高三数学上学期第一次月考试题 文 人教版 新版
安徽省六安市城南中学2021届高三数学上学期第一次月考试题文

安徽省六安市城南中学2021届高三数学上学期第一次月考试题 文一、单选题(共12题;共60分)1.已知集合{}|M x x N =∈,则( )A A 、0M ∈ B 、M π∈ C 、2M ∈ D 、1M ∉2. “-1x =”是“2230x x --=”的( )AA 、充分不必要条件B 、充要条件C 、必要不充分条件D 、既不充分也不必要条件3.已知集合{}212,4,2A a a a =+-,且3A -∈,则a =( )DA 、1-B 、31--或C 、3D 、3-4.如果函数f (x )=x 2-ax -3在区间(-∞,2]上单调递减,那么实数a 满足的条件是( )CA .a ≥2B .a ≤2C .a ≥4D .a ≥-45.命题“若 ,则 ”的否命题为( ) DA.若 ,则 且B.若 ,则 或C.若 ,则 且D.若 ,则 或6.若函数满足, 则=( )BA. B.C. D. 或7.函数2(33)x y a a a =--是指数函数,则有( ) BA .14a a =-=或B .4a =C .1a =-D .01a a >≠或8.与函数f (x )=表示同一函数提( ) D A. g (x )=B. g (x )=()2 C. g(x)=x D. g (x )=|x| 9.已知2()355f x ax bx a b =+-+是偶函数,且其定义域为[]31,a a -,则a b +=( ) CA. 17B. 12C. 14D.7 10.幂函数y =f (x )的图象经过点(2,4),则f (x )是( ) AA.偶函数,且在(0,+∞)上是增函数B.偶函数,且在(0,+∞)上是减函数C.奇函数,且在(0,+∞)上是减函数D.非奇非偶函数,且在(0,+∞)上是增函数11.如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f (-1+x )=f (-x ),那么( ) BA .f (0)<f (2)<f (-2)B .f (0)<f (-2)<f (2)C .f (2)<f (0)<f (-2)D .f (-2)<f (0)<f (2)12.已知函数是R 上的单调递增函数,则实数 的取值范围是( )CA. B. C. D.二、填空题(共4题;共20分)13.已知命题2:,10p x R x x ∀∈-+≤,则P ⌝为________2000,10x R x x ∃∈-+>14.函数1()214x f x x =---的定义域为________ [0,4)(4,)+∞ 15. 化简2112333324()3a b a b -⋅÷-的结果为________ 136ab --16.函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如下图所示,那么不等式f (x )<0的解集为________.三、解答题(共6题;共70分)17.函数2()(31)m f x m m x =--是幂函数,且在(0,)x ∈+∞上为增函数,则实数m 的值是多少?解:由2311m m --=得,23m m =-或=1 又(0,)x ∈+∞上为增函数,则1m =18.已知集合 ,. (1)当5a =时,求 ;(2)若 ,求实数a 的取值范围.解:(1)当时,{}37A x x =-≤≤, , ∴ {}3147A B x x x =-≤≤-≤≤或(2)若 ,此时 ,∴ ,满足 ,当 时, ,∵ ,∴,∴ . 综上可知,实数a 的取值范围是 .19.已知函数f (x )为(0,+∞)上的增函数,若2()(8)f a a f a ->+,则实数a 的取值范围是多少?解析:由已知可得220880a a a a a a ⎧->⎪->+⎨⎪+>⎩,解得(8,2)(4,)a ∈--⋃+∞20.已知函数()2x f x x =- . (1)求函数的定义域和值域; (2)判断函数 在区间 上单调性,并用定义来证明所得结论. 解:(1)222()122x f x x x -+==+-- , 的定义域为{}2x x ≠ .值域 (2)由函数解析式得该函数在为减函数,下面证明: 任取 ,且 ,, 211212122()22()()1(1)22(2)(2)x x f x f x x x x x --=+-+=---- ,,1220,20x x ->-> ,. 函数在 ()2x f x x =- 为减函数21. 函数f (x )=k ·a -x (k ,a 为常数,a >0且a ≠1)的图象过点A (0,1),B (3,27).(1)求函数f (x )的解析式;(2)若函数g (x )=f (x )-1f (x )+1,试判断函数g (x )的奇偶性,并给出证明. [解析] (1)由已知得3127k k a -=⎧⎨⋅=⎩,∴k =1,a =13,∴f (x )=3x . (2)函数g (x )为奇函数.证明:31()31x x g x -=+,其定义域为R , 又311331()()311331x x x x x x g x g x ------===-=-+++,∴函数g (x )为奇函数.22.已知函数f (x )=|3x +1|-2|x -1|.(1)画出y=f(x)的图象;(2)求不等式f(x)>1的解集.解析:(1)由题设知f(x)=⎩⎪⎨⎪⎧-x-3,x≤-13,5x-1,-13<x≤1,x+3,x>1.y=f(x)的图象如图所示.(2)24,5x x x⎧⎫<->⎨⎬⎩⎭。
