安徽省芜湖市七年级上期末考试数学试卷含答案

合集下载

芜湖市七年级上学期期末数学试题

芜湖市七年级上学期期末数学试题

芜湖市七年级上学期期末数学试题一、选择题1.购买单价为a元的物品10个,付出b元(b>10a),应找回()A.(b﹣a)元B.(b﹣10)元C.(10a﹣b)元D.(b﹣10a)元2.﹣3的相反数是()A.13-B.13C.3-D.33.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是()A.B.C.D.4.将图中的叶子平移后,可以得到的图案是()A.B.C.D.5.若x=﹣13,y=4,则代数式3x+y﹣3xy的值为()A.﹣7 B.﹣1 C.9 D.76.96.已知a<0,-1<b<0,则a,ab,ab2之间的大小关系是()A.a>ab>ab2 B.ab>ab2>a C.ab>a>ab2 D.ab<a<ab27.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A.向西走3米B.向北走3米C.向东走3米D.向南走3米8.用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2 9.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是()A .两点确定一条直线B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离10.下列计算正确的是( ) A .-1+2=1 B .-1-1=0C .(-1)2=-1D .-12=111.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=212.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题13.已知方程22x a ax +=+的解为3x =,则a 的值为__________. 14.单项式﹣22πa b的系数是_____,次数是_____.15.已知23,9n mn a a -==,则m a =___________.16.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 17.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.18.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____. 19.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 20.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.21.﹣225ab π是_____次单项式,系数是_____.22.方程x+5=12(x+3)的解是________.23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.24.观察“田”字中各数之间的关系:则c的值为____________________.三、解答题25.已知直线AB与CD相交于点O,且∠AOD=90°,现将一个直角三角尺的直角顶点放在点O处,把该直角三角尺OEF绕着点O旋转,作射线OH平分∠AOE.(1)如图1所示,当∠DOE=20°时,∠FOH的度数是.(2)若将直角三角尺OEF绕点O旋转至图2的位置,试判断∠FOH和∠BOE之间的数量关系,并说明理由.(3)若再作射线OG平分∠BOF,试求∠GOH的度数.26.(1)3x+5(x+2)=2(2)33-x﹣1=242+x27.解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)111 234x yx y-+⎧+=⎪⎨⎪+=⎩28.已知,,,A B C D四点如图所示,请按要求画图.(1)画直线AB;(2)若所画直线AB表示一条河流,点,C D分别表示河流两旁的两块稻田,要在河岸边某一位置开渠引水灌溉稻田,请在河流AB上确定点P,使得在点P处开渠到两块稻田,C D的距离之和最短,并说明理由.29.O为数轴的原点,点A、B在数轴上表示的数分别为a、b,且满足(a﹣20)2+|b+10|=0.(1)写出a、b的值;(2)P是A右侧数轴上的一点,M是AP的中点.设P表示的数为x,求点M、B之间的距离;(3)若点C从原点出发以3个单位/秒的速度向点A运动,同时点D从原点出发以2个单位/秒的速度向点B运动,当到达A点或B点后立即以原来的速度向相反的方向运动,直到C点到达B点或D点到达A点时运动停止,求几秒后C、D两点相距5个单位长度?30.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?四、压轴题31.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数32.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2; ②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.33.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题意知:花了10a 元,剩下(b ﹣10a )元. 【详解】购买单价为a 元的物品10个,付出b 元(b >10a ),应找回(b ﹣10a )元. 故选D . 【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.D解析:D【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.A解析:A【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.4.A解析:A【解析】【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.【详解】解:根据平移不改变图形的形状、大小和方向,将所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选:A.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.5.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.6.B解析:B【解析】先根据同号得正的原则判断出ab 的符号,再根据不等式的基本性质判断出ab 2及a 的符号及大小即可. 解:∵a <0,b <0, ∴ab >0,又∵-1<b <0,ab >0, ∴ab 2<0. ∵-1<b <0, ∴0<b 2<1, ∴ab 2>a , ∴a <ab 2<ab . 故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.7.A解析:A 【解析】∵+5米表示一个物体向东运动5米, ∴-3米表示向西走3米, 故选A.8.B解析:B 【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b .故选B.9.A解析:A 【解析】 【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案. 【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”. 故答案为:A. 【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.10.A解析:A 【解析】解:A ,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A ; B ,同号相加,取相同的符号,并把绝对值相加,-1-1=-2; C ,底数为-1,一个负数的偶次方应为正数(-1)2=1;D ,底数为1,1的平方的相反数应为-1;即-12=-1,故选A .11.C解析:C 【解析】试题解析:A.不是同类项,不能合并.故错误. B. 不是同类项,不能合并.故错误. C.正确.D.222 532.y y y -=故错误. 故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.12.B解析:B 【解析】 【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9. 【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数. 故选:B 【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题 13.2 【解析】 【分析】把x=3代入方程计算即可求出a 的值. 【详解】解:把x=3代入方程得:6+a=3a+2, 解得:a=2. 故答案为:2 【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2 【解析】 【分析】把x=3代入方程计算即可求出a 的值. 【详解】解:把x=3代入方程得:6+a=3a+2, 解得:a=2. 故答案为:2 【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.﹣; 3. 【解析】 【分析】根据单项式的次数、系数的定义解答. 【详解】解:单项式﹣的系数是﹣,次数是2+1=3, 故答案是:﹣;3. 【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】 【分析】根据单项式的次数、系数的定义解答. 【详解】 解:单项式﹣22πa b的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.27【解析】【分析】首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n−m=81÷3=2解析:27【解析】【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键.解析:1 a b【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】 解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.17.2+【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–,∴AB=1–(–)=1+,则点C 表示的数为1+1+解析:2+2【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C 表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.18.-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-解析:-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.19.42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.20.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.21.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 22.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.23.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.24.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。

安徽省芜湖市七年级上学期数学期末考试试卷

安徽省芜湖市七年级上学期数学期末考试试卷

安徽省芜湖市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分)下列方程中,是一元一次方程的是()A . 5x﹣2y=9B . x2﹣5x+4=0C . +3=0D . ﹣1=32. (2分) (2018·梧州) 下列各式计算正确的是()A . a+2a=3aB . x4•x3=x12C . ()﹣1=﹣D . (x2)3=x53. (2分) (2016八上·宁阳期中) 代数式,,,﹣,,,中,分式的个数为()A . 5个B . 4个C . 3个D . 2个4. (2分)已知a2+2a=1,则代数式2a2+4a﹣1的值为()A . 0B . 1C . -1D . -25. (2分)小林购买一部手机想入网,中国联通130网收费标准是月租费30元,每月来电显示6元,本地电话费每分钟0.4元;中国电信“神州行”储值卡收费标准是本地电话费每分钟0.6元,月租费、来电显示费全免,小林的亲戚朋友都在本地,他想拥有来电显示服务,且估计他每月通话时间都在3h以上,则小林应选择()更省钱.A . 中国联通B . “神州行”储值卡C . 一样D . 无法确定6. (2分) (2018七上·滨州期中) 下列计算正确的是()A . 2a+b=2abB . ﹣5a2+3a2=﹣2C . 3x2y﹣3xy2=0D .7. (2分) (2019七上·吴兴期中) ()A . 1B . -3C . 3D . -58. (2分) (2019七下·南海期中) 用100元钱在网上书店恰好可购买m本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式()A .B .C .D .9. (2分)国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期储蓄的年利率为2.25%,今小王取出一年到期的本金和利息时,交纳利息税4.5元,则小王一年前存入银行的钱为()A . 1000元B . 977.5元C . 200元D . 250元10. (2分)(2020·黑龙江) 李强同学去登山,先匀速登上山顶,原地休息一段时间后,又匀速下山,上山的速度小于下山的速度.在登山过程中,他行走的路程S随时间t的变化规律的大致图象是()A .B .C .D .11. (2分)古代有这样一个寓言故事,驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是().A . 5B . 6C . 7D . 812. (2分)下列方程组是二元一次方程组的有()① ;② ;③ ;④ .A . 1个B . 2个C . 3个D . 4个13. (2分) (2019九上·景县期中) 设a、β是方程x2+x+2012=0的两个实数根,则a2+2a+β的值为()A . -2014B . 2014C . 2013D . -201314. (2分) (2017七下·南通期中) 如果中的解x、y相同,则m的值是()A . 1B . -1C . 2D . -215. (2分)已知-5a2mb和7b3-na4是同类项,则m+n的值是()A . 2B . 3C . 4D . 516. (2分)(2019·石家庄模拟) 我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”,设绳子长x尺,木条长y尺,根据题意所列方程组正确是()A .B .C .D .二、填空题 (共13题;共14分)17. (1分) (2017七上·赣县期中) 一个多项式加上2x2﹣x+5等于4x2﹣6x﹣3,则这个多项式为________.18. (1分)小丁期中考试考了a分,之后他继续努力,期末考试比期中考试提高了b%,小丁期末考试考了________分.19. (1分)在解方程﹣ =2时,去分母得________.20. (1分) (2018七上·安达期末) 矩形的周长为30,若一边长用字母x表示,则此矩形的面积是________21. (1分) (2015七上·永定期中) 若单项式﹣3amb3与4a2bn是同类项,则m+n=________.22. (1分) (2016七上·青山期中) 观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a﹣b+m=________.23. (1分) (2017七上·忻城期中) 己知:|x|=5,则x的值是________.24. (1分)湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票________ 张.25. (1分)方程组的解是________.26. (1分) (2017七下·天水期末) 若是方程x﹣ky=0的解,则k=________.27. (2分)(2010·希望杯竞赛) 整数x,y满足方程2xy+x+y=83,则x+y=________或________。

