e x·ln x+e x·,f′(1)=e1·ln1+e1·=e.答案:e6.【解析】方法一:f′(x)=2cos x+2cos2x=4cos2x+2cos x-2=4(cos x+1)-, 所以当cos x<时函数单调减,当cos x>时函数单调增,从而得到函数的减区间为--(k∈Z),函数的增区间为-(k∈Z),所以当x=2kπ-,k∈Z时,函数f(x)取得最小值,此时sin x=-,sin2x=-,所以f(x)min=2×--=-.方法二:因为f(x)=2sin x+sin2x,所以f(x)最小正周期为T=2π,所以f′(x)=2(cos x+cos2x)=2(2cos2x+cos x-1),令f′(x)=0,即2cos2x+cos x-1=0,所以cos x=或cos x=-1.所以当cos x=,为函数的极小值点,即x=或x=π,当cos x=-1,x=π,所以f=-,f=,f(0)=f(2π)=0,f(π)=0,所以f(x)的最小值为-.答案:-7.【解析】(1)f(x)的定义域为(0,+∞),f′(x)=a e x-.由题设知,f′(2)=0,所以a=.从而f(x)=e x-ln x-1,f′(x)=e x-.当0<x<2时,f′(x)<0;当x>2时,f′(x)>0.所以f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.(2)当a≥时,f(x)≥-ln x-1.设g(x)=-ln x-1,则g′(x)=-.当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.因此,当时a≥时,f(x)≥0.8.【解析】(1)当a=0时,f(x)=(2+x)ln(1+x)-2x,f′(x)=ln(1+x)-.设函数g(x)=f′(x)=ln(1+x)-,则g′(x)=.当-1<x<0时,g′(x)<0;当x>0时,g′(x)>0.故当x>-1时,g(x)≥g(0)=0,当且仅当x=0时,g(x)=0,从而f′(x)≥0,当且仅当x=0时,f′(x)=0.所以f(x)在(-1,+∞)上单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)(i)若a≥0,由(1)知,当x>0时,f(x)≥(2+x)ln(1+x)-2x>0=f(0),这与x=0是f(x)的极大值点矛盾.(ii)若a<0,设函数h(x)==ln(1+x)-.由于当|x|<min时,2+x+ax2>0,故h(x)与f(x)符号相同.又h(0)=f(0)=0,故x=0是f(x)的极大值点,当且仅当x=0是h(x)的极大值点. h′(x)=--=.如果6a+1>0,则当0<x<-,且|x|<min时,h′(x)>0,故x=0不是h(x)的极大值点.如果6a+1<0,则a2x2+4ax+6a+1=0存在根x1<0,故当x∈(x1,0),且|x|<min时,h′(x)<0,所以x=0不是h(x)的极大值点..如果6a+1=0,则h′(x)=---则当x∈(-1,0)时,h′(x)>0;当x∈(0,1)时,h′(x)<0.所以x=0是h(x)的极大值点,从而x=0是f(x)的极大值点.综上,a=-.9.【解析】(1)f(x)的定义域为R,f′(x)=--,显然f(0)=-1,即点(0,-1)在曲线y=f(x)上,所求切线斜率为k=f′(0)=2,所以切线方程为y-(-1)=2(x-0),即2x-y-1=0.(2)方法一(一边为0):令g(x)=-ax2+(2a-1)x+2,当a≥1时,方程g(x)的判别式Δ=(2a+1)2>0,由g(x)=0得,x=-,2,且-<0<2,x,f′(x),f(x)的关系如下①若x∈(-∞,2],f(x)≥f-=-又因为a≥1,所以0<≤1,1<≤e,-≥-e,f(x)+e≥0,②若x∈(2,+∞),ax2+x-1>4a+2-1>0,e x>0,所以f(x)=->0,f(x)+e≥0,综上,当a≥1时,f(x)+e≥0.方法二(充要条件):①当a=1时,f(x)=-.显然e x>0,要证f(x)+e≥0只需证-≥-e, 即证h(x)=x2+x-1+e·e x≥0,h′(x)=2x+1+e·e x,观察发现h′(-1)=0,x,h′(x),h(x)的关系如下所以h(x)有最小值h(-1)=0,所以h(x)≥0即f(x)+e≥0.②当a>1时,由①知,-≥-e,又显然ax2≥x2,所以ax2+x-1≥x2+x-1,f(x)=-≥-≥-e,即f(x)+e≥0.综上,当a≥1时,f(x)+e≥0.方法三(分离参数):当x=0时,f(x)+e=-1+e≥0成立.当x≠0时,f(x)+e≥0等价于-≥-e,等价于ax2+x-1≥-e·e x,即ax2≥-e·e x-x+1等价于a≥--=k(x),等价于k(x)max≤1.k′(x)=--,令k′(x)=0得x=-1,2.x,k′(x),k(x)的关系如下又因为k(-1)=1,k(2)=-<0,所以k(x)max=1,k(x)≤1,x≠0,综上,当a≥1时,f(x)+e≥0.10.【解析】(1)因为f(x)=[ax2-(4a+1)x+4a+3]e x,所以f′(x)=[2ax-(4a+1)]e x+[ax2-(4a+1)x+4a+3]e x=[ax2-(2a+1)x+2]e x. f′(1)=(1-a)e.由题设知f′(1)=0,即(1-a)e=0,解得a=1.此时f(1)=3e≠0,所以a的值为1.(2)由(1)得f′(x)=[ax2-(2a+1)x+2]e x=(ax-1)(x-2)e x.若a>,则当x∈时,f′(x)<0;当x∈(2,+∞)时,f′(x)>0.所以f(x)在x=2处取得极小值.若a≤,则当x∈(0,2)时,x-2<0,ax-1≤x-1<0, 所以f′(x)>0.所以2不是f(x)的极小值点.综上可知,a的取值范围是(,+∞).11.【解析】(1)因为f(x)=[ax2-(3a+1)x+3a+2]e x, 所以f′(x)=[ax2-(a+1)x+1]e x,f′(2)=(2a-1)e2, 由题设知f′(2)=0,即(2a-1)e2=0,解得a=.(2)方法一:由(1)得f′(x)=[ax2-(a+1)x+1]e x=(ax-1)(x-1)e x若a>1,则当x∈时,f′(x)<0.当x∈(1,+∞)时,f′(x)>0.所以f(x)在x=1处取得极小值.若a≤1,则当x∈(0,1)时,ax-1≤x-1<0,所以f′(x)>0.所以1不是f(x)的极小值点.综上可知,a的取值范围是(1,+∞).