江苏省扬州中学2022-2023学年高三上学期1月月考(期末)数学试题 附答案

江苏省扬州中学2022-2023学年度1月月考试题 高三数学 2023.01试卷满分:150分, 考试时间:120分钟一、单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.)1.已知复数3i z =(i 为虚数单位),则22z z-的共轭复数的模是( )A .1B .3C .5D .72.已知集合(){}{}ln 12,Z 3sin A x x B y y x =+<=∈=,则A B =( )A .{}0,1,2,3B .{}0,3C .{}3D .∅3.设123,,a a a ∈R ,则“123,,a a a 成等比数列”是“()()()2222212231223a a a a a a a a ++=+”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.某中学全体学生参加了数学竞赛,随机抽取了400名学生进行成绩统计,发现抽取的学生的成绩都在50分至100分之间,进行适当分组后(每组为左闭右开的区间),画出频率分布直方图如图所示,每组数据以组中值(组中值=(区间上限+区间下限)/2)计算),下列说法正确的是( )A .直方图中x 的值为0.035B .在被抽取的学生中,成绩在区间[)70,80的学生数为30人C .估计全校学生的平均成绩为83分D .估计全校学生成绩的样本数据的80%分位数约为95分5.已知π0,2α⎛⎫∈ ⎪⎝⎭,且tan 32πcos 4αα⎛⎫+= ⎪⎝⎭,则sin 2α=( )A .13- B .16 C .13 D .236.在平面直角坐标系xOv 中,M 为双曲线224x y -=右支上的一个动点,若点M 到直线20x y -+=的距离大于m 恒成立,则实数m 的最大值为( )A. 1B. 2C. 2D. 227.如图是一个由三根细棒PA 、PB 、PC 组成的支架,三根细棒PA 、PB 、PC 两两所成的角都为60︒,一个半径为1的小球放在支架上,则球心O 到点P 的距离是( )A .32 B .2 C .3 D .28.已知函数()f x 及其导函数()f x '的定义域均为R ,且()52f x +是偶函数,记()()g x f x '=,()1g x +也是偶函数,则()2022f '的值为( )A .-2B .-1C .0D .2二、多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中.) 9.如图,在正方体1111ABCD A B C D -中,E 为1AA 的中点,则( ) A .11//A D 平面BEC B .1AB ⊥平面BECC .平面11AA B B ⊥平面BECD .直线1DD 与平面BEC 所成角的余弦值为5510.已知函数()()2πsin 02f x x ϕϕ⎛⎫=+<< ⎪⎝⎭的一条对称轴为π3x =,则( )A .()f x 的最小正周期为πB .()104f =C .()f x 在π2π,33⎛⎫⎪⎝⎭上单调递增 D .π6x f x ⎛⎫≥- ⎪⎝⎭11.已知数列{}n a 中,12a =,()21212n n a a +=++-,则关于数列{}n a 的说法正确的是( )A .25a =B .数列{}n a 为递增数列C .221n a n n =+- D .数列11n a ⎧⎫⎨⎬+⎩⎭的前n 项和小于3412.已知函数()sin f x x =,()()0g x kx k =>,若()f x 与()g x 图象的公共点个数为n ,且这些公共点的横坐标从小到大依次为1x ,2x ,…,n x ,则下列说法正确的有( )A .若1n =,则1k >B .若3n =,则33321sin 2x x x =+ C .若4n =,则1423x x x x +<+ D .若22023k π=,则2024n =三、填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13.已知52212x ax ⎛⎫+ ⎪⎝⎭展开式中的各项系数和为243,则其展开式中含2x 项的系数为_____.14.已知()()2,1,3,a b a b a ==--⊥,则a 与b 的夹角为__________.15.