安徽省芜湖市 七年级(上)期末数学试卷

安徽省芜湖市 七年级(上)期末数学试卷

4. a,b 在数轴上的位置如图所示,则下列式子正确的
是( )
A. a+b>0
B. ab<0
C. |a|>|b|
D. a+b>a−b
5. 下列计算正确的是( )
A. 3a+a=3a2
B. 4x2y−2yx2=2x2y
C. 4y−3y=1
D. 3a+2b=5ab
6. 如图是一个正方体的展开图,则“数”字的对面的字是( )
①∠MON 与旋转度数 n°有怎样的数量关系?说明理由; ②当 n 为多少时,∠MON 为直角? (3)如果∠AOB 的位置和大小不变,∠COD 的边 OD 的位置不变,改变∠COD 的 大小;将图 1 中的 OC 绕着 O 点顺时针旋转 m°(0<m<100),如图 3,∠MON 与 旋转度数 m°有怎样的数量关系?说明理由.
22. 为迎接南陵县足球联赛,某足球学校组织八年级 5 个班进行足球比赛,规定每两个 班级之间均要比赛两场. (1)该校八年级每一个班要赛几场?若有 n 个班比赛,则每一个班要赛几场? (2)规则为每班胜一场得 3 分,平一场得 1 分,负一场得 0 分,到目前为止,若 八(1)班球队已经踢完所有比赛,其中平的场数是负的场数的 2 倍,已得 17 分, 该球队胜了几场球?
第 4 页,共 11 页
答案和解析
1.【答案】A
【解析】
解:根据题意得,如果收入 1000 元记作+1000 元,那么-800 表示支出 800 元. 故选:A. 首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答. 此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什 么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个 为正,则另一个就用负表示. 2.【答案】A

芜湖市初一上学期数学期末试卷带答案

芜湖市初一上学期数学期末试卷带答案

芜湖市初一上学期数学期末试卷带答案一、选择题1.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°2.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b3.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线C .垂线段最短D .两点之间直线最短4.下列每对数中,相等的一对是( )A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)3 5.下列分式中,与2x y x y---的值相等的是() A .2x y y x +- B .2x y x y +- C .2x y x y -- D .2x y y x -+ 6.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 7.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n - 8.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( )A .8cmB .2cmC .8cm 或2cmD .以上答案不对 9.已知a =b ,则下列等式不成立的是( )A .a+1=b+1B .1﹣a =1﹣bC .3a =3bD .2﹣3a =3b ﹣2 10.若a<b,则下列式子一定成立的是( )A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 11.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A .向西走3米B .向北走3米C .向东走3米D .向南走3米 12.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180° 二、填空题13.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.14.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.15.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.16.|-3|=_________;17.当a=_____时,分式13a a --的值为0. 18.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.19.如果向东走60m 记为60m +,那么向西走80m 应记为______m.20.若a a -=,则a 应满足的条件为______.21.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.22.当x= 时,多项式3(2-x )和2(3+x )的值相等.23.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.24.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______三、压轴题25.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ;(2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度.26.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.27.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.28.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.29.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.30.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.31.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?32.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______;(2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=.故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.2.D解析:D【解析】【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a <0<b ,∴ab <0,即-ab >0又∵|a |>|b |,∴a <﹣b .故选:D .【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.3.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B.4.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.5.A解析:A【解析】【分析】根据分式的基本性质即可求出答案.【详解】 解:原式=22x y x y x y y x++-=--,故选:A.【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.6.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x个零件,根据题意得:1004006 x2x+=故选:D.【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7.C解析:C【解析】【分析】根据题意可以用代数式表示m的2倍与n平方的差.【详解】用代数式表示“m的2倍与n平方的差”是:2m-n2,故选:C.【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.8.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.9.D解析:D【解析】【分析】根据等式的基本性质对各选项进行逐一分析即可.【详解】A、∵a=b,∴a+1=b+1,故本选项正确;B、∵a=b,∴﹣a=﹣b,∴1﹣a=1﹣b,故本选项正确;C、∵a=b,∴3a=3b,故本选项正确;D、∵a=b,∴﹣a=﹣b,∴﹣3a=﹣3b,∴2﹣3a=2﹣3b,故本选项错误.故选:D.【点睛】本题考查了等式的性质,掌握等式的基本性质是解答此题的关键.10.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 11.A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.12.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.二、填空题13.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.14.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.15.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B′PE+∠C′PF=∠B′PC′+85°,∴2(∠B′PC′+85°)﹣∠B′PC′=180°,解得∠B′PC′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.16.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.17.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.18.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.19.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.20.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.≥解析:a0【解析】【分析】根据绝对值的定义和性质求解可得.【详解】-=,解:a a∴≥,a0≥.故答案为a0【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.21.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.22.【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.23.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.24.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.三、压轴题25.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x =40或12﹣x =﹣40,解得:x =﹣28或x =52.(3)根据题意可得:A 1A 20=19A 3A 4=76.设线段MN 的运动速度为v 单位/秒,依题意,得:9v =76+5,解得:v =9.答:线段MN 的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A 3A 4的长度及a 2的值;(2)由(1)的结论,找出关于x 的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.26.(1)1,-3,-5(2)i )存在常数m ,m=6这个不变化的值为26,ii )11.5s【解析】【分析】(1)根据非负数的性质求得a 、b 、c 的值即可;(2)i )根据3BC-k•AB 求得k 的值即可;ii )当AC=13AB 时,满足条件. 【详解】(1)∵a 、b 满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a ,b ,c 的值分别为1,-3,-5.(2)i )假设存在常数k ,使得3BC-k•AB 不随运动时间t 的改变而改变.则依题意得:AB=5+t ,2BC=4+6t .所以m•AB -2BC=m (5+t )-(4+6t )=5m+mt-4-6t 与t 的值无关,即m-6=0,解得m=6,所以存在常数m ,m=6这个不变化的值为26.ii )AC=13AB , AB=5+t ,AC=-5+3t-(1+2t )=t-6, t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.27.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-. 解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.28.(1)-12,8-5t ;(2)94或114;(3)10;(4)MN 的长度不变,值为10. 【解析】【分析】(1)根据已知可得B 点表示的数为8﹣20;点P 表示的数为8﹣5t ;(2)运动时间为t 秒,分点P 、Q 相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】 本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.29.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.30.(1) AB =15,BC =20;(2) 点N 移动15秒时,点N 追上点M;(3) BC -AB 的值不会随着时间的变化而改变,理由见解析【解析】【分析】(1)根据数轴上点的位置求出AB 与BC 的长即可,(2)不变,理由为:经过t 秒后,A 、B 、C 三点所对应的数分别是-24-t ,-10+3t ,10+7t ,表示出BC ,AB ,求出BC-AB 即可做出判断,(3)经过t 秒后,表示P 、Q 两点所对应的数,根据题意列出关于t 的方程,求出方程的解得到t 的值,分三种情况考虑,分别求出满足题意t 的值即可.【详解】解:(1)AB =15,BC =20,(2)设点N 移动x 秒时,点N 追上点M ,由题意得:15322x x ⎛⎫=+ ⎪⎝⎭, 解得15x =,答:点N 移动15秒时,点N 追上点M .(3)设运动时间是y 秒,那么运动后A 、B 、C 三点表示的数分别是25y --、103y -+、107y +,∴BC ()()107103204y y y =+--+=+,AB ()()10325154y y y =-+---=+, ∴BC -AB ()()2041545y y =+-+=,∴BC -AB 的值不会随着时间的变化而改变.【点睛】本题主要考查了整式的加减,数轴,以及两点间的距离,解决本题的关键是要熟练掌握行程问题中等量关系和数轴上点,31.(1)x=1;(2) x =-3或x =5;(3) 30.【解析】【分析】(1)根据题意可得4-x =x -(-2),解出x 的值;(2)此题分为两种情况,当点P 在B 的右边时,当点P 在B 的左边时,分别列出方程求解即可;(3)设经过x 分钟点A 与点B 重合,根据题意得:2x =6+x 进而求出即可.【详解】(1)4-x =x -(-2),解得:x =1,(2)①当点P 在B 的右边时得:x -(-2)+x -4=8,解得:x =5,②当点P 在B 的左边时得:-2-x +4-x =8,解得:x =-3,则x =-3或x =5.(3)设经过x 分钟点A 与点B 重合,根据题意得:2x =6+x ,解得:x =6,则5x =30,故答案为30个单位长度.【点睛】本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置. 32.(1)1;(2)点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,其长度为5.【解析】试题分析:(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P 在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.试题解析:解:(1)(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1,(2)设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴点P运动5秒时,追上点R.(3)线段MN的长度不发生变化,理由如下:分两种情况:点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5综上所述,线段MN的长度不发生变化,其长度为5.点睛:此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.。