方法二:f′(x)=(ax-1)(x-1)e x.①当a=0时,令f′(x)=0得x=1.f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.②当a>0时,令f′(x)=0得x1=,x2=1.(ⅰ)当x1=x2,即a=1时,f′(x)=(x-1)2e x≥0,所以f(x)在R上单调递增,所以f(x)无极值,不合题意.(ⅱ)当x1>x2,即0<a<1时,f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.(ⅲ)当x1<x2,即a>1时,f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极小值,即a>1满足题意.③当a<0时,令f′(x)=0得x1=,x2=1.f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.综上所述,a的取值范围为(1,+∞).12.【解析】(1)f(x)的定义域为(0,+∞),f′(x)=--1+=--.(i)若a≤2,则f′(x)≤0,当且仅当a=2,x=1时f′(x)=0,所以f(x)在(0,+∞)上单调递减.(ii)若a>2,令f′(x)=0得,x=--或x=-.当x∈--∪-时,f′(x)<0;当x∈---时,f′(x)>0.所以f(x)在--,-上单调递减,在---上单调递增.(2)由(1)知,f(x)存在两个极值点,当且仅当a>2.由于f(x)的两个极值点x1,x2满足x2-ax+1=0,所以x1x2=1,不妨设x1<x2,则x2>1.由于--=--1+a--=-2+a--=-2+a--,所以--<a-2等价于-x2+2ln x2<0.设函数g(x)=-x+2ln x,由(1)知,g(x)在(0,+∞)上单调递减,又g(1)=0,从而当x ∈(1,+∞)时,g(x)<0.所以-x2+2ln x2<0,即--<a-2.13.【解析】(1)当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0.设函数g(x)=(x2+1)e-x-1,则g′(x)=-(x2-2x+1)e-x=-(x-1)2e-x.当x≠1时,g′(x)<0,所以g(x)在(0,1)∪(1,+∞)上单调递减.而g(0)=0,故当x≥0时,g(x)≤0,即f(x)≥1.(2)设函数h(x)=1-ax2e-x.f(x)在(0,+∞)上只有一个零点当且仅当h(x)在(0,+∞)上只有一个零点.(i)当a≤0时,h(x)>0,h(x)没有零点;(ii)当a>0时,h′(x)=ax(x-2)e-x.当x∈(0,2)时,h′(x)<0;当x∈(2,+∞)时,h′(x)>0.所以h(x)在(0,2)上单调递减,在(2,+∞)上单调递增.故h(2)=1-是h(x)在[0,+∞)上的最小值.①若h(2)>0,即a<,h(x)在(0,+∞)上没有零点;②若h(2)=0,即a=,h(x)在(0,+∞)上只有一个零点;③若h(2)<0,即a>,由于h(0)=1,所以h(x)在(0,2)上有一个零点,由(1)知,当x>0时,e x>x2,所以h(4a)=1-=1->1-=1->0.故h(x)在(2,4a)有一个零点,因此h(x)在(0,+∞)有两个零点.综上,f(x)在(0,+∞)只有一个零点时,a=.14.【解析】(1)当a=3时,f(x)=x3-3x2-3x-3,f′(x)=x2-6x-3.令f′(x)=0解得x=3-2或3+2.当x∈(-∞,3-2)或(3+2,+∞)时,f′(x)>0;当x∈(3-2,3+2)时,f′(x)<0.故f(x)在(-∞,3-2),(3+2,+∞)上单调递增,在(3-2,3+2)上单调递减.(2)由于x2+x+1>0,所以f(x)=0等价于-3a=0.设g(x)=-3a,则g′(x)=≥0,仅当x=0时g′(x)=0,所以g(x)在(-∞,+∞)上单调递增.故g(x)至多有一个零点.又f(3a-1)=-6a2+2a-=-6--<0,f(3a+1)=>0,故f(x)有一个零点.综上,f(x)只有一个零点.15.【解析】(I)由已知,h(x)=a x-x ln a,有h′(x)=a x ln a-ln a.令h′(x)=0,解得x=0.由a>1,可知当x变化时,h′(x),h(x)的变化情况如表:所以函数h(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(II)由f′(x)=a x ln a,可得曲线y=f(x)在点(x1,f(x1))处的切线斜率为ln a.由g′(x)=,可得曲线y=g(x)在点(x2,g(x2))处的切线斜率为.因为这两条切线平行,故有ln a=,即x2(ln a)2=1.两边取以a为底的对数,得log a x2+x1+2log a(ln a)=0,所以x1+g(x2)=-. (III)曲线y=f(x)在点(x1,)处的切线l1:y-=ln a·(x-x1).曲线y=g(x)在点(x2,log a x2)处的切线l2:y-log a x2=(x-x2).要证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a≥时,存在x1∈(-∞,+∞),x2∈(0,+∞),使得l1和l2重合.即只需证明当a≥时,方程组有解,--由①得x2=,代入②,得-x1ln a+x1++=0③,因此,只需证明当a≥时,关于x1的方程③有实数解.设函数u(x)=a x-xa x ln a+x++,即要证明当a≥时,函数y=u(x)存在零点. u′(x)=1-(ln a)2xa x,可知x∈(-∞,0)时,u′(x)>0;x∈(0,+∞)时,u′(x)单调递减,又u′(0)=1>0,u′[]=1-<0,故存在唯一的x0,且x0>0,使得u′(x0)=0,即1-(ln a)2x0=0.由此可得u(x)在(-∞,x0)上单调递增,在(x0,+∞)上单调递减.u(x)在x=x0处取得极大值u(x0).因为a≥,故ln(ln a)≥-1,所以u(x0)=-x0ln a+x0++=+x0+≥≥0.下面证明存在实数t,使得u(t)<0.由(I)可得a x≥1+x ln a,当x>时,有u(x)≤(1+x ln a)(1-x ln a)+x++=-(ln a)2x2+x+1++,所以存在实数t,使得u(t)<0,因此,当a≥时,存在x1∈(-∞,+∞),使得u(x1)=0.所以,当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.16.