液压系统设计及计算

合集下载

液压传动系统设计计算例题

液压传动系统设计计算例题

液压传动系统设计计算例题1. 引言液压传动系统是一种常用的能量传递和控制系统,广泛应用于工程机械、航空航天、冶金、石油化工等领域。

本文将通过一个设计计算例题,介绍液压传动系统的设计过程和计算方法。

2. 设计要求设计一个液压传动系统,满足以下要求:•最大输出功率为100kW•最大工作压力为10MPa•最大转速为1500rpm•传动比为5:13. 功率计算根据设计要求,最大输出功率为100kW,转速为1500rpm,可以通过以下公式计算液压机的排量:功率(kW)= 排量(cm^3/rev) × 转速(rpm) × 压力(MPa) × 10^-6由于传动比为5:1,液压泵的排量为液压马达的5倍,因此液压泵的排量为:排量(cm^3/rev) = 功率(kW) / (转速(rpm) × 压力(MPa) × 10^-6 × 5)= 100 / (1500 × 10 × 10^-6 × 5)= 0.133 cm^3/rev4. 泵和马达的选择根据计算结果,液压泵的排量为0.133 cm^3/rev。

在实际中,可以选择一个接近或等于该排量的标准泵来满足需求。

假设我们选择了一台0.15 cm^3/rev的液压泵。

由于传动比为5:1,液压马达的排量为液压泵的1/5,因此液压马达的排量为:排量(cm^3/rev) = 液压泵排量 / 5= 0.15 / 5= 0.03 cm^3/rev同样地,我们可以选择一个接近或等于该排量的标准马达。

5. 油液流量计算油液流量可以通过以下公式计算:流量(L/min) = 排量(cm^3/rev) × 转速(rpm) / 1000液压泵的流量为:流量(L/min) = 0.15 × 1500 / 1000= 0.225 L/min液压马达的流量为:流量(L/min) = 0.03 × 1500 / 1000= 0.045 L/min6. 液压系统元件选择在设计液压传动系统时,除了液压泵和液压马达,还需要选择其他的液压元件,如油箱、油管、阀门等。