2022-2023学年安徽省七年级(上)期末数学试卷+答案解析(附后)

2022-2023学年安徽省七年级(上)期末数学试卷+答案解析(附后)

2022-2023学年安徽省七年级(上)期末数学试卷1. ( )A. B. 3 C. D. 12. 下列几何体中,是圆柱的为( )A. B. C. D.3. 以下调查中最适合采用全面调查的是( )A. 对全国初中生视力情况的调查B. 调查《新闻联播》的收视率C. 对市场上某一品牌电脑使用寿命的调查D. 检测长征运载火箭零部件质量情况4. 《安徽省“十四五”汽车产业高质量发展规划》发布,目标是到2025年,力争产值超过10000亿元.其中数据10000亿用科学记数法表示为( )A. B. C. D.5. 下列说法正确的是( )A. 没有最小的正整数,没有最大的负整数B. 在数轴上,原点两侧的数互为相反数C. 单项式的系数为D. 是三次三项式6. 已知有理数x,y满足方程组,则的值为( )A. B. 0 C. 1 D. 27. 某小型铸造厂在2020年总产值为a元,2021年和2022年受其它因素的影响,总产值相比上一年都下降了,则2022年该小型铸造厂总产值为( )A. 元B. 元C. 元D. 元8. 有理数a、b在数轴上对应的位置如图所示,则下列结论正确的是( )A. B. C. D.9. 如图,点A和点B表示两个码头,点C表示海面上一只船,下列方位描述正确的是( )A. 码头B在码头A西偏南方向B. 码头B在码头A北偏东方向C. 船C在码头A东偏南方向D. 船C在码头A西偏南方向10. 如图是根据幻方改编的“幻圆”游戏,将,2,,0,1,,3,分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等.已知图中、分别表示一个数,则的值为( )A.B. 1C. 或4D. 或111. 用四舍五入法对取近似值精确到百分位为______.12. 若,则的值是______.13. 如图是一种运算流程图,若输出,则输入x的值为______.14. 将一副三角板按如图方式摆放,使三角板的一个顶点重合,,,CP和CQ分别是和的平分线.若是平角,则的度数为______;若且,则的度数为______.15. 计算:16.先化简,再求值:,其中,17. 如图,在平面内有A、B、C三点.画直线AC,线段BC,射线AB;在线段BC上任取一点不同于B、,连接线段AD;数数看,此时图中线段共有________条.18. 某品牌冰箱的进价为1500元,按标价的九折出售可获得的利润,求该品牌冰箱的标价是多少元?19. 如图,点C是线段AB上一点,点D,E分别是BC和AC的中点,求DE的长;若,求AD的长.20. 如图,用图案来表示关于a和b的多项式,图案1表示的多项式为,已知图案中的字母a和b的数量有着一定的规律,归纳变化规律,解决下列问题:图案4表示的多项式为______,图案n表示的多项式为______用含n的式子表示;设图案6表示的多项式为A,图案7表示的多项式为B,化简21. 某蔬菜基地第一次向甲地运输124吨蔬菜,恰好装满5辆大货车和2辆小货车;第二次向甲地运输180吨蔬菜,恰好装满6辆大货车和5辆小货车.装满2辆大货车和3辆小货车能运输多少吨蔬菜?第三次安排大、小货车共12辆向甲地运输208吨蔬菜,若要使得每辆车都装满,则大货车和小货车分别需要多少辆?22. 今年3至8月份期间,根据A、B、C三种品牌空调的销售情况制作统计图如下,根据统计图,回答下列问题:至8月份期间,______品牌空调销售量最多填“A、B或C”;8月份C品牌空调销售量有______台;扇形统计图中,A品牌所对应的扇形的圆心角是______;月份,其他品牌的空调销售总量是多少台?小明打算选购一台空调,你建议小明购买哪种品牌的空调?请你写出一条理由.23. 如图,点O是直线AB上的一点,,OF平分如图1,若,则______,______如图2,射线OC和OD分别位于直线AB的两侧,若,求的度数;如图3,射线OC和OD位于直线AB的下侧,求的度数.答案和解析1.【答案】A【解析】解:,故选:根据相反数的定义解答即可.本题考查了相反数的定义,知道“只有符号不同的两个数叫做互为相反数”是解题的关键.2.【答案】B【解析】解:圆柱体是由两个圆形的底面和一个侧面所围成的几何体,因此选项B中的几何体符合题意,故选:根据圆柱体的特征进行判断即可.本题考查认识立体图形,掌握各种几何体的特征是正确判断的前提.3.【答案】D【解析】解:A、对全国初中生视力情况的调查,最适合采用抽样调查,故A不符合题意;B、调查《新闻联播》的收视率,最适合采用抽样调查,故B不符合题意;C、对市场上某一品牌电脑使用寿命的调查,最适合采用抽样调查,故C不符合题意;D、检测长征运载火箭零部件质量情况,最适合采用全面调查,故D符合题意;故选:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.本题考查了全面调查与抽样调查,熟练掌握全面调查与抽样调查的特点是解题的关键.4.【答案】C【解析】解:10000亿故选:用科学记数法表示较大的数时,一般形式为,其中,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为,其中,确定a与n的值是解题的关键.5.【答案】D【解析】解:是最小的正整数,是最大的负整数,选项A不符合题意;B.在数轴上,到原点距离相等的两个点所表示的数互为相反数,选项B不符合题意;C.单项式的系数为,选项C不符合题意;D.是三次三项式,选项D符合题意;故选:根据有理数的定义可判断选项A,根据相反数的定义可判断选项B,根据单项式的系数的定义可判断选项C,根据多项式的定义可判断选项本题主要考查了有理数,相反数,单项式和多项式,掌握相关的定义是解题的关键.6.【答案】A【解析】解:,由①+②得:,化简得:,故选:根据题意直接将两个方程相加即可求解.本题主要考查了二元一次方程组,理解题意应用整体思想是解题的关键.7.【答案】B【解析】解:年总产值为a元,总产值相比上一年都下降了,年该小型铸造厂总产值为元.故选:2020年总产值为a元,则2021年总产值为元,2022年总产值为元.本题考查了列代数式,把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要注意语句中的关键字,读懂题意,找到所求的量的表示方法.列代数式五点注意:①仔细辨别词义.②分清数量关系.③注意运算顺序.④规范书写格式.⑤正确进行代换.8.【答案】C【解析】解:由数轴可知:,,,故A选错误,不符合题意;,故B选项错误,不符合题意;,故C选项正确,符合题意;,故D选项错误,不符合题意,故选:根据数轴上点的特征可知:,,据此再逐项判定可求解.本题主要考查数轴,根据数轴找到,是解题的关键.9.【答案】C【解析】解:A、码头B在码头A南偏西方向,故A不符合题意;B、码头B在码头A南偏西方向,故B不符合题意;C、船C在码头A东偏南方向,故C符合题意;D、船C在码头A南偏东方向,故D不符合题意;故选:根据方向角的定义,逐一判断即可解答.本题考查了方向角,熟练掌握方向角的定义是解题的关键.10.【答案】D【解析】解:将,2,,0,1,,3,分别填入图中的圆圈内共有2种填法,如图1、图2所示:所以、分别表示的数为,1或2,1,所以的值或1,故选:将,2,,0,1,,3,分别填入图中的圆圈内,确定图中、所表示的数,再进行计算即可.本题考查有理数的加法,掌握有理数加法的计算方法是正确解答的前提,确定、所表示的数是解决问题的关键.11.【答案】【解析】解:近似数精确到百分位为故答案为:把千分位上的数字5进行四舍五入即可.本题考查了近似数,掌握精确到第几位是精确度的表示形式是关键.12.【答案】2026【解析】解:,,原式故答案是:将已知等式代入所求式子即可求解.本题考查了代数式求值、整体思想,掌握整体代换思想的运用是关键.13.【答案】【解析】【分析】本题主要考查一元一次方程的应用,本题是操作型题目,利用程序图列出关于x的方程是解题的关键.利用程序图列出关于x的方程,解方程即可得出结论.【解答】解:由题意,得:,,故答案为:14.【答案】或【解析】解:,,CP和CQ分别是和的平分线,,,是平角,;故答案为:;①两个三角板没有重合的部分时,,,CP和CQ分别是和的平分线,,,,;②两个三角板有重合的部分,如图,,,CP和CQ分别是和的平分线,,,,,,综上所述,的度数为:或故答案为:或由角平分线的定义可求得,,再利用一平角,从而可求解;分两种情况进行讨论:①两个三角板没有重合的部分;②两个三角板有重合的部分,再利用角的和差进行求解即可.本题主要考查余角与补角,角平分线的定义,解答的关键结合图形分析清楚各角之间的关系.15.【答案】解:【解析】先算乘方,再算除法,有括号先算括号里,即可解答.本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.16.【答案】解:,当,时,原式【解析】根据整式的混合运算法则,先算乘法,再算加减,从而解决此题.本题考查了整式的化简求值,掌握整式的混合运算法则是解决本题的关键.17.【答案】【解析】解:见答案见答案图中有线段6条.故答案为6利用直尺即可作出图形;根据线段的定义即可判断.本题考查了线段、射线以及线段的作图,是一个基础题,在作图的过程中要注意延伸性.18.【答案】解:设该品牌冰箱的标价是x元,根据题意得:,解得:答:该品牌冰箱的标价是2000元.【解析】设该品牌冰箱的标价是x元,利用利润=售价-进价,可得出关于x的一元一次方程,解之即可求出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.19.【答案】解:点D,E分别是BC和AC的中点,,,;点D,E分别是BC和AC的中点,,,,,【解析】根据线段中点的定义以及线段的和差关系进行计算即可;根据线段中点的定义以及线段的和差关系可得,进而求出,再求AD即可.本题考查两点间的距离,理解线段中点的定义以及线段的和差关系是正确解答的前提.20.【答案】【解析】解:图案4表示的多项式为,图案n表示的多项式为;故答案为:为,;,,认真读懂题意,发现规律,按照规律解题;利用发现的规律解决问题.本题考查了整式的加减探究题,解题的关键是读懂题意,从中发现规律,利用规律解决问题.21.【答案】解:设每辆大货车一次运蔬菜x吨,每辆小货车一次运蔬菜y吨,根据题意得,解得,每辆大货车一次运蔬菜20吨,每辆小货车一次运蔬菜12吨,吨,装满2辆大货车和3辆小货车能运输76吨蔬菜;设大货车需要m辆,则小货车需要辆,运输208吨蔬菜,,解得,,答:大货车需要8辆,小货车需要4辆.【解析】可设每辆大货车一次运蔬菜x吨,每辆小货车一次运蔬菜y吨,从而可列出二元一次方程组,解方程组求得x,y的值,从而可得解;设大货车m辆,则租用小货车辆,结合条件列方程即可解得答案.本题主要考查一元一次方程,二元一次方程组的应用,解答的关键是理解清楚题意,找到等量关系列方程和方程组.22.【答案】【解析】解:根据条形图可知B品牌空调销售量最多;根据折线图可知8月份C品牌空调销售量有275台;根据扇形统计图可得A品牌所对应的扇形的圆心角是;根据答案为:B;275;;月份总销售量为台,台,答:8月份,其他品牌的空调销售总量是221台;建议小明购买B品牌的空调,理由:由于B品牌的销售量最大,所以建议小明购买B品牌的空调答案不唯一分别根据条形图、折线图和扇形统计图即可求出答案;根据8月份A品牌的销售量和百分比求出总销售量,再根据扇形图即可求出答案;由于B品牌的销售量最大,所以建议购买B品牌的空调答案不唯一本题考查的是条形统计图、折线图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.【答案】,125;,,,OF平分,,,;,,【解析】解:,,,平分,,;故答案为:,;见答案见答案利用角的和差与角平分线的定义计算;利用角的和差与角平分线的定义计算;利用角的和差计算.本题考查了角的和差计算和角平分线的定义,解题的关键是掌握角的和差计算和角平分线的定义.。