【解析】(Ⅰ)由已知,可得f(x)=x(x-1)(x+1)=x3-x,故f′(x)=3x2-1,因此f(0)=0,f′(0)=-1,又因为曲线y=f(x)在点(0,f(0))处的切线方程为y-f(0)=f′(0)(x-0),故所求切线方程为x+y=0.(Ⅱ)由已知可得f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3-9)x-+9t2.故f′(x)=3x2-6t2x+3-9.令f′(x)=0,解得x=t2-,或x=t2+.当x变化时,f′(x),f(x)的变化情况如表:所以函数f(x)的极大值为f(t2-)=(-)3-9×(-)=6;函数极小值为f(t2+)=()3-9×=-6.(III)曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点等价于关于x的方程(x-t2+d)(x-t2)(x-t2-d)+(x-t2)+6=0有三个互异的实数解,令u=x-t2,可得u3+(1-d2)u+6=0.设函数g(x)=x3+(1-d2)x+6,则曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点等价于函数y=g(x)有三个零点.g′(x)=3x2+(1-d2).当d2≤1时,g′(x)≥0,这时g′(x)在R上单调递增,不合题意.当d2>1时,g′(x)=0,解得x1=--,x2=-.易得,g(x)在(-∞,x1)上单调递增,在[x1,x2]上单调递减,在(x2,+∞)上单调递增,g(x)的极大值g(x1)=g-=-+6>0,g(x)的极小值g(x2)=g-=--+6.若g(x2)≥0,由g(x)的单调性可知函数y=g(x)至多有两个零点,不合题意.若g(x2)<0,即(d2-1>27,也就是|d|>,此时|d|>x2,g(|d|)=|d|+6>0,且-2|d|<x1,g(-2|d|)=-6|d|3-2|d|+6<-62+6<0,从而由g(x)的单调性,可知函数y=g(x)在区间(-2|d|,x1),(x1,x2),(x2,|d|)内各有一个零点,符合题意.所以d的取值范围是(-∞,-)∪(,+∞)17.【解析】(1)设PO的延长线交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40-40sinθ)=1600(cosθ-sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈.当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是.答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ-sinθcosθ),sinθ的取值范围是.(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ-sinθcosθ) =8000k(sinθcosθ+cosθ),θ∈.设f(θ)=sinθcosθ+cosθ,θ∈,则f′(θ)=cos2θ-sin2θ-sinθ=-(2sin2θ+sinθ-1)=-(2sinθ-1)(sinθ+1).令f′(θ)=0,得θ=,当θ∈时,f′(θ)>0,所以f(θ)为增函数;当θ∈时,f′(θ)<0,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.18.【解析】(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)=g′(x),得-此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数f(x)=ax2-1,g(x)=ln x,则f′(x)=2ax,g′(x)=.设x0为f(x)与g(x)的“S”点,由f(x0)=g(x0)且f′(x0)=g′(x0),得-即-(*)得ln x0=-,即x0=-,则a=-=.当a=时,x0=-满足方程组(*),即x0为f(x)与g(x)的“S”点.因此,a的值为.(3)f′(x)=-2x,g′(x)=-,(x≠0),由f′(x0)=g′(x0),得b=-->0,得0<x0<1,由f(x0)=g(x0),得-+a==--,得a=--,令h(x)=x2---a=---,(a>0,0<x<1),设m(x)=-x3+3x2+ax-a,(a>0,0<x<1),则m(0)=-a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上连续不断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则f(x)与g(x)在区间(0,+∞)内存在“S”点.19.【解析】(Ⅰ)函数f(x)的导函数f′(x,由f′(x1)=f′(x2)得-=-,因为x1≠x2,所以+=.由基本不等式得=+≥2.因为x1≠x2,所以x1x2>256.由题意得f(x1)+f(x2)=-ln x1+-ln x2=-ln(x1x2).设g(x)=-ln x,则g′(x)=(-4),所以所以g(x)在(256,+∞)上单调递增,故g(x1x2)>g(256)=8-8ln2,即f(x1)+f(x2)>8-8ln2.(Ⅱ)令m=e-(|a|+k),n=+1,则f(m)-km-a>|a|+k-k-a≥0,f(n)-kn-a<n-≤n<0,所以,存在x0∈(m,n)使f(x0)=kx0+a,所以,对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点.由f(x)=kx+a得k=--.设h(x)=--,则h′(x)=--=--,其中g(x)=-ln x.由(Ⅰ)可知g(x)≥g(16),又a≤3-4ln2,故-g(x)-1+a≤-g(16)-1+a=-3+4ln2+a≤0,所以h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,因此方程f(x)-kx-a=0至多1个实根.综上,当a≤3-4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.。
2018年高考数学试题分类汇编-----导数精品

4.( 2018 安徽卷文)设
,函数
的图像可能是
【解析】可得 x a, x b为 y ( x a) 2( x b) 0 的两个零解 .