已知()()12,0,,0F c F c -为椭圆2222:1x y C a b+=的两个焦点,P 为椭圆C 上一点(P 不在y轴上),12PF F △的重心为G ,内心为M ,且12//GM F F ,则椭圆C 的离心率为___________.16.对于函数()f x 和()g x ,设{|()0}x f x α∈=,{|()0}x g x β∈=,若存在α、β,使得||1αβ-<,则称()f x 与()g x 互为“零点相邻函数”.若函数1()e 2-=+-x f x x 与2()3g x x ax a =--+互为“零点相邻函数”,则实数a 的取值范围为______.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17.已知数列{}n a 满足,12(1)nn n a a +=+⋅-.(1)若11a =,数列{}2n a 的通项公式; (2)若数列{}n a 为等比数列,求1a .18.记锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan cos cos A CB A C+=+.(1)求B ;(2)求()2a c ab -的取值范围.19.密室逃脱可以因不同的设计思路衍生出不同的主题,从古墓科考到蛮荒探险,从窃取密电到逃脱监笼,玩家可以选择自己喜好的主题场景在规定时间内完成任务,获取奖励.李华参加了一次密室逃脱游戏,他选择了其中一种模式,该游戏共有三关,分别记为A ,B ,C ,他们通过三关的概率依次为:211,,323.若其中某一关不通过,则游戏停止,游戏不通过.只有依次通过A ,B ,C 三道关卡才能顺利通关整个游戏,并拿到最终奖励.现已知参加一次游戏的报名费为150元,最终奖励为400元.为了吸引更多的玩家来挑战该游戏,商家推出了一项补救活动,可以在闯关前付费购买通关币.游戏中,若某关卡不通过,则自动使用一枚通关币通过该关卡进入下一关.购买一枚通关币需另付100元,游戏结束后,剩余的未使用的通关币半价回收.(1)若李华同学购买了一枚通关币,求他通过该游戏的概率. (2)若李华同学购买了两枚通关币,求他最终获得的收益期望值.(收益等于所得奖励减去报名费与购买通关币所需费用).20.图1是直角梯形ABCD ,AB CD ,90D ∠=,2AB =,3DC =,3AD =,2CE ED =,以BE 为折痕将BCE 折起,使点C 到达1C 的位置,且16AC =,如图2. (1)求点D 到平面1BC E 的距离;(2)若113DP DC =,求二面角P BE A --的大小.21.已知点()1,2Q 是焦点为F 的抛物线C :()220y px p =>上一点. (1)求抛物线C 的方程;(2)设点P 是该抛物线上一动点,点M ,N 是该抛物线准线上两个不同的点,且PMN 的内切圆方程为221x y +=,求PMN 面积的最小值.22.已知函数()ln f x x ax a =-+,其中R a ∈. (1)讨论函数()f x 的单调性;(2)若()f x 在(]0,1上的最大值为0, ①求a 的取值范围;①若2()31f x kx ax ≤-+恒成立,求正整数k 的最小值.参考答案: 1.C 【详解】因为3i i z ==-,所以22212i 112i i z z -=+=+=+-,所以22z z -的共轭复数为12i -,12i 5-=,所以22z z-52.A 【详解】由()ln 12x +<,可得201e x <+<,则{}21e 1A x x =-<<-∣ 又{}{}Z 3sin 3,2,1,0,1,2,3B y y x =∈==---,所以{}0,1,2,3A B =.3.A 【详解】①若123,,a a a 成等比数列,则2213a a a =⋅,所以()()22221223a a a a ++()()22113133a a a a a a =+⋅⋅+()()113133a a a a a a ⎡⎤⎡⎤=++⎣⎦⎣⎦()21313a a a a =+()22132a a a =+()2132a a a ⎡⎤=+⎣⎦()21223a a a a =+;①若1230a a a ===,满足()()()2222212231223a a a a a a a a ++=+,但是不满足123,,a a a 成等比数列(因为等比数列中不能含有0)“123,,a a a 成等比数列”是“()()()2222212231223a a a a a a a a ++=+”的充分不必要条件, 4.D 【详解】对于A :根据学生的成绩都在50分到100分之间的频率和为1,可得10⨯(0.005+0.01+0.015+x +0.040)=1,解得x =0.03,故A 错误;对于B :在被抽取的学生中,成绩在区间[)70,80的学生数为10⨯0.015⨯400=60人, 故B 错误;对于C :估计全校学生的平均成绩为55⨯0.05+65⨯0.1+75⨯0.15+85⨯0.3+95⨯0.4=84分; 故C 错误.