芜湖市人教版(七年级)初一上册数学 压轴题 期末复习测试题及答案

芜湖市人教版(七年级)初一上册数学 压轴题 期末复习测试题及答案

芜湖市人教版(七年级)初一上册数学压轴题期末复习测试题及答案一、压轴题1.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.2.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数3.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6a +|2b+12|+(c﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.4.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.5.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.6.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)7.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM 所在直线恰好平分∠BOC 时,时间t 的值为 (直接写结果).8.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示).(4)直接写出点B 为AC 中点时的t 的值.9.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.10.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE .(1)如图①,当∠BOC=70°时,求∠DOE 的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数.(3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.11.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.12.如图,A 、B 、P 是数轴上的三个点,P 是AB 的中点,A 、B 所对应的数值分别为-20和40.(1)试求P 点对应的数值;若点A 、B 对应的数值分别是a 和b ,试用a 、b 的代数式表示P 点在数轴上所对应的数值;(2)若A 、B 、P 三点同时一起在数轴上做匀速直线运动,A 、B 两点相向而行,P 点在动点A 和B 之间做触点折返运动(即P 点在运动过程中触碰到A 、B 任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A 、B 两点相遇,停止运动.如果A 、B 、P 运动的速度分别是1个单位长度/s ,2个单位长度/s ,3个单位长度/s ,设运动时间为t .①求整个运动过程中,P 点所运动的路程.②若P 点用最短的时间首次碰到A 点,且与B 点未碰到,试写出该过程中,P 点经过t 秒钟后,在数轴上对应的数值(用含t 的式子表示);③在②的条件下,是否存在时间t ,使P 点刚好在A 、B 两点间距离的中点上,如果存在,请求出t 值,如果不存在,请说明理由.13.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.14.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).15.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.2.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.3.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6) 【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.4.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n 项的钢管数.【详解】(1)3456;45678S S =+++=++++(2)方法不唯一,例如:12S =+ 1233S =+++ 123444S =+++++ 12345555S =+++++++ (3)方法不唯一,例如:()()12.....2S n n n n =++++++()()()()=.....12.. (1112)n n n n n n n n +++++++=+++ ()312n n =+ 【点睛】此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.5.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析.【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE,进而求出即可;(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE=88°,∠BOD=30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE=6∠BOC+6∠COD=4(∠AOE﹣∠BOD)+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,6.(1)是;(2)5cm 或7.5cm 或10cm ;(3)10或607. 【解析】【分析】(1)根据“2倍点”的定义即可求解; (2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可; (3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论:①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607=; 答:t 为10或607时,点 Q 是线段AP 的“2倍点”. 【点睛】 本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.7.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB ,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,∵ON为为∠BOC的平分线,∴∠BON=60°.∴旋转的角度=60°+180°=240°.∴t=240°÷5°=48秒.故答案为:12秒或48秒.【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.8.(1)-2;1;7;(2)4;(3)3+3t;9+5t;6+2t;(4)3.【解析】 【分析】(1)利用|a +2|+(c ﹣7)2=0,得a +2=0,c ﹣7=0,解得a ,c 的值,由b 是最小的正整数,可得b =1;(2)先求出对称点,即可得出结果;(3)分别写出点A 、B 、C 表示的数为,用含t 的代数式表示出AB 、AC 、BC 即可;(4)由点B 为AC 中点,得到AB =BC ,列方程,求解即可.【详解】(1)∵|a +2|+(c ﹣7)2=0,∴a +2=0,c ﹣7=0,解得:a =﹣2,c =7.∵b 是最小的正整数,∴b =1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A 表示的数为:-2-t ,点B 表示的数为:1+2t ,点C 表示的数为:7+4t ,则AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6.故答案为3t +3,5t +9,2t +6.(4)∵点B 为AC 中点,∴AB =BC ,∴3t +3=2t +6,解得:t =3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.9.(1) AB =15,BC =20;(2) 点N 移动15秒时,点N 追上点M;(3) BC -AB 的值不会随着时间的变化而改变,理由见解析【解析】【分析】(1)根据数轴上点的位置求出AB 与BC 的长即可,(2)不变,理由为:经过t 秒后,A 、B 、C 三点所对应的数分别是-24-t ,-10+3t ,10+7t ,表示出BC ,AB ,求出BC-AB 即可做出判断,(3)经过t 秒后,表示P 、Q 两点所对应的数,根据题意列出关于t 的方程,求出方程的解得到t 的值,分三种情况考虑,分别求出满足题意t 的值即可.【详解】解:(1)AB =15,BC =20,(2)设点N 移动x 秒时,点N 追上点M ,由题意得:15322x x ⎛⎫=+ ⎪⎝⎭, 解得15x =,答:点N 移动15秒时,点N 追上点M .(3)设运动时间是y 秒,那么运动后A 、B 、C 三点表示的数分别是25y --、103y -+、107y +,∴BC ()()107103204y y y =+--+=+,AB ()()10325154y y y =-+---=+, ∴BC -AB ()()2041545y y =+-+=,∴BC -AB 的值不会随着时间的变化而改变.【点睛】本题主要考查了整式的加减,数轴,以及两点间的距离,解决本题的关键是要熟练掌握行程问题中等量关系和数轴上点,10.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠COB 的一半,而∠DOE=∠COD+∠COE ,即可求出∠DOE 度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE 为45°;如图4,则∠DOE 为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD 、OE 分别平分∠AOC 和∠BOC ,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°, ∴∠DOE=∠COD+∠COE=45°; (2)∠DOE 的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB )=12∠AOB=45°; (3)∠DOE 的大小发生变化情况为:如图③,则∠DOE 为45°;如图④,则∠DOE 为135°,分两种情况:如图3所示,∵OD 、OE 分别平分∠AOC 和∠BOC ,∴∠COD=12∠AOC ,∠COE=12∠BOC ,∴∠DOE=∠COD ﹣∠COE=12(∠AOC ﹣∠BOC )=45°; 如图4所示,∵OD 、OE 分别平分∠AOC 和∠BOC , ∴∠COD=12∠AOC ,∠COE=12∠BOC , ∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC )=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.11.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD=2MC .∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=13AB=4. 故答案为4;(4)①当点N 在线段AB 上时,如图1.∵AN﹣BN=MN.又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,∴MNAB=412=13;②当点N在线段AB的延长线上时,如图2.∵AN﹣BN=MN.又∵AN﹣BN=AB,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.12.(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【解析】【分析】(1)根据数轴上两点间的距离公式结合A、B两点表示的数,即可得出结论;(2)①点P运动的时间与A、B相遇所用时间相等,根据路程=速度×时间即可求得;②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的;③点P与点A的距离越来越小,而点P与点B的距离越来越大,不存在PA=PB的时候.【详解】解:(1)∵A、B所对应的数值分别为-20和40,∴AB=40-(-20)=60,∵P是AB的中点,∴AP=60=30,∴点P表示的数是-20+30=10;∵如图,点A、B对应的数值分别是a和b,∴AB=b-a,∵P是AB的中点,∴AP=(b-a)∴点P表示的数是a+(b-a) =(a+b).(2)①点A和点B相向而行,相遇的时间为=20(秒),此即整个过程中点P运动的时间.所以,点P的运动路程为3×20=60(单位长度),故答案是60个单位长度.②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的.所以这个过程中0≤t≤7.5.P点经过t秒钟后,在数轴上对应的数值为10-3t.故答案是:10-3t,0≤t≤7.5.③不存在.由②可知,点P是和点A相向而行的,整个过程中,点P与点A的距离越来越小,而点P 与点B的距离越来越大,所以不存在相等的时候.故答案为:(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【点睛】本题考查了数轴上点与点的距离和动点问题.13.2+t6-2t或2t-6【解析】分析:(1)、先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B 两点之间的距离;(2)、设BC的长为x,则AC=2x,根据AB的长度得出x的值,从而得出点C所表示的数;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0<t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.详解:(1)、由题意知a=-2,b=6,故AB=8.(2)、设BC的长为x,则AC=2x, ∵BC+AC=AB,∴x+2x=8,解得x=83,∴C点表示的数为6-8 3=103.(3)①2+t;6-2t或2t-6.②当2+t=6-2t时,解得t=43,当2+t=2t-6时,解得t=8.∴t=43或8.点睛:本题考查了非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.14.(1)见解析;(2)∠OQP=180°+12x°﹣12y°或∠OQP=12x°﹣12y°.【解析】【试题分析】(1)分下面两种情况进行说明;①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,(2)分两种情况讨论,如图3和图4.【试题解析】(1)分两种情况:①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,证明:∵四边形AOBP的内角和为(4﹣2)×180°=360°,∴∠APB=360°﹣∠MON﹣∠PAO﹣∠PBO;②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,证明:延长AP交ON于点D,∵∠ADB是△AOD的外角,∴∠ADB=∠PAO+∠AOD,∵∠AP B是△PDB的外角,∴∠APB=∠PDB+∠PBO,∴∠APB=∠MON+∠PAO+∠PBO;(2)设∠MON=2m°,∠APB=2n°,∵OC平分∠MON,∴∠AOC=∠MON=m°,∵PQ平分∠APB,∴∠APQ=∠APB=n°,分两种情况:第一种情况:如图3,∵∠OQP=∠MOC+∠PAO+∠APQ,即∠OQP=m°+x°+n°①∵∠OQP+∠CON+∠OBP+∠BPQ=360°,∴∠OQP=360°﹣∠CON﹣∠OBP﹣∠BPQ,即∠OQP=360°﹣m°﹣y°﹣n°②,①+②得2∠OQP=360°+x°﹣y°,∴∠OQP=180°+x°﹣y°;第二种情况:如图4,∵∠OQP+∠APQ=∠MOC+∠PAO,即∠OQP+n°=m°+x°,∴2∠OQP+2n°=2m°+2x°①,∵∠APB=∠MON+∠PAO+∠PBO,∴2n°=2m°+x°+y°②,①﹣②得2∠OQP=x°﹣y°,∴∠OQP=x°﹣y°,综上所述,∠OQP=180°+x°﹣y°或∠OQP=x°﹣y°.15.(1)60°;(2)射线OP是∠AOC的平分线;(3)30°.【解析】整体分析:(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的定义判断;(3)根据∠AOC,∠AON,∠NOC,∠MON,∠AOM的和差关系即可得到∠NOC 与∠AOM之间的数量关系.解:(1)如图②,∠AOC=120°,∴∠BOC=180°﹣120°=60°,又∵OM平分∠BOC,∴∠BOM=30°,又∵∠NOM=90°,∴∠BOM=90°﹣30°=60°,故答案为60°;(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,∴∠AOP=12∠AOC,∴射线OP是∠AOC的平分线;(3)如图④,∵∠AOC=120°,∴∠AON=120°﹣∠NOC,∵∠MON=90°,∴∠AON=90°﹣∠AOM,∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.。