当 x a 时 ,则 x b f ( x) 0
当 a x b 时 ,则 f ( x) 0, 当 x b 时,则 f ( x) 0. 选 C。
【答案】 C
5.( 2018 江西卷文)若存在过点 (1,0) 的直线与曲线 y x3和 y ax2
( D) y 2x 3
[解析 ]:由 f (x) 2 f (2 x) x2 8x 8得 f (2 x) 2 f (x) (2 x)2 8(2 x) 8 , 即 2 f ( x) f (2 x) x2 4x 4,∴ f ( x) x2 ∴ f / ( x) 2x ,∴切线方程为
y 1 2( x 1) ,即 2x y 1 0 选 A
1 1
x0 a
x0 a 1 y0 0, x 0 1 a 2 .故答案选 B
2.(2018 安徽卷理) 设 a < b, 函数 y ( x a)2 ( x b ) 的图像可能是
[ 解析 ]: y/
( x a)(3 x 2a b) ,由 y /
0 得 x a, x
2a
b
,∴当
x
3
大值 0,当 x 2a b 时 y 取极小值且极小值为负。故选 C。 3
内恒成立的是
A
f ( x) 0 B f ( x) 0
C f (x) x
D f ( x) x
【答案】 A
【解析】由已知,首先令 x 0 ,排除 B, D。然后结合已知条件排除 C,得到 A
【考点定位】本试题考察了导数来解决函数单调性的运用。通过分析解析式的特点,考 查了分析问题和解决问题的能力。
高中数学导数经典100题

题401:云南省峨山彝族自治县第一中学2018届高三2月份月考理科 已知函数()ln f x ax x =+,其中a 为常数,e 为自然对数的底数.(1)若()f x 在区间(0,]e 上的最大值为3-,求a 的值;(2)当1a =-时,判断方程ln 1|()|2x f x x =+是否有实根?若无实根请说明理由,若有实根请给出根的个数.题402:2018年普通高等学校招生全国统一考试仿真卷-(理六)已知()ln()f x x m mx =+-(1)求()f x 的单调区间;(2)设1m >,12,x x 为函数()f x 的两个零点,求证:120x x +<题403:吉林省实验中学2018届高三上学期第六次月考数学(文)已知函数2()ln (0)f x x a x a =->(1)讨论函数()f x 在(,)a +∞上的单调性;(2)证明:322ln x x x x -≥且322ln 16200x x x x --+>题404:西北师大附中2017届高三校内第二次诊断考试试题数学(理科) 已知函数21()ln (1)..2f x a x x a x a R =+-+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≥对定义域内的任意x 恒成立,求实数a 的取值范围;(3)证明:对于任意正整数,,m n 不等式111...ln(1)ln(2)ln()()n m m m n m m n +++>++++恒成立. 题405:铜仁一中2017-2018学年度高三年级第五次月考数学(理)试已知函数3()ln(1)ln(1)(3)()f x x x k x x k R =++---∈(1)当3k =时,求曲线()y f x =在原点处的切线方程;(2)若()0f x >对(0,1)x ∈恒成立,求k 的取值范围.题406:宁夏固原第一中学2018届高三上学期期末考试数学(理) 已知函数()ln 1,a f x x a R x=+-∈ (1)若函数()f x 的最小值为0,求a 的值;(2)证明:(ln 1)sin 0x e x x +->题407:2017—2018学年度衡中七调理科数学已知函数1()x f x e a -=+,函数()ln ,g x ax x a R =+∈(1)求函数()y g x =的单调区间;(2)若不等式()()1f x g x ≥+在区间[1,)+∞内恒成立,求实数a 的取值范围(3)若(1,)x ∈+∞,求证不等式12ln 1x e x x -->-+题408:安徽省皖西高中教学联盟2018届三上学期期末质量检测数学文 已知函数1()()ln ,f x a x x a R x=--∈ (1)若1a =,求曲线()y f x =在点(1,(1))P f 处的切线方程;(2)若对任意1x ≥,都有()0f x ≥恒成立,求实数a 的取值范围题409:安徽省池州市2018届高三上学期期末考试数学(理) 已知函数1()ln (0)1f x a x a x =+≠-在1(0,)2内有极值 (1)求实数a 的取值范围;(2)若121(0,),(2,)2x x ∈∈+∞,且1[,2)2a ∈时,求证:213()()ln 24f x f x ->+ 题410:安徽省池州市2018届高三上学期期末考试数学(文) 已知函数21()ln 2f x x a x =+ (1)若1a =-,求()f x 的单调增区间;(2)当1x >时,不等式()ln f x x >恒成立,求a 的取值范围题411:山东省枣庄市第八中学东校区2018届高三1月月考数学(理) 已知函数21()2f x x =,()lng x a x =. (1)若曲线()()y f x g x =-在1x =处的切线方程为6250x y --=,求实数a 的值;(2)设()()()h x f x g x =+,若对任意两个不等的正数12,x x ,都有1212()()2h x h x x x +>-恒成立,求实数a 的取值范围;(3)若在[1,]e 上存在一点0x ,使得00001()()()()f xg x g x f x ''+<+'成立,求实数a 的取值范围. 题412:2018年陕西省高三教学质量检测试题(一) 设函数()ln ()k f x x k R x=+∈ (1)若曲线()y f x =在点(,())e f e 处的切线与直线20x -=垂直,求()f x 的单调递减区间和极小值(其中e 为自然对数的底数);(2)若对任何120x x >>,1212()()f x f x x x -<-恒成立,求k 的取值范围.