液压系统设计计算

液压系统设计计算

液压系统设计计算液压系统设计是指在机械设计中,通过使用液压技术来传递动力和控制目标的设计过程。

液压系统设计需要考虑多个因素,包括流体力学原理、液压元件的选择和配置、系统的工作参数等。

下面将介绍液压系统设计的一些基本计算。

首先,液压系统设计需要确定系统的工作参数,包括工作压力、流量和工作温度等。

工作压力是指系统中液体传递动力时所施加的压力,一般以帕斯卡为单位。

流量是指单位时间内通过液压系统的液体体积,一般以升/分钟为单位。

工作温度是指系统正常工作时液体的温度,一般以摄氏度为单位。

确定了工作参数后,液压系统设计还需要选择适当的液压元件。

液压元件包括液压泵、液压马达、液压阀等。

液压泵负责将机械能转换成液压能,并提供系统的流量和压力。

常用的液压泵有齿轮泵、柱塞泵和螺杆泵等。

液压马达则将液压能转换成机械能,常用的液压马达有齿轮马达、柱塞马达和液压缸等。

液压阀则用于控制液压系统的流量、压力和方向等。

常用的液压阀有溢流阀、换向阀和节流阀等。

功率(千瓦)=流量(升/分钟)x压力(帕)/600液压泵的选型还需要根据系统的工作压力和流量来确定。

一般来说,液压泵的压力和流量应该略大于系统的工作压力和流量,以确保系统正常工作。

液压泵的选择要考虑到工作环境的温度、液体的粘度和成本等因素。

液压缸的选择也需要进行一些计算。

输出力(牛顿)=压力(帕)x断面积(平方米)液压缸的选择要根据所需的输出力和工作压力来确定。

液压缸的密封性能和机械结构等因素也需要考虑。

另外,液压系统设计中还需要考虑管道的设计和安装。

管道的设计要根据系统的工作温度、压力和流量来确定。

管道的材料和尺寸选择要满足系统的需要,并保持良好的连接和密封性能。

综上所述,液压系统设计涉及到多个方面的计算和选择。

通过合理的设计和计算,可以确保液压系统的性能和可靠性。

因此,在液压系统的设计过程中,需要充分考虑各个因素,并进行适当的计算和分析。

液压传动系统设计与计算

液压传动系统设计与计算

第九章液压传动系统设计与计算液压系统设计的步骤大致如下:1.明确设计要求,进行工况分析。

2.初定液压系统的主要参数。

3.拟定液压系统原理图。

4.计算和选择液压元件。

5.估算液压系统性能。

6.绘制工作图和编写技术文件。

根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。

第一节明确设计要求进行工况分析在设计液压系统时,首先应明确以下问题,并将其作为设计依据。

1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。

2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。

3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。

图9-1位移循环图在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。

一、运动分析主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。

1.位移循环图L—t图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。

该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。

2.速度循环图v—t(或v—L)工程中液压缸的运动特点可归纳为三种类型。

图9-2为三种类型液压缸的v—t图,第一种如图9-2中实线所示,液压缸开始作匀加速运动,然后匀速运动,图9-2 速度循环图最后匀减速运动到终点;第二种,液压缸在总行程的前一半作匀加速运动,在另一半作匀减速运动,且加速度的数值相等;第三种,液压缸在总行程的一大半以上以较小的加速度作匀加速运动,然后匀减速至行程终点。

液压系统设计计算与应用实例

液压系统设计计算与应用实例

自动化焊接设备中液压驱动方案设计
焊接机器人
采用液压驱动可实现高精 度、高速度的焊接作业, 提高生产效率和焊接质量。
焊接变位机
通过液压缸和马达的驱动, 实现工件的快速翻转和精 确定位,方便焊接操作。
焊接夹具
利用液压缸的夹紧力,保 证工件在焊接过程中的稳 定性和精度。
总装线上举升、翻转机构实现方式
举升机构
环保型液压油
使用生物可降解液压油,减少 对环境的影响和污染。
能量回收技术
利用液压蓄能器等元件回收系 统中的能量,提高能量利用率 。
智能化节能控制系统
通过传感器和控制系统实时监 测和调整液压系统的运行状态
,实现智能化节能控制。
06 故障诊断与维护保养策略
常见故障类型及诊断方法
液压泵故障
检查泵的运转声音、温度和输出压力,判断 是否需要更换或维修。
定期清洗液压油箱和滤网,保持油液的清 洁度。
检查液压泵和马达
校验压力和流量
定期检查液压泵和马达的运转情况,及时 发现并处理异常。
定期校验系统的压力和流量,确保系统工作 正常。
应急处理措施和备件库存管理建议
应急处理措施
制定针对不同故障的应急处理预案, 包括临时替代方案、现场快速维修方 法等。
备件库存管理建议
液压油缸故障
检查油缸的密封件是否损坏,活塞杆是否弯 曲或磨损。
液压阀故障
观察阀的工作状态和油液流动情况,检查阀 芯是否卡滞或磨损。
液压管路故障
检查管路的连接是否松动或泄漏,判断是否 需要更换或紧固。
预防性维护保养计划制定
定期更换液压油
清洗液压油箱和滤网
根据设备使用情况和厂家建议,制定合理 的液压油更换周期。

第9章液压系统设计与计算

第9章液压系统设计与计算

要求,即
V q min n min
(9-7)
式中 qmin——输入液压马达的最低稳定流量。
排量确定后,可从产品样本中选择液压马达的型号。
(Hale Waihona Puke )执行元件最大流量的确定对于液压缸,它所需的最大流量qmax 就等于液压缸有效工作
面积A与液压缸最大移动速度vmax的乘积,即
qmax=A vmax
(9-8)
积)。
• 快进时:
差动系统
p F A1 A2
qv快 (A1A2)
非差动系统
p1
F A1
A2 A1
p2
q v快A1
P pq
•工进时:
p1
A2 A1
F pb A1
q v工A1
P p工q工
• 快退
p1
A2 A1
pb
F A1
qv快退A2
P pq
图9-2 组合机床执行元件工况图
压力图9-2a,流量图9-2b,功率图9-2c。
求出了平均功率,还要验算每个阶段电机的超载量是否在
允许的范围内,一般允许短期超载25%。在范围内时,可根据 平均功率P和泵的转速n从产品样本中选择。
对于限压式变量泵系统,按(9-13)式分别计算快速与慢速 两种工况时所需要的驱动功率,计算后按较大的作为选择电机
的依据。由于限压式变量泵在快速与慢速转换过程中,必须经
图9-1a)是机床的动作循环图。 由图可见,工作循环为快进→工进 →快退;
图9-1b )是完成一个工作循环的 速度→位移曲线,即速度图。
图9-1c)是该组合机床的负载图。
2. 负载分析
图9-1c)是该组合机床的负载图,按设备的工艺要求,把执 行元件在各阶段的负载用曲线表示出来,可直观地看出在运动 过程中何时受力最大、最小等各种情况,作为以后的设计依据。