安徽省芜湖市七年级上学期期末数学试卷

安徽省芜湖市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)(2016·德州) 2的相反数是()A .B .C . ﹣2D . 22. (2分)下列各组式子中,相等的一组是()A . ﹣(﹣5)与+(﹣5)B . +(﹣2)与﹣|﹣2|C . (﹣2)×(﹣3)与(+2)×(﹣3)D . ﹣24与(﹣2)43. (2分)自2010年1月1日起,移动电话在本地拨打长途电话时,将取消现行叠加收取的本地通话费;在国内漫游状态下拨打国际及台港澳电话,取消现行叠加收取的漫游主叫通话费.据有关电信企业测算,这些措施每年可为手机用户减负逾60亿元.60亿元用科学记数法表示为A . 6×10元B . 60×108元C . 6×109元D . 6×1010元4. (2分)(2017·滨海模拟) 有理数a、b在数轴上的对应的位置如图所示,则下列各式中正确的是()A . a+b<0B . a+b>0C . a﹣b=0D . a﹣b>05. (2分)在市委、市府的领导下,全市人民齐心协力,将我市成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“全”字所在的面相对的字应是()A . 文B . 明C . 城D . 市6. (2分)下列关于角的说法正确的个数是()①角是由两条射线组成的图形;②角的边越长,角越大;③在角一边延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形.A . 1个B . 2个C . 3个D . 4个7. (2分) (2019八上·长沙月考) 中,,,则的度数是()A .B .C .D .8. (2分) (2019八上·台州期末) 已知( x + 3)2 + ( x - 7)2 = 58 ,则( x + 3)( x - 7) 的值是()A . 21B . 28C . -21D . -289. (2分) (2016七上·金华期中) 若(n+3)2+|m﹣4|=0,则m﹣2n的值为()A . ﹣2B . 2C . 10D . ﹣1010. (2分)下面是按一定规律排列的一列数:第1个数:;第2个数:;第3个数:;……第n个数:.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是()A . 第10个数B . 第11个数C . 第12个数D . 第13个数二、填空题 (共6题;共6分)11. (1分) (2019八上·靖远月考) 若互为相反数,互为倒数,则 ________.12. (1分)在墙壁上固定一根横放的木条,则至少需要两枚钉子,这是因为________13. (1分) (2018七上·盐城期中) 在下列代数式:2,,,-5yz,中,是单项式的有________个.14. (1分) (2018七上·东莞期中) 如果那么代数式的值等于________.15. (1分) (2019九下·峄城月考) 一个长为a宽为b的长方形黑板,用半径为1的圆形黑板擦,擦不到的面积为________。

2021-2022学年安徽省芜湖市市区七年级(上)期末数学试卷(解析版)