题413:安徽省淮南市2018届高三第一次(2月)模拟考试数学(理)已知函数2()ln 2f x ax x =++(1)若a R ∈,讨论函数()f x 的单调性;(2)曲线2()()g x f x ax =-与直线l 交于11(,)A x y ,22(,)B x y 两点,其中12x x <,若直线l 斜率为k ,求证:121x x k<< 题414:安徽省淮南市2018届高三第一次(2月)模拟考试数学(文)已知函数2()ln f x x x =-(1)求函数()f x 在点(1,(1))f 处的切线方程;(2)在函数2()ln f x x x =-的图象上是否存在两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间1[,1]2上,若存在,求出这两点坐标;若不存在,请说明理由 题415:河南周口市2017—2018学年度上期期末高高三抽测调研(文)已知函数()sin x f x e x =,其中,x R ∈e 是自然对数的底数(1)求函数()f x 的单调区间;(2)当[0,]2x π∈时,()f x kx ≥,求实数k 的取值范围;题416:河南周口市2017—2018学年度上期期末高高三抽测调研(理)已知函数2()8ln ()f x x x a x a R =-+∈(1)当1x =时,()f x 取得极值,求a 的值; (2)当函数()f x 有两个极值点1212,()x x x x <,且11x ≠时,总有21112ln (1)(43)1a x m x x x >-+--成立,求m 的取值范围 题417:广西南宁市第二中学2018届高三1月月考(期末)数学(文) 已知函数()ln 1,a f x x a R x=+-∈ (1)若2a =,求函数()f x 的最小值;(2)若关于x 的不等式1()12f x x ≤-在[1,)+∞上恒成立,求a 的取值范围 题418:江苏省徐州市王杰中学2018届高三12月月考数学试题 已知函数1()ln ,()f x x axg x a x =-=+ (1)当2a =时,求()()()F x f x g x =-在(0,2)的最大值;(2)讨论函数()()()F x f x g x =-的单调性;(3)若()()0f x g x ⋅≤在定义域内恒成立,求实数a 的取值集合题419:内蒙古赤峰市2018届高三上学期期末考试数学(理)已知函数()ln ,()f x x x mx ϕ==(1)若函数图象有两个不同的公共点,求实数m 的取值范围;(2)若1(,)2x ∈+∞,()x n e f x x x +<,求实数n 的最大值 题420:河南省2018届高三中学生标准学术能力诊断性测试(2月) 数学(文) 设函数1()ln ,()3a f x x g x ax x-=+=- (1)求函数()()()x f x g x ϕ=+的单调增区间;(2)当1a =时,记()()()h x f x g x =⋅,是否存在整数λ,使得关于x 的不等式2()h x λ≥有解?若存在,请求出λ的最小值;若不存在,请说明理由题421:山东省青岛市城阳区2018届高三上学期学分认定考试(期末)数学(理)已知2()(21)ln ,f x ax a x x R x=-+-∈ (1)分析判断函数()f x 在定义域上的单调性情况; (2)若10a e <<,证明:方程2(21)ln 0ax a x x-+-=在区间[1,]e 上没有零根.(其中e 为 自然对数的底数) 解:212(21)2154()(21)(1)0ax a x a a f x ax a x x x x-++--≤-+--=<< 题422:2018年普通高等学校招生全国统一考试仿真卷数学-(理八) 已知函数21()ln (1)31f x x x x =---+- (1)求函数()f x 的单调区间;(2)若当1x ≥时,不等式(1)x m x m x ex +++≤恒成立,求实数m 的取值范围题423:2018年浙江省高考信息优化卷(二)已知函数2()ln f x x x x x =--(1)求证:()0f x ≥;(2)证明:()f x 存在唯一的极大值点1x ,且11()4f x < 题423:2018年浙江省高考信息优化卷(三) 已知1()3ln (1)()f x x k x x=+-- (1)当0k =时,求函数()f x 的图象在点(1,0)P 处的切线方程;(2)若1()()(()ln )0G x x f x x x =--≥恒成立,求k 的取值范围 题424:2018年浙江省高考信息优化卷(五) 设21()12x f x e x =-+,正项数列{}n a 满足111,()n n a f a a +==,证明: (1)411,[0,1]2x x e x x+≤≤-+∈- (2)对于任意*n N ∈,都有132n a n n ≤≤+ 题425:河北省石家庄市2018届高三毕业班教学质量检测数学(理)已知函数()(1)(21)xf x axe a x =-+-(1)若1a =,求函数()f x 的图象在点(0,(0))f 处的切线方程;(2)当0x >时,函数()0f x ≥恒成立,求实数a 的取值范围题426:湖北省孝感一中、应城一中等五校2017-2018学年高三上学期期末联考高三数学(理) 已知函数()2ln x f x ax b x=-+的图象在点(,())e f e 处的切线方程为3y ax b =-+ (1)求曲线32()y x b e x x =--+在2x =处的切线方程;(2)若存在2[,]x e e ∈,满足1()29f x e ≤+,求a 的取值范围 题427:湖北省孝感一中、应城一中等五校2017-2018学年高三上学期期末联考高三数学(文) 已知函数2()(1)3ln f x a x x =+-(1)当2a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若对任意的[1,],()2x e f x ∈<恒成立,求a 的取值范围题428:河南省南阳市第一中学校2018届高三第七次考试数学(理)已知函数2()ln(1),f x x ax x a R =++-∈ .