对于D :全校学生成绩的样本数据的80%分位数约为0.29010950.4+⨯=分. 故D 正确.5.D 【详解】设π4αβ+=,π3π,44β⎛⎫∈ ⎪⎝⎭,则π4αβ=-,tan 32πcos 4αα⎛⎫+= ⎪⎝⎭, 即πtan 3cos 23sin 22βββ⎛⎫=-= ⎪⎝⎭,sin 6sin cos cos ββββ=,sin 0β≠, 故21cos 6β=,22sin 2sin 2cos 212cos 23παβββ⎛⎫=-=-=-= ⎪⎝⎭.6.B 【详解】由点M 到直线20x y -+=的距离大于m 恒成立,可得点M 到直线20x y -+=的最近距离大于m .因为双曲线的渐近线为y x =,则y x =与20x y -+=的距离222d ==即为最近距离,则2m ≤,即max 2m =.7.C 【详解】如图所示,连接,,AB AC BC ,作ABC 所在外接圆圆心1O ,连接1,AO AO ,设PA x =,由PA 、PB 、PC 两两所成的角都为60︒可得AB AC BC x ===,因为1O 为ABC 几何中心,所以132332333AO AB AB x =⋅⋅==,易知对1PAO △和POA ,1,90P P PO A PAO ∠=∠∠=∠=︒,所以1PAO POA △≌△,所以1PA PO AO AO =,即133xPOx =,解得3PO =.故选:C8.C 【详解】因为()52f x +是偶函数,所以(52)(52)f x f x -+=+ ,两边求导得5(52)5(52)f x f x ''--+=+ ,即(52)(52)f x f x ''--+=+,所以(52(52)g x g x +=--+),即()(4)g x g x =--+, 令2x = 可得(2)(2)g g =- ,即(2)0=g , 因为()1g x +为偶函数,所以(1)(1)g x g x +=-+ ,即()(2)g x g x =-+ , 所以(4)(2)g x g x --+=-+ ,即()(2)g x g x =-+ ,(4)(2)()g x g x g x ∴+=-+= ,所以4是函数()g x 的一个周期, 所以(2022)(2022)(50542)(2)0f g g g '==⨯+==, 9.ACD10.ABD 【详解】因为函数21cos(22)11()sin ()cos(22)222x f x x x ϕϕϕ-+=+==-++, 因为函数()()2πsin 02f x x ϕϕ⎛⎫=+<< ⎪⎝⎭的一条对称轴为3x π=,所以π22π,()3k k ϕ⨯+=∈Z ,解得:ππ,()23k k ϕ=-∈Z , 又因为π02ϕ<<,所以π1,6k ϕ==,则1π1()cos(2)232f x x =-++,对于A ,函数()f x 的最小正周期πT =,故选项A 正确;对于B ,1111(0)2224f =-⨯+=,故选项B 正确;对于C ,因为π2π33x <<,所以π5ππ<2+33x <,因为函数cos y t =-在5π(π,)3上单调递减,故选项C 错误;对于D ,因为π11()cos 2622f x x -=-+,令π11()()cos 2622g x x f x x x =--=+-,当0x ≥时,11()cos 222g x x x =+-,则()1sin 20g x x ='-≥,所以()g x 在[0,)+∞上单调递增,则()(0)0g x g ≥=,也即π()6x f x ≥-,当0x <时,11()cos 222g x x x =-+-,则()1sin 20g x x ='--≤,所以()g x 在(,0)-∞上单调递减,则()(0)0g x g ≥=,也即π()6x f x -≥-,综上可知:6x f x π⎛⎫≥- ⎪⎝⎭恒成立,故选项D 正确,11.BCD 【详解】由)21212n n a a +=+-,得()21221n n a a ++=+1221n n a a +++,又12a =122a +所以{}2n a +是以2为首项,1为公差的等差数列,22(1)11n a n n ++-⨯=+,即221n a n n =+-, 所以27a =,故A 错误,C 正确;()212n a n =+-,所以{}n a 为递增数列,故B 正确;()211111112222n a n n n n n n ⎛⎫===- ⎪++++⎝⎭, 所以数列11n a ⎧⎫⎨⎬+⎩⎭的前n 项和为11111111111...232435112n n n n ⎛⎫-+-+-++-+- ⎪-++⎝⎭ 1111311131221242124n n n n ⎛⎫⎛⎫=+--=-+< ⎪ ⎪++++⎝⎭⎝⎭,故D 正确. 12.BCD 【详解】对于A :当1k =时,令sin y x x =-,则cos 10y x =-≤,即函数sin