常用液压设计计算公式

常用液压设计计算公式

常用液压设计计算公式液压设计计算是指根据液压原理和工作条件,对液压系统进行各种设计参数的计算。

常用的液压设计计算公式包括以下几个方面:1.流量计算公式:流量是液压系统中液体通过单位时间内的体积或质量,常用的流量计算公式有:-液体通过管道的流速公式:v=A/t其中,v为液体的流速,A为液体通过的横截面积,t为流经该横截面的时间。

-流量公式:Q=Av其中,Q为液体的流量,A为液体通过的横截面积,v为液体的流速。

2.压力计算公式:压力是液体对单位面积的作用力,常用的压力计算公式有:-压力公式:P=F/A其中,P为液体的压力,F为作用在液体上的力,A为液体所受力的面积。

- 泊松公式:P=gh其中,g为重力加速度,h为液体的高度。

3.功率计算公式:功率是液压系统中单位时间内产生或消耗的能量,常用的功率计算公式有:-功率公式:P=Q×P其中,P为液体的功率,Q为液体的流量,P为液体的压力。

-功率公式:P=F×v其中,P为液体的功率,F为作用在液体上的力,v为液体的流速。

4.流速计算公式:流速是单位时间内液体通过管道的速度,常用的流速计算公式有:-流速公式:v=Q/A其中,v为液体的流速,Q为液体的流量,A为液体通过的横截面积。

- 流速公式:v=√(2gh)其中,v为液体的流速,g为重力加速度,h为液体的高度。

5.根据功率计算液压缸的力和速度:-液压缸力的计算公式:F=P/A其中,F为液压缸的力,P为液体的压力,A为液压缸的有效工作面积。

-液压缸速度的计算公式:v=Q/A其中,v为液压缸的速度,Q为液体的流量,A为液压缸的有效工作面积。

以上是液压设计常用的一些计算公式,根据具体液压系统的工作条件和设计要求,可以选择适合的公式进行计算。

在实际设计中,还需要考虑液体的黏度、泄漏、阻力等因素对计算结果的影响,综合考虑才能得到更精确的设计结果。

液压系统设计计算

液压系统设计计算
背景
液压系统是一种广泛应用于各种机电设备的动力传递方式,在工业、农业、航空、航天、汽车、机械等领域都有广泛应用。

液压系统具有承载力大、体积小、传动效率高、动作平稳等优点,因此在众多领域得到了广泛应用。

液压系统设计的主要问题是要选择合适的液压元件,如油泵、安全阀、溢流阀、液控单元、调速阀等,并根据工作条件进行设计计算。

设计计算
油泵
油泵是液压系统的核心,其主要用途是将机油从液压油箱中通过吸油管道吸入,并通过压油管道输送到需要使用的部件。

根据压力和流量的要求,油泵的选用需要考虑以下几个因素:
•工作压力(p),一般液压系统的工作压力在2030MPa,较高的系统要求可达到4070MPa。

•流量需求(Q),即单位时间内油泵需要输送的油量,单位为L/min。

•泵的静压效率(ηp),即油泵静水位监控时泵的输出功率与输入功率之比,一般在70%~95%之间。

•泵的机械效率(ηm),即泵的机械损耗与输出功率之比,一般在90%~96%之间。

•泵的总效率(ηt),即油泵的总输出功率与输入功率之比。

油泵的选用需要根据上述几个因素进行综合考虑,这里以某工业机械设备为例
进行设计计算。

该设备的工作压力为25MPa,流量需求为200L/min,要求油泵的
静压效率不低于85%,机械效率不低于92%。

根据上述要求,我们可以选择一款型号为。

液压系统常用计算公式

液压系统常用计算公式液压系统是利用流体的力学性质来传递能量和控制运动的系统。

在设计和分析液压系统时,常常需要使用各种计算公式来预测和评估系统的性能。