(1)当14a =时,求函数()y f x =的极值; (2)是否存在实数(1,2)b ∈,使得当(1,]x b ∈-时,函数()f x 的最大值为()f b ?若存在,取实数a 的取值范围,若不存在,请说明理由 题429:皖东县中联盟2017-2018学年第一学期高三期末联考(理)/山东省济南市山东师大附中2015级2017-2018学年冬季学习竞赛中期检测数学理 已知函数1()ln(2)(),()()1bx f x ax a R g x b R x+=+∈=∈+ (1)讨论函数()f x 与函数()g x 的零点情况;(2)若2,()()a b f x mg x ==≥对任意1[,)2x ∈-+∞恒成立,求实数m 的取值范围 解:令2(1)22,ln m t t x t t-=+≥ 题430:四川省南充高级中学2018届高三1月检测考试(12) 已知函数231(),()ln 42x x f x e g x -==+,若()()f m g n =成立,则n m -的最小值为( ) 题431:河南省天一大联考2018届高三阶段性测试(三)(12)已知函数32()ln 3,()a f x x x g x x x x =++=-,若121,[,2]3x x ∀∈,12()()0f x g x -≥,则a 的取值范围( ) 题432:河南省天一大联考2018届高三阶段性测试(三)(21) 已知函数()ln m f x x x=+ (1)探究函数()f x 的单调性;(2)若()1f x m x ≥+-在[1,)+∞上恒成立,求实数m 的取值范围题433:北京市东城区2018届高三上学期期末考试数学(理) 已知函数311()ln 62f x x x x x =+-. (1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若()f x a <对1(,)x e e∈恒成立,求a 的最小值. 题434:荆、荆、襄、宜四地七校考试联盟2018届高三联考2月文科数学试已知函数2()ln f x x x ax =-(1)若()f x 有两个零点,求a 的取值范围;(2)若()f x 有两个极值点,求a 的取值范围;(3)在(2)的条件下,若()f x 的两个极值点为1212,()x x x x <,求证:11()2f x >- 题435:湖北省四地七校2018年2月高三联考试卷 理科数学已知a 为正的常数,函数2()ln f x ax x x =-+(1)若2a =,求函数()f x 的单调递增区间;(2)设()()f x g x x=,求()g x 在区间[1,]e 上的最小值(e 为自然对数的底数) 题436:黑龙江省双鸭山市第一中学2018届高三上学期期末考试数学(文) 已知函数22()ln ,()(1)21f x x x x g x m x mx =-+=-+-(1)求函数()f x 的单调区间和极值;(2)若不等式()()f x g x ≤恒成立,求整数m 的最小值.题437:河北省鸡泽县第一中学高三理科数学押题1已知函数2()e 1ax f x x -=-(a 是常数),(1)求函数()y f x =的单调区间;(2)当(0,16)x ∈时,函数()f x 有零点,求a 的取值范围。
2018函数导数专题(理科)(2018高考真题)

2018函数导数专题(理)1.函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =2.2e e ()x xf x x--=的图像大致为( )3.的图像大致为( )4.数y =sin2x 的图象可能是( )A .B .422y x x =-++||2xB . D .5.()f x 是定义域为R 的奇函数,满足(1)(1f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=( )A .50-B .0C .2D .506.是含数1的有限实数集, 是定义在D 上的函数。
若 的图像绕原点逆时针旋转6π后与原图像重合,则在以下各项中, 的可能取值只能是( ) A. B. C.D.07已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( )A. B. C. D.8.2ln(1)y x =+在点(0,0)处的切线方程为__________. 9.1log )(2-=x x f 的定义域为______10.a R ∈,函数2()log ()f x x a =+。
若f(x)的反函数的图像经过点(3,1),则a =_________.11.若幂函数 为奇函数,且在 上递减,则α=_________.12. 已知λ∈R ,函数f (x )=,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.24,43,x x x x x λλ-≥⎧⎪⎨-+<⎪⎩13. 已知常数0a >,函数2()2x x f x ax=+的图像经过点。
【高三数学试题精选】2018年高考数学理科试题分类汇编:导数

2018年高考数学理科试题分类汇编:导数
5 c 2或2 (B)-9或3 (c)-1或1 (D)-3或1
【答案】A
【命题意图】本试题主要考查了导数在研究三次函数中的极值的运用。
要是函数图像与轴有两个不同的交点,则需要满足极佳中一个为零即可。
【解析】若函数的图象与轴恰有两个共点,则说明函数的两个极值中有一个为0,函数的导数为,令,解得,可知当极大值为,极小值为由,解得,由,解得,所以或,选A