2021-2022学年安徽省芜湖市市区七年级第一学期期末数学试卷一、选择题(共12题,每小题3分,满分36分)1.﹣3的绝对值是()A.3B.﹣3C.﹣D.2.2021年以来,芜湖市推行了“1%工作法”,仅1月至9月,全市规模以上工业企业实现利润总额达253亿元.数据253亿元用科学记数法表示为()A.253×108B.2.53×109C.2.53×1010D.2.53×1011 3.如图的几何体,从左面看,得到的平面图是()A.B.C.D.4.下列说法正确的是()A.ab2的次数是2B.1是单项式C.系数是﹣3D.多项式a+b2的次数是35.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.6.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是()A.m<﹣1B.n>3C.m<﹣n D.m>﹣n7.若a,b互为相反数,则代数式a2+ab﹣7的值是()A.2B.﹣5C.﹣7D.78.下列等式变形正确的是()A.如果s=ab,那么b=B.如果x=2y+1,那么mx=2my+1C.如果x﹣4=y﹣4,那么x﹣y=0D.如果mx=my,那么x=y9.一个角的余角的3倍比这个角的4倍大18°,则这个角等于()A.36°B.40°C.50°D.54°10.整理一批图书,由一个人做要40h完成,现计划由一部分人先做4h,然后增加2人与他们一起做8h,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?如果设安排x人先做4h,下列四个方程中正确的是()A.+=1B.+=1C.+=1D.+=111.如图,有一个无盖的正方体纸盒,它的下底面标有字母“M”,若沿图中的粗线将其剪开展成平面图形,这个平面图形是()A.B.C.D.12.适合|a+5|+|a﹣3|=8的整数a的值有()A.4个B.5个C.7个D.9个二、填空题(本大题共6题,每小题4分,满分24分)13.如图,建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:.14.已知∠A=20°24′,∠B=20.4°.比较大小:∠A ∠B(填“>或<或=”).15.已知x=2是关于x的方程2x+3m﹣2=0的解,则m的值是.16.某商店有大、小两种书包,小书包比大书包的进价少20元,它们的利润相同.其中,小书包的盈利率为30%,大书包的盈利率为20%,大书包的进价是元.17.已知线段AB=8,在直线AB上取一点P,恰好使AP =3PB,点Q为线段PB的中点,则AQ的长为.18.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是,第n(n为正整数)个图形中小正方形的个数是(用含n的代数式表示).三、解答题(本大题共有5小题,满分40分)19.(1)计算:13+(﹣5)﹣(﹣21)﹣19;(2)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=1,b=﹣3.20.解方程:﹣1=.21.如图,点C是线段AB的中点,AD=6,BD=4,求CD的长.22.春节期间,某超市对A,B两种商品开展促销活动,有如下两种活动方案(同一种商品不能同时参与两种活动):项目方案商品A B 标价(单元:元)100110方案一每件商品出售价格按标价打7折按标价打a折方案二若购买超过101件(A、B两种商品可累计),每件商品均按标价打8折后出售.(1)某单位购买A商品50件,B商品40件,共花费7240元,求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数且x≥34),购买B商品的件数比A商品件数的2倍还多2件,请问该单位该选用何种方案更合算?请说明理由.23.如图①,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=30°时,则∠DOE的度数为;(2)将图①中的∠COD绕顶点O顺时针旋转至图②的位置,其它条件不变,探究∠AOC 和∠DOE的度数之间的关系,写出你的结论,并说明理由;(3)将图①中的∠COD绕顶点O顺时针旋转至图③的位置,其他条件不变.直接写出∠AOC和∠DOE的度数之间的关系:.参考答案一、选择题(本大题共12题,每小题3分,满分36分)1.﹣3的绝对值是()A.3B.﹣3C.﹣D.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解:﹣3的绝对值是3.故选:A.2.2021年以来,芜湖市推行了“1%工作法”,仅1月至9月,全市规模以上工业企业实现利润总额达253亿元.数据253亿元用科学记数法表示为()A.253×108B.2.53×109C.2.53×1010D.2.53×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:253亿=25300000000=2.53×1010.故选:C.3.如图的几何体,从左面看,得到的平面图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解:从左面看看,底层是两个小正方形,上层的左边是一个小正方形.故选:D.4.下列说法正确的是()A.ab2的次数是2B.1是单项式C.系数是﹣3D.多项式a+b2的次数是3【分析】根据单项式的次数、系数以及多项式的次数进行解答即可.解:A、ab2的次数是3,故A错误;B、1是单项式,故B正确;C、系数是﹣,故C错误;D、多项式a+b2的次数是2,故D错误;故选:B.5.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.【分析】根据直线、射线、线段的定义对各选项分析判断利用排除法求解.解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选:B.6.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是()A.m<﹣1B.n>3C.m<﹣n D.m>﹣n 【分析】根据数轴可以判断m、n的大小,从而可以解答本题.解:由数轴可得,﹣1<m<0<2<n<3,故选项A错误,选项B错误,∴m>﹣n,故选项C错误,选项D正确,故选:D.7.若a,b互为相反数,则代数式a2+ab﹣7的值是()A.2B.﹣5C.﹣7D.7【分析】a,b互为相反数得a+b=0.把a2+ab提取公因式a,就可得结果.解:∵a,b互为相反数,∴a+b=0.∴a2+ab﹣7=a(a+b)﹣7=﹣7.故选:C.8.下列等式变形正确的是()A.如果s=ab,那么b=B.如果x=2y+1,那么mx=2my+1C.如果x﹣4=y﹣4,那么x﹣y=0D.如果mx=my,那么x=y【分析】根据等式的性质逐个判断即可.解:A.如果s=ab,那么b=,故本选项不符合题意;B.如果x=2y+1,那么mx=2my+m,故本选项不符合题意;C.如果x﹣4=y﹣4,那么x﹣y=0,故本选项符合题意;D.如果mx=my(m≠0),那么x=y,故本选项不符合题意,故选:C.9.一个角的余角的3倍比这个角的4倍大18°,则这个角等于()A.36°B.40°C.50°D.54°【分析】根据互为余角的两角和等于90°,用这个角表示出它的余角,然后根据题意列出方程求解即可.解:设这个角是x,则它的余角是90°﹣x,根据题意得,3(90°﹣x)﹣4x=18°,去括号,得270°﹣3x﹣4x=18°,移项、合并,得7x=252°,系数化为1,得x=36°.故这个角的度数36°.故选:A.10.整理一批图书,由一个人做要40h完成,现计划由一部分人先做4h,然后增加2人与他们一起做8h,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?如果设安排x人先做4h,下列四个方程中正确的是()A.+=1B.+=1C.+=1D.+=1【分析】由一个人做要40小时完成,即一个人一小时能完成全部工作的,就是已知工作的速度.本题中存在的相等关系是:这部分人4小时的工作+增加2人后8小时的工作=全部工作.设全部工作是1,这部分共有x人,就可以列出方程.解:设应先安排x人工作,根据题意得:+=1故选:B.11.