以下是液压系统常用的计算公式:1.流量计算公式:液体的流量通常用单位时间内通过管道横截面的体积来表示。

液体的流量可以使用以下公式来计算:Q=A*V其中,Q表示流量,A表示管道的横截面积,V表示液体的平均流速。

2.压力计算公式:液体的压力是指单位面积上的力。

液体的压力可以使用以下公式来计算:P=F/A其中,P表示压力,F表示作用于液面上的力,A表示液面的面积。

3.功率计算公式:液压系统的功率表示单位时间内做功的能力。

液压系统的功率可以使用以下公式来计算:P=F*V其中,P表示功率,F表示作用力,V表示速度。

4.泵的效率计算公式:液压系统中的泵是用来加压液体的装置。

泵的效率表示输入能量与输出能量的比例。

泵的效率可以使用以下公式来计算:η = (Po - Pi) / Pin * 100%其中,η表示效率,Po表示输出功率,Pi表示输入功率,Pin表示输入功率的绝对值。

5.液体平均流速计算公式:液压系统中的液体平均流速表示液体通过管道的平均速度。

液体平均流速可以使用以下公式来计算:V=Q/A其中,V表示液体平均流速,Q表示流量,A表示管道的横截面积。

6.液体流速计算公式:液压系统中的液体流速指液体通过管道的实际速度。

液体流速可以使用以下公式来计算:V=0.408*(P/ρ)^0.5其中,V表示液体流速,P表示液体的压力,ρ表示液体的密度。

7.泵的排量计算公式:液压系统中的泵的排量表示单位时间内泵所能输送的液体体积。

泵的排量可以使用以下公式来计算:Q=V*n其中,Q表示泵的排量,V表示一次泵送的体积,n表示泵的转速。

8.液力传动比计算公式:液力传动比表示输出转矩与输入转矩的比例。

液力传动比可以使用以下公式来计算:I=T2/T1其中,I表示液力传动比,T2表示输出转矩,T1表示输入转矩。

液压系统的设计计算步骤和内容

• 对于复杂的液压系统,如有若干个执行元件同时或分别完成不同的工 作循环,则有必要按上述各阶段计算总负载力,并根据上述各阶段的 总负载力和它所经历的工作时间t(或位移s),按相同的坐标绘制液压缸 的负载时间(F―t)或负载位移(F―s)图。如图9.l所示为某机床主液压缸 的速度图和负载图。
• 最大负载值是初步确定执行元件工作压力和结构尺寸的依据。 • 液压马达的负载力矩分析与液压缸的负载分析相同,只需将上述负载
设计计算
步骤和内容
4~5
>5~7
18
系统工作压力的确定
表9-3 按主机类型选择系统工作压力
设备 类型
磨床
机床
组合机床 牛头刨床
插床 齿轮加工
机床
车床 铣床 镗床
珩磨 拉床 机 龙门 床 刨床
农业机械 汽车工业 小型工程 机械及辅 助机械
工程机械 重型机械 锻压设备 液压支架
船用 系统
压力 /MPa
摆动缸
单叶片缸转角小于300°,双叶片缸转角小于150°
往复摆动运动
齿轮、叶片马达 轴向柱塞马达 径向柱塞马达
结构简单、体积小、惯性小 运动平稳、转大、转速范围宽 结构复杂、转大、转速低
设计计算
步骤和内容
高速小转矩回转运动 大转矩回转运动 低速大转矩回转运动
7
负载分析
• 负载分析就是通过计算确定各液压执行元件的负载大小和方向,并分 析各执行元件运动过程中的振动、冲击及过载能力等情况。
设计计算
步骤和内容
2
1.1 液压系统的设计依据和工况分析
液压系统的设计依据
• 设计要求是进行工程设计的主要依据。设计前必须把主机对液压系统 的设计要求和与设计相关的情况了解清楚,一般要明确下列主要问题:

液压设计需要哪些计算公式

液压设计需要哪些计算公式液压系统是一种利用液体传递能量的动力传动系统,广泛应用于机械工程、航空航天、船舶、汽车等领域。

在液压系统的设计过程中,需要进行各种计算以确保系统的安全可靠性和性能指标的满足。

本文将介绍液压系统设计中常用的计算公式,包括液压缸的推力计算、液压泵的流量计算、液压阀的压降计算等内容。

1. 液压缸的推力计算。

液压缸是液压系统中常用的执行元件,其推力的计算是设计液压系统时的重要参数。

液压缸的推力计算公式为:F = P × A。

其中,F为液压缸的推力,单位为牛顿(N);P为液压缸的工作压力,单位为帕斯卡(Pa);A为液压缸的有效工作面积,单位为平方米(m²)。

2. 液压泵的流量计算。

液压泵是液压系统中的动力源,其流量的计算是设计液压系统时的关键参数。

液压泵的流量计算公式为:Q = V × n。

其中,Q为液压泵的流量,单位为立方米每秒(m³/s);V为液压泵的排量,单位为立方厘米每转(cm³/r);n为液压泵的转速,单位为转每分钟(r/min)。

3. 液压阀的压降计算。

液压阀是液压系统中的控制元件,其压降的计算是设计液压系统时的重要参数。

液压阀的压降计算公式为:ΔP = K × Q²。

其中,ΔP为液压阀的压降,单位为帕斯卡(Pa);K为液压阀的流量系数,是与液压阀的结构和工作原理相关的参数;Q为液压阀的流量,单位为立方米每秒(m³/s)。

4. 液压管路的压力损失计算。

液压管路是液压系统中的传输元件,其压力损失的计算是设计液压系统时的重要参数。

液压管路的压力损失计算公式为:ΔP = f × L × (Q/D)²。

其中,ΔP为液压管路的压力损失,单位为帕斯卡(Pa);f为液压管路的摩阻系数,是与管路材料和管路形状相关的参数;L为液压管路的长度,单位为米(m);Q为液压管路的流量,单位为立方米每秒(m³/s);D为液压管路的直径,单位为米(m)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压系统的设计及excel自动计算表:(浅兰色框中为基本数据---黄色框中为自动公式计算结果) 项目 符号 数据 单位 单位符号 计算公式或说明 1.液压泵的选择计算 η v 容积效率 0.85 可选参数范围:0.7~0.95 q0 泵的排量 34.7 毫升/转 ml/r 该值与电机转速相乘等于泵的流量 泵的转速 n 1500 转/分 r/min 机械减速比等于1时,等于电机转速 泵的流量 Q 44.24 升/分 L/min Q≤q0 nη v 10- ³ 中低压为7-14Mpa;中高压为21-31.5Mpa;为减小漏 p工 工作压力 7 兆帕 Mpa 油及制作成本,通常采用中低压。 泵的计算 p计 压力 泵的额定 p泵 压力 2.液压缸的计算 液压缸的 类型 油缸缸径 油缸活塞 杆直径 油缸行程 油缸数量 油缸推力 油缸拉力 油缸推速 度 油缸拉速 度 推出油缸 时间 D d L z FT FL VT VL T1 9.10 10 兆帕 兆帕 Mpa Mpa p计≥1.3P 等于p计按油泵铭牌压力值取整数得。
45MPa)
兆帕 兆帕 兆帕 毫米
当P≤7MPa时,n=8;当P≤17.5MPa时,n=6;当P>17.5MPa时,n=4; Mpa 钢管451Mpa; Mpa 铜管210Mpa; σ p =σ b /n Mpa δ ≧P工da/(2σ p ) mm
***********特别说明1、本表上面保护工作表的制作方法为:点击顶排---审阅---允许用户编辑区域---新区域对话框中--引用单元格下的=号后点击---按back 退格键清除=号前的文字---ctrl键不松手的同时,光标选中其上可修改的蓝 色单元格---点击新区域对话框中的:确定---点新出的:允许用户编辑区域对话框中的:保护工作表按钮---保持电脑默 认的勾选的顶上1、2两格(选定锁定单元格---选定未锁定的单元格)---对话框中长空处:键入密码555等字样---新出确 认密码对话框中再次键入555等字样---点击:确定---OK。**********
45MPa)
兆帕 兆帕 兆帕 毫米
当P≤7MPa时,n=8;当P≤17.5MPa时,n=6;当P>17.5MPa时,n=4; Mpa 钢管451Mpa; Mpa 铜管210Mpa; σ p =σ b /n Mpa δ ≧P工da/(2σ p ) mm
***********特别说明本表上面为可变参数的,可使用表;本表下面为封存参考样表。********** 液压系统的设计及excel自动计算表:(浅兰色框中为基本数据---黄色框中为自动公式计算结果) 项目 符号 数据 单位 单位符号 计算公式或说明 1.液压泵的选择计算
容积效率 泵的排量 泵的转速 泵的流量 工作压力
η v q0 n Q p工