二、填空题
7【ex,a∈R
(Ⅰ)若曲线=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;
(Ⅱ)试确定a的取值范围,使得曲线=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个共点P
【答案】本题主要考查函数导数的应用、二次函数的性质、函数零点的存在性定理等基础知识,考查推理论证能力、基本运算能力、抽象概括能力,以及分类与整合思想、数形结合思想、化归与转化思想
解答
(Ⅰ)
由题意得
得函数的单调递增区间为,单调递减区间为
(Ⅱ)设;则过切点的切线方程为
令;则
切线与曲线只有一个共点只有一个根
,且。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18. (本小题满分13分)已知函数ln 1()x f x ax x-=-. (Ⅰ)当2a =时,(ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(ⅱ)求函数的单调区间;(Ⅱ)若12a <<,求证:1<-.18. (本小题满分13分)(Ⅰ)当2a =时,ln 1()2x f x x x-=-.2222ln 22ln ()2x x xf x x x ---'=-=. (ⅰ)可得(1)0f '=,又(1)3f =-,所以()f x 在点(1,3-)处的切线方程为3y =-. ….3分 (ⅱ)在区间(0,1)上2220x ->,且ln 0x ->,则()0f x '>. 在区间(1,+∞)上2220x -<,且ln 0x -<,则()0f x '<.所以()f x 的单调递增区间为(0,1),单调递减区间为(1,+∞). ….8分 (Ⅱ)由0x >,()1f x <-,等价于ln 11x ax x--<-,等价于21ln 0ax x x -+->. 设2()1ln h x ax x x =-+-,只须证()0h x >成立.因为2121()21ax x h x ax x x--'=--=,12a <<,由()0h x '=,得2210ax x --=有异号两根. 令其正根为0x ,则200210ax x --=. 在0(0,)x 上()0h x '<,在0(,)x +∞上()0h x '>.则()h x 的最小值为20000()1ln h x ax x x =-+-0011ln 2x x x +=-+- 003ln 2x x -=-.又(1)220h a '=->,13()2()30222a h a '=-=-<,)(x f )(x f所以0112x <<. 则0030,ln 02x x ->->.因此003ln 02x x -->,即0()0h x >.所以()0h x >所以()1f x <-. ….….13分(19)(本小题14分)已知函数()(1)x f x e a x =-+.若曲线()y f x =在(0,(0))f 处的切线斜率为0,求a 的值; (Ⅱ)若()0f x ≥恒成立,求a 的取值范围;(Ⅲ)求证:当a 0a =时,曲线()y f x = (x>0)总在曲线2ln y x =+的上方. 19)(共14分)解:(I )函数()e (1)xf x a x =-+的定义域为R . 因为()e (1)xf x a x =-+,所以'()e xf x a =-. 由'(0)10f a =-=得1a =. ……………………………4分 (II )'()e (R)x f x a x =-∈.①当0a >时,令'()0f x =得ln x a =.ln x a <时,'()0f x <;ln x a >时,'()0f x >.()f x 在(,ln )a -∞上单调递减,在(ln ,+)a ∞上单调递增.所以当ln x a =时,()f x 有最小值(ln )(1ln )ln f a a a a a a =-+=-. “()0f x ≥恒成立”等价于“()f x 最小值大于等于0”,即ln 0a a -≥. 因为0a >,所以01a <≤.②当0a =时,()e 0xf x =>符合题意;③当0a <时,取011x a=-+,则111101()e(11)e 10aa f x a a -+-+=--++=-<,不符合题意.综上,若()0f x ≥对x R ∈恒成立,则a 的取值范围为[0,1]. ……………………9分(III )当0a =时,令()()(2ln )e ln 2(0)xh x f x x x x =-+=-->,可求1'()e xh x x=-. 因为121'()e 1002h =-<,'(1)e 10h =->,且1'()e xh x x=-在(0,)+∞上单调递增,所以在(0,)上存在唯一的0x ,使得0001'()e 0xh x x =-=,即001e x x =,且 0112x .当x 变化时,()h x 与'()h x 在(0,)上的情况如下:则当0x x =时,()h x 存在最小值0()h x ,且000001()e ln 22xh x x x x =--=+-. 因为01(,1)2x ∈,所以0001()220h x x x =+->=. 所以当0a =时,()2ln (0)f x x x >+>所以当0a =时,曲线()(0)y f x x =>总在曲线2ln y x =+的上方. .. …………14分(19)(本小题13分)已知函数()1ln ()f x a x a x∈R =-. (Ⅰ)当1a =-时,(i )求()f x 在(1,(1))f 处的切线方程;(ii )设()()1g x xf x =-,求函数()g x 的极值; (Ⅱ)若函数f (x )在区间21,e ⎡⎫+∞⎪⎢⎣⎭有两个的零点,求实数a 的取值范围.(19) (Ⅰ)解:1a =-,()1ln f x x x =-,()11f =,()211x x f x-'+=. ()10k f ∴='=.