y x x =-有且仅有一个零点为0,同理易知函数sin y x x =--有且仅有一个零点为0,即()f x 与()g x 也恰有一个公共点,故A 错误; 对于B :当3n =时,如下图:易知在3x x =,且()3,2x ππ∈,()f x 与()g x 图象相切,由当(),2x ∈ππ时,()sin f x x =-,则()cos f x x '=-,()g x k '=,故333cos sin k x x kx =-⎧⎨-=⎩,从而33tan x x =,所以()222333332333333cos 1tan 1tan 112tan tan tan cos tan sin 2x x x x x x x x x x x +++=+===,故B 正确; 对于C :当4n =时,如下图:则10x =,42x ππ<<,所以142x x π+<,又()f x 图象关于x π=对称,结合图象有32x x ππ->-,即有32142x x x x π+>>+,故C 正确;对于D :当22023k π=时,由20232023()122f g ππ⎛⎫== ⎪⎝⎭,()f x 与()g x 的图象在y 轴右侧的前1012个周期中,每个周期均有2个公共点,共有2024个公共点,故D 正确.13.80 14. π415.12【详解】设()()000,0P x y x ≠,由于G 是12PF F △的重心,由重心坐标公式可得00,33x y G ⎛⎫⎪⎝⎭,由于12//GM F F ,所以M 的纵坐标为03M y y =,由于M 是12PF F △的内心,所以12PF F △内切圆的半径为03y r =,由椭圆定义得12212,2PF PF a F F c +==, ()2121210120122111223PF F MF F MF P MPF y SSSSF F y F F PF F P =++⇒⋅=++, ()001222232y c y a c a c e =+⇒=⇒= 16.23a ≤<【详解】因为(1)0f =,且函数1()e 2-=+-x f x x 为单调递增函数,所以1为函数1()e 2-=+-x f x x 的唯一零点, 设函数2()3g x x ax a =--+的零点为b ,又因为函数1()e 2-=+-x f x x 与2()3g x x ax a =--+互为“零点相邻函数”, 所以|1|1b -<,解得02b <<,所以函数2()3g x x ax a =--+在(0,2)上有零点,所以(0)(2)0g g ⋅<或()2022Δ430a a a ⎧<<⎪⎨⎪=--+=⎩或()()()2022Δ4300020a a a g g ⎧<<⎪⎪⎪=--+>⎨⎪>⎪>⎪⎩, 即733a <<或2a =或23a <<,所以23a ≤<. 17.【详解】(1)由题意得()121nn n a a +-=⋅-,所以()()()22212122211n n n n n a a a a a a a a ---=-+-++-+()()()212212121211n n --=⋅-+⋅-++⨯-+211=-+=-.(2)设数列{}n a 的公比为q ,因为()121n n n a a +=+⋅-,所以212a a =-,322a a =+,两式相加得2311a a q a =⋅=,所以1q =±,当1q =时,2112a a a ==-不成立,所以1q =-,2112a a a =-=-,解得11a =.18.【详解】(1)因为sin sin tan cos cos A C B A C +=+,即sin sin sin cos cos cos B A CB A C+=+,所以sin cos sin cos cos sin cos sin B A B C B A B C +=+,即sin cos cos sin cos sin sin cos B A B A B C B C -=-,所以sin()sin()B A C B -=-,因为0πA <<,0πB <<,所以ππB A -<-<,同理得ππC B -<-<, 所以B A C B -=-或()()πB A C B -+-=±(不成立), 所以2B A C =+,结合πA B C ++=得π3B =.(2)由余弦定理2221cos 22a c b B ac+-==得,222ac a c b =+-,所以222ac a c b -=-,则2222222()1a c a ac a c b c b b b b ---⎛⎫===- ⎪⎝⎭, 由正弦定理得,sin 23sin sin 3cC C bB ==, 因为π3B =,2π3A C +=,π02A <<,π02C <<,所以ππ62C <<,1sin 12C <<,所以32333c b ⎛⎫∈ ⎪ ⎪⎝⎭,,2()2133a c a b -⎛⎫∈- ⎪⎝⎭,. 19.【详解】(1)由题意可知:这一枚通关币的使用情况有四种: ①在第一关使用;①在第二关使用;①在第三关使用;①没有使用.