如图,有一个无盖的正方体纸盒,它的下底面标有字母“M”,若沿图中的粗线将其剪开展成平面图形,这个平面图形是()A.B.C.D.【分析】根据无盖可知底面M没有对面,再根据图形粗线的位置,可知底面的正方形在侧面的四个正方形从左边数第2个正方形的下边,然后根据选项选择即可.解:∵正方体纸盒无盖,∴底面M没有对面,∵沿图中的粗线将其剪开展成平面图形,∴底面与侧面的从左边数第2个正方形相连,根据正方体的表面展开图,相对的面之间一定相隔一个正方形可知,只有A选项图形符合.故选:A.12.适合|a+5|+|a﹣3|=8的整数a的值有()A.4个B.5个C.7个D.9个【分析】此方程可理解为a到﹣5和3的距离的和,由此可得出a的值,继而可得出答案.解:|a+5|表示a到﹣5点的距离,|a﹣3|表示a到3点的距离,由﹣5到3点的距离为8,故﹣5到3之间的所有点均满足条件,即﹣5≤a≤3,又由a为整数,故满足条件的a有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3共9个,故选:D.二、填空题(本大题共6题,每小题4分,满分24分)13.如图,建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:两点确定一条直线.【分析】直接利用直线的性质分析得出答案.解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法运用到的数学原理是:两点确定一条直线.故答案为:两点确定一条直线.14.已知∠A=20°24′,∠B=20.4°.比较大小:∠A=∠B(填“>或<或=”).【分析】根据1°=60′对∠B进行换算即可得出答案.解:∵20.4°=20°24′,∴∠A=∠B,故答案为:=.15.已知x=2是关于x的方程2x+3m﹣2=0的解,则m的值是﹣.【分析】将x=2代入方程可得2x+3m﹣2=0,据此解之即可.解:将x=2代入方程2x+3m﹣2=0,得2×2+3m﹣2=0,解得:m=﹣,故答案为:﹣.16.某商店有大、小两种书包,小书包比大书包的进价少20元,它们的利润相同.其中,小书包的盈利率为30%,大书包的盈利率为20%,大书包的进价是60元.【分析】设大书包的进价为x元,则小书包的进价为(x﹣20)元,根据利润=进价×盈利率结合两种书包的售后利润额相同,即可得出关于x的一元一次方程,解之即可得出结论.解:设大书包的进价为x元,则小书包的进价为(x﹣20)元,依题意,得:20%x=30%(x﹣20),解得x=60.答:每个大书包的进价为60元.故答案是:60.17.已知线段AB=8,在直线AB上取一点P,恰好使AP=3PB,点Q为线段PB的中点,则AQ的长为7和10.【分析】由于点P的位置不确定,故需要分情况讨论.解:当点P在线段AB上时,如图所示:∵AB=8,AP=3PB,∴AP=6,BP=2,∵点Q为线段PB的中点,故PQ=BP=1,故AQ=AP+PQ=7,当点P在线段AB的延长线上时,如图所示:∵AB=8,AP=3PB,∴BP=4,∵点Q为线段PB的中点,故BQ=BP=2,故AQ=AB+BQ=8+2=10当点P在线段AB的反向延长线上时,不成立故AQ=7或10.故答案为:7或10.18.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是55,第n(n为正整数)个图形中小正方形的个数是(n+1)2+n(用含n的代数式表示).【分析】观察图形可知,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,进而得出答案.解:第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第6个图形共有小正方形的个数为:7×7+6=55.故答案为:55;(n+1)2+n三、解答题(本大题共有5小题,满分40分)19.(1)计算:13+(﹣5)﹣(﹣21)﹣19;(2)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=1,b=﹣3.【分析】(1)将减法统一成加法,然后再计算;(2)原式去括号,合并同类项进行化简,然后代入求值.解:(1)原式=13+(﹣5)+21+(﹣19)=8+21+(﹣19)=29+(﹣19)=10;(2)原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=ab2;当a=1,b=﹣3时,原式=1×(﹣3)2=1×9=9.20.解方程:﹣1=.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解:去分母得:3(x+1)﹣6=2(2﹣x),去括号得:3x+3﹣6=4﹣2x,移项得:3x+2x=4+6﹣3,合并得:5x=7,解得:x=1.4.21.如图,点C是线段AB的中点,AD=6,BD=4,求CD的长.【分析】根据线段的和差,可得AB的长,根据线段中点的性质,可得AC的长,再根据线段的和差,可得答案.解:∵AD=6,BD=4,∴AB=AD+BD=10.∵点C是线段AB的中点,∴AC=CB =AB=5.∴CD=AD﹣AC=1.22.春节期间,某超市对A,B两种商品开展促销活动,有如下两种活动方案(同一种商品不能同时参与两种活动):项目方案商品A B 标价(单元:元)100110方案一每件商品出售价格按标价打7折按标价打a折方案二若购买超过101件(A、B两种商品可累计),每件商品均按标价打8折后出售.(1)某单位购买A商品50件,B商品40件,共花费7240元,求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数且x≥34),购买B商品的件数比A商品件数的2倍还多2件,请问该单位该选用何种方案更合算?请说明理由.【分析】(1)先确定购买方案,然后列方程求解即可;(2)根据购买数量分别计算两种方案的价格,比较之后确定哪种方案合算即可.解:(1)∵50+40<101,∴购买采用方案一,由题意,得50×100×0.7+40×110×=7240,解得a=8.5,即a的值为8.5;(2)方案二更合算,理由如下:若购买A商品x件,则购买B商品件数为(2x+2)件,累计购买了(3x+2)件,又∵x≥34,∴3x+2≥104,符合方案二,则按方案二需[100x+110(2x+2)]×0.8=(256x+176)元,若按方案一需0.7×100x+0.85×110(2x+2)=(257x+187)元,∵(257x+187)﹣(256x+176)=x+11>0,∴257x+187>256x+176,∴该单位选择方案二更合算.23.如图①,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=30°时,则∠DOE的度数为15°;(2)将图①中的∠COD绕顶点O顺时针旋转至图②的位置,其它条件不变,探究∠AOC 和∠DOE的度数之间的关系,写出你的结论,并说明理由;(3)将图①中的∠COD绕顶点O顺时针旋转至图③的位置,其他条件不变.直接写出∠AOC和∠DOE的度数之间的关系:∠AOC=360°﹣2∠DOE.【分析】(1)由已知可求出∠BOC=180°﹣∠AOC=150°,再由∠COD是直角,OE 平分∠BOC求出∠DOE的度数;(2)由∠COD是直角,OE平分∠BOC可得出∠COE=∠BOE=90°﹣∠DOE,则得∠AOC=180°﹣∠BOC=180°﹣2∠COE=180°﹣2(90°﹣∠DOE),从而得出∠AOC 和∠DOE的度数之间的关系;(3)根据(2)的解题思路,即可解答.解:(1)由已知得∠BOC=180°﹣∠AOC=150°,又∠COD是直角,OE平分∠BOC,∴∠DOE=∠COD﹣∠BOC=90°﹣×150°=15°;(2)∠AOC=2∠DOE;理由:∵∠COD是直角,OE平分∠BOC,∴∠COE=∠BOE=90°﹣∠DOE,则得∠AOC=180°﹣∠BOC=180°﹣2∠COE=180°﹣2(90°﹣∠DOE),所以得:∠AOC=2∠DOE;(3)∠AOC=360°﹣2∠DOE;理由:∵OE平分∠BOC,∴∠BOE=2∠COE,则得∠AOC=180°﹣∠BOE=180°﹣2∠COE=180°﹣2(∠DOE﹣90°),所以得:∠AOC=360°﹣2∠DOE;故答案为:(1)15°;(3)∠AOC=360°﹣2∠DOE.。