0.85 34.7 1500 44.24 7 9.10 10
毫升/转 转/分 升/分 兆帕 兆帕 兆帕
ml/r r/min L/min Mpa Mpa Mpa
可选参数范围:0.7~0.95 该值与电机转速相乘等于泵的流量 机械减速比等于1时,等于电机转速 Q≤q0 nη v 10 ³ 中低压为7-14Mpa;中高压为21-31.5Mpa;为减小漏 油及制作成本,通常采用中低压。 p计≥1.3P 等于p计按油泵铭牌压力值取整数得。
泵的计算 p计 压力 泵的额定 p泵 压力 2.液压缸的计算 液压缸的 类型 油缸缸径 油缸活塞 杆直径 油缸行程 油缸数量 油缸推力 油缸拉力 油缸推速 度 D d L z FT FL VT
标准型 150 80 400 1 123.70 88.51 2.50 3.50 9.59 6.86 0.82 毫米 毫米 毫米 个 千牛 千牛 米/分 米/分 秒 秒
***********特别说明2、大目标---设计管理杂谈一、机械及设备的设计应该分为三个阶段进行(而不应该没有管理层次 的不分阶段的同时进行):1:方案设计(目的表达设计的意图,而暂时不详细表达尺寸等细节结构)。2:结构及功能设 计(目的表达详细尺寸等细节结构,以满足使用功能要求)。3:装饰设计(目的变化各种装饰面板设计,以满足美感的 要求)---OK。********** ***********特别说明3、大目标---设计管理杂谈二、机械及设备的研发应该分为三个阶段进行(而不应该没有管理层次 的不分阶段的同时进行):1:方案设计(目的表达设计的意图,而暂时不详细表达尺寸等细节结构)。2:关键设备结构 与机械原理的缩小实物倍数的实物制作试验(目的通过实践验证方案设计的可行性与正确性,以满足在其后的结构及功能 设计的心中有数的要求)。3:正式按1:1尺寸进行装饰设计结构及功能设计(目的表达详细尺寸等细节结构,以满足使 用功能要求)。4:装饰设计(目的变化各种装饰面板设计,以满足美感的要求)---OK。********** ***********特别说明4、大目标---设计管理杂谈三、机械及设备的设计应该如何进行设计进度的管理:方案1:对于公司 新开发的产品或工装及设备的设计,大家上上下下心中都没有数,此时要确定设计的完成时间是不现实的,相应采取的提 高设计进度的方法之一便是同时安排2至3个设计小组(或设计人员)(或设计分包单位)分别下达同一个设计任务进行设 计(目的相当于安排从2至3个方向同时进攻一个城池,在竞争安排中求得设计进度与设计质量),并由此对比中进行绩效 考核。方案2:对于公司已完成开发的产品或工装及设备的设计,大家上上下下心中都已有数,现在只须进一步扩大产品 或工装及设备的大、中、小不同尺寸规格的设计工作,此时,可按预计有多少张图纸需要设计,每张图纸约需要多长时间 来设计来编制初步设计计划完成时间任务书,来与设计人员讨论后,达成设计完成所须时间的设计计划完成时间任务书, 并由此进行绩效考核---OK。**********
分别键入 液压缸分:可调型(缸体前后都有活塞杆伸出)与 可调型与 标准型(缸体只有一头有活塞杆伸出)---由此导致 标准型文 液压缸的输出压力与活塞杆的移动速度不一致。 字 mm mm mm KN KN m/min m/min s s FT =P工π (D/2)²10- ³(标准型)或FT =FL (可调型) FL =P工π [(D/2)²-(d/2)²]10- ³ VT =Q/[60zπ (D/2)²10 ³]*60(标准型) 或VT =VL (可调型) VL =Q/{60zπ [(D/2)²-(d/2)²]10- ³}*60 T1 =60L10 ³/VT T2 =60L10 ³/VL 可选参数范围:0.8~0.9
-
油缸拉速 VL 度 推出油缸 T1 时间 拉回油缸 T2 时间 3.电机的选择计算 总效率 η
输入功率 P 4.油箱的计算 方法一: 油箱容积 β 系数 油箱容积 V
8.99
千瓦
KW
Pp泵≥pQ/(60η )
6 265.46 升 L
可选参数范围:一般液压3~6倍;冲压锻压6~12倍
V≥β Q: 单位关系:升=长(米)*宽(米)*高(米)*1000 方法二:考虑到液压油工作油温不要迅速升高,而导致更易漏油,故方法二值仅作参考,按方法一值作为油箱尺寸的制作依据。 V = 5*(油缸容积V1+管道容积V2) 油箱容积 V 53.79 升 L 单位关系:升=长(米)*宽(米)*高(米)*1000 油缸容积 V1 7.07 升 L V1=π [(D/2)²*油缸行程L/1000000 管道容积 V2 3.69 升 L V2=π [(油管内径da/2)²*油管总长La/1000000 管的内径 da 15.33 毫米 mm d≧4.61(Q/Va)1/2 管内的许 短管道及局部收缩处取ν ≤7~10m/s; Va 4 米/秒 m/s 用流速 一般取ν ≤0.5~6m/s; 油管总长 La 20000 毫米 mm 按供回油管总长的现场实际情况定。 5.油管直径的计算 左格分别输入铜管与钢管字样即可。 选用管材 铜管 可选用:铜管、钢管及软管(钢丝缠绕增强外覆液压橡胶软管承压16.5安全系数 抗拉强度 抗拉强度 许用应力 管的壁厚 n σb σb σp δ 6 451 210 35.00 1.53
标准型 150 80 400 1 123.70 88.51 2.50 3.50 9.59 毫米 毫米 毫米 个 千牛 千牛 米/分 米/分 秒
分别键入 液压缸分:可调型(缸体前后都有活塞杆伸出)与 可调型与 标准型(缸体只有一头有活塞杆伸出)---由此导致 标准型文 液压缸的输出压力与活塞杆的移动速度不一致。 字 mm mm mm KN KN m/min m/min s FT =P工π (D/2)²10 ³(标准型)或FT =FL (可调型) FL =P工π [(D/2)²-(d/2)²]10- ³ VT =Q/[60zπ (D/2)²10- ³]*60(标准型) 或VT =VL (可调型) VL =Q/{60zπ [(D/2)²-(d/2)²]10 ³}*60 T1 =60L10- ³/VT
-
拉回油缸 T2 时间 3.电机的选择计算 总效率 η 输入功率 P 4.油箱的计算 方法一: 油箱容积 β 系数 油箱容积 V
6.86 0.82 8.99