故所求切线方程为:1y =(Ⅱ) 解:()ln g x x x =,函数定义域为:{|0}x x >()ln 1g x x '=+,01x e=111(0,)(,)()()x ee e g x g x +∞'-+极小值故()g x 的极小值为1e-,无极大值. (Ⅲ)解法1:令()1ln 0f x a x x =-=,解得:1x x aln =(显然0a ≠) 问题等价于函数1y a=与函数y x x ln =的图像有两个不同交点. 由(Ⅱ)可知:2212()g e e =-,11()g e e =-,21112a eae ⎧>-⎪⎪⎨⎪≤-⎪⎩,解得:22e a e -≤<- 故实数a 的取值范围是2,2e e ⎡⎫--⎪⎢⎣⎭.(Ⅲ)解法2: ()2211a ax f x x x x+=--=-, (1) 0a =时,()211,f x x e ⎡⎫=+∞⎪⎢⎣⎭在上是减函数,()f x 不能有两个零点; (2)0a >时,10ax +>,所以()210ax f x x +=-<,在21,e ⎡⎫+∞⎪⎢⎣⎭恒成立,所以()21,f x e ⎡⎫+∞⎪⎢⎣⎭在上是减函数,()f x 不能有两个零点;(3)0a <时,令()210,ax f x x +=-=,1x a=- ()(),f x f x ,变化情况如下表:()(),1110,,0x a a a f x f x ⎛⎫⎛⎫---+∞ ⎪⎪⎝⎭⎝⎭-+极大值 (i )211a e -≤时,即2a e ≤-,()f x 21,e ⎡⎫+∞⎪⎢⎣⎭在上是增函数,所以()f x 不能有两个零点; (ii )211a e ->时,20e a -<<()211,f x e a ⎡⎫-⎪⎢⎣⎭在上是减函数,()1,f x a ⎡⎫-+∞⎪⎢⎣⎭在上是增函数.()10f =所以若()f x 21,e ⎡⎫+∞⎪⎢⎣⎭在有两个零点只需: 21010f a f e ⎧⎛⎫-< ⎪⎪⎪⎝⎭⎨⎛⎫⎪≥ ⎪⎪⎝⎭⎩ 即:221ln 01ln 0a a a e a e ⎧⎛⎫---< ⎪⎪⎪⎝⎭⎨⎪-≥⎪⎩ 解得22a e e a <-⎧⎪⎨≥-⎪⎩ 所以22e a e -≤<-综上可知a 的范围是2,2e e ⎡⎫--⎪⎢⎣⎭(18)(本小题共13分)已知函数()e (ln 1)()xf x a x a =-+∈R . (Ⅰ)求函数()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)若函数()y f x =在1(,1)2上有极值,求a 的取值范围.(18)(本小题共13分) 解:函数()f x 的定义域为(0,)+∞,()e x af x x'=-. ……………………1分 (Ⅰ)因为(1)e f a =-,(1)e f a '=-, ……………………3分所以曲线()y f x =在点(1,(1))f 处的切线方程为(e )(e )(1)y a a x --=--, 即(e )y a x =-. (5)分(Ⅱ)()e x a f x x'=-. (ⅰ)当a ≤时,对于任意1(,1)2x ∈,都有()0f x '>, ……………………6分所以函数()f x 在1(,1)2上为增函数,没有极值,不合题意. ……………………8分(ⅱ)当a >时,令()e x a g x x=-,则2()e 0x ag x x'=+>. ……………………9分 所以()g x 在1(,1)2上单调递增,即()f x '在1(,1)2上单调递增, ……………………10分所以函数()f x 在1(,1)2上有极值,等价于(1)0,1()0.2f f '>⎧⎪⎨'<⎪⎩ ……………………12分所以e 0,20.a a ->⎧⎪<e a <<. 所以a的取值范围是2. ……………………13分18. (本题满分13分)(Ⅰ)当0a =时,ln ()xf x x=故221ln 1ln '()x xx x f x x x ⋅--==令'()0f x >,得0x <<e故()f x 的单调递增区间为(0,)e ························································ 4分(Ⅱ)方法1:22ln 1ln '()()()x a ax xx x f x x a x a +-+-==++ 令()1ln ag x x x=+- 则221'()0a x a g x x x x +=--=-< 由()0a g =>e e ,1111()1(1)(1)0a a a a g a a e e+++=+-+=⋅-<e 故存在10(,)a x +∈e e ,0()0g x =故当0(0,)x x ∈时,()0g x >;当0(,)x x ∈+∞时,()0g x <故02()f x =e 故000201ln 0ln 1ax x x x a ⎧+-=⎪⎪⎨⎪=⎪+⎩e,解得202x a ⎧=⎪⎨=⎪⎩e e··················································· 13分 故a 的值为2e . (Ⅱ)方法2:()f x 的最大值为21e 的充要条件为对任意的(0,)x ∈+∞,2ln 1x x a ≤+e 且存在0(0,)x ∈+∞,使得020ln 1x x a =+e,等价于对任意的(0,)x ∈+∞,2ln a x x ≥-e 且存在 0(0,)x ∈+∞,使得200ln a x x ≥-e ,等价于2()ln g x x x =-e 的最大值为a .2'()1g xx=-e ,令'()0g x =,得2x =e .故的最大值为()ln g =-=e e e e e ,即a =e . ··························· 13分19.(本题满分14分)已知ln(2)()2x be a x f x x ++=+在(1,(1))f --处的切线方程为11y x e=++。