安徽省芜湖市七年级上学期数学期末考试试卷

安徽省芜湖市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分) (2019七上·武威月考) 下列计算结果相等的一组为()A . 和B . 和C . 和D . 和2. (1分) (2019七上·西安期中) 体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩记录,其中表示成绩大于15秒.这个小组男生的达标率为()、A . 25%B . 37.5%C . 75%D . 12.5%3. (1分)(2020·自贡) 5月22日晚,中国自贡第26届国际恐龙灯会开始网络直播,有着近千年历史自贡灯会进入“云游”时代,70余万人通过“云观灯”感受“天下第一灯”的璀璨,人数700000用科学记数法表示为()A .B .C .D .4. (1分) |﹣|的相反数是()A .B . ﹣C . 3D . -35. (1分)(2020·鹿邑模拟) 的相反数是()A . 3B .C . -3D .6. (1分) (2020七下·盐湖期末) 下列计算正确的是()A .B .C .D .7. (1分) (2019七上·昭通期末) 下列式子中是一元一次方程的是()A . +5B . 2 -3=1C . 2+6=10D . + =88. (1分)下列说法中,正确的是()A . 直线AB与直线BA是同一条直线B . 射线OA与射线AO是同一条射线C . 延长线段AB到点C,使AC=BCD . 画直线AB=5cm9. (1分) (2019七上·施秉月考) 若∠1+∠2=90°,∠1+∠3=90°,则()A . ∠2+∠3=180°B . ∠2+∠3=90°C . ∠2=∠3D . ∠2-∠3=45°10. (1分) (2018七上·渭滨期末) 下列说法正确的是()A . 单项式b的次数是0B . 是一次单项式C . 是7次单项式D . 的系数是-111. (1分)=()A . -1B . 1C . 2011D . -201112. (1分)下列说法正确的是()A . 两点之间的连线中,直线最短B . 若P是线段AB的中点,则AP=BPC . 若AP=BP,则P是线段AB的中点D . 两点之间的线段叫做这两点之间的距离二、填空题 (共7题;共7分)13. (1分)用“>”或“<”填空.(1)-0.01________0,(2)-3.5________-5 ,(3)-0.67________- .14. (1分) (2019七上·沙河口期末) 绝对值小于2.3的整数有________个.15. (1分) (2020七下·贵州期末) 已知与是同类项,则m+n=________.16. (1分) (2015九上·大石桥期末) 观察下列一组数:,它们是按一定规律排列的,那么这一组数的第n个数是________.17. (1分) (2019七上·香坊期末) 若关于的方程的解是,则a的值等于________.18. (1分) (2019七上·湖北月考) 如果∠α=35°,那么∠α的余角等于________°.19. (1分) (2019七上·克东期末) 我县12月份某天早晨,气温为﹣23℃,中午上升了10℃,晚上又下降了8℃,则晚上气温为________.三、解答题 (共5题;共7分)20. (1分) (2019七上·北京期中) 计算:(1)(2)(3)(4)21. (1分) (2019七上·松滋期中) 已知5a+3b=-4,求代数式2(a+b)+4(2a+b+2)的值.22. (1分)(1)计算:﹣14﹣(1﹣0.5)×(2)解方程:=2.23. (2分) (2020七上·无为期末) 一家服装店在换季时积压了一批服装.为了缓解资金的压力,决定打折销售.其中一条裤子的成本为80元,按标价五折出售将亏30元,(1)求这条裤子的标价是多少元?(2)另一件上衣按标价打九折出售,和这条裤子合计卖了230元,两件衣服恰好不赢不亏,求这件上衣的标价是多少元?24. (2分) (2020七上·洛宁期末) 如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,且∠BON=55°,求∠BOD的度数.参考答案一、单选题 (共12题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共7题;共7分)答案:13-1、答案:13-2、答案:13-3、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:三、解答题 (共5题;共7分)答案:20-1、答案:20-2、答案:20-3、答案:20-4、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、考点:解析:。

2020—2021学年安徽省芜湖市七年级上期末数学试卷含答案解析

∴ab<0,∴③错误;
∵b<0<a,|b|>|a|,
∴a﹣b>0,a+b<0,
∴a﹣b>a+b,∴④正确;
即正确的有①④,
故选B.
【点评】本题考查了数轴,有理数的乘法、加法、减法等知识点的应用,关键是能依照数轴得出b<0<a,|b|>|a|.
12.观看下列运算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,则:81+82+83+84+…+82020的个位数字是( )
又∠β+∠1=180°,
因此∠β=180°﹣∠1=154°.
故选C.
【点评】本题要紧考查了互补,互余的概念,在图形中正确找出角之间的关系是关键.
8.下列等式变形正确的是( )
A.假如s= ab,那么b= B.假如 x=6,那么x=3
C.假如x﹣3=y﹣3,那么x﹣y=0D.假如mx=my,那么x=y
【分析】依照相反数的概念解答即可.
【解答】解:A、2与2不是相反数,错误;
B、﹣2与2是相反数,正确;
C、2与﹣2是相反数,错误;
D、2与﹣2是相反数,错误;
故选B
【点评】本题考查了相反数的意义,一个数的相反数确实是在那个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.
22.油桶制造厂的某车间要紧负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人35人,每个工人平均每小时能够生产圆形铁片120片或者长方形铁片80片,如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?
23.(1)如图1,将两个正方形的一个顶点重合放置,若∠AOD=40°,则∠COB=度;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档