而通过三关的概率依次为:211,,323,则李华通过该游戏的概率11121121221113233233233232P =⨯⨯+⨯⨯+⨯⨯+⨯⨯=.(2)购买两枚通关币的费用为200元,报名费为150元,则收益可能为:1400(150200100)150x =-+-=(未使用通关币过关), 2400(15020050)100x =-+-=(使用1枚通关币且过关), 3400(15020050)x =-+=(使用2枚通关币且过关), 4(150200350)x =-+=-(使用2枚通关币且未过关),则12111(150)3239p x ==⨯⨯=2117(100)2918p x ==-=31111122127(50)32332332318p x ==⨯⨯+⨯⨯+⨯⨯=41121(350)3239p x =-=⨯⨯=则17()150100918E x =⨯+⨯13255035018997+⨯-⨯=. 所以他最终获得的收益期望值是3259元.20【详解】(1)解:如图所示: 连接AC ,交BE 于F ,因为90D ∠=,2AB =,3DC =,3AD =,2CE ED =,所以AE =2,又AB CD ,所以四边形ABCE 是菱形, 所以AC BE ⊥,在ACD 中,2223AC AD CD =+=,所以3AF CF ==,又16AC =,则2221AC AF CF =+, 所以1C F AF ⊥,又AF BE F ⋂=, 所以1C F ⊥平面ABED ,设点D 到平面1BC E 的距离为h ,因为1113233,13222C BE DBESS =⨯⨯==⨯⨯=,且11C DBE D C BE V V --=, 所以111133C BE DBE h S C F S ⨯⨯=⨯⨯,解得32h =;(2)由(1)建立如图所示空间直角坐标系:则()()()()133,,0,0,0,3,0,1,0,0,1,0,3,0,022D C B E A ⎛⎫-- ⎪ ⎪⎝⎭, 所以()()3,1,0,0,2,0BA BE =-=-,因为113DP DC =,所以133,2,3133BP BD BD DP DC ⎛⎫=++=- ⎪ ⎪=⎝⎭, 设平面BEP 的一个法向量为(),,m x y z =, 则00m BE m BP ⎧⋅=⎪⎨⋅=⎪⎩,即20332033y x y z -=⎧⎪⎨-+=⎪⎩, 令1x =,得()1,0,1m =-,易知平面BEA 的一个法向量为()0,0,1n =, 所以2cos ,2m n m n m n⋅==-⋅,则3,4m n π=, 易知二面角P BE A --的平面角是锐角, 所以二面角P BE A --的大小为4π. 21.【详解】(1)因为点()1,2Q 是抛物线C :()220y px p =>上一点, 所以42p =,解得:2p =, 所以24y x =.(2)设点()00,P x y ,点()1,M m -,点()1,N n -,直线PM 方程为:()0011y my m x x --=++,化简得()()()()0000110y m x x y y m m x --++-++=.PMN 的内切圆方程为221x y +=,∴圆心()0,0到直线PM 的距离为1,即()()()002200111y m m x y m x -++=-++.故()()()()()()222220000001211y m x y m m y m x m x -++=-+-+++.易知01x >,上式化简得,()()20001210x m y m x -+-+=.同理有()()20001210x n y n x -+-+=,∴m ,n 是关于t 的方程()()20001210x t y t x -+-+=的两根.∴0021y m n x -+=-,()0011x mn x -+=-.∴()()()()222200200414411x y MN m n m n mnx x +=-=+-=+--.2004y x =,∴()20000220004116412(1)1(1)x x x x MN x x x ++-=+---点(00,P x y 到直线=1x -的距离为01d x =+,所以PMN 面积为()())()()()22200000022004114111212211xx x x x S MN d xx x +-++-=⋅=⨯+=-- 令()010x t t -=>,则()()22222444640161032tt t tS t t t t t++++==++++ 因为2222161628t t t t +≥⋅,4040101040t t t t+≥⋅=, 当且仅当2t =取等,所以840325S ≥++= 故PMN 面积的最小值为4522.【详解】(1)()'1f x a x =- ,若0a ≤ ,则有()'0f x > ,()f x 单调递增;若0a > ,()'11a x a f x a x x⎛⎫- ⎪