s
T2 =60L10- ³/VL 可选参数范围:0.8~0.9 Pp泵≥pQ/(60η )
千瓦
KW
6 265.46 升 L
可选参数范围:一般液压3~6倍;冲压锻压6~12倍
V≥β Q: 单位关系:升=长(米)*宽(米)*高(米)*1000 方法二:考虑到液压油工作油温不要迅速升高,而导致更易漏油,故方法二值仅作参考,按方法一值作为油箱尺寸的制作依据。 V = 5*(油缸容积V1+管道容积V2) 油箱容积 V 53.79 升 L 单位关系:升=长(米)*宽(米)*高(米)*1000 油缸容积 V1 7.07 升 L V1=π [(D/2)²*油缸行程L/1000000 管道容积 V2 3.69 升 L V2=π [(油管内径da/2)²*油管总长La/1000000 1/2 管的内径 da 15.33 毫米 mm d≧4.61(Q/Va) 管内的许 短管道及局部收缩处取ν ≤7~10m/s; Va 4 米/秒 m/s 用流速 一般取ν ≤0.5~6m/s; 油管总长 La 20000 毫米 mm 按供回油管总长的现场实际情况定。 5.油管直径的计算 左格分别输入铜管与钢管字样即可。 选用管材 铜管 可选用:铜管、钢管及软管(钢丝缠绕增强外覆液压橡胶软管承压16.5安全系数 抗拉强度 抗拉强度 许用应力 管的壁厚 n σb σb σp δ 6 451 210 35.00 1.53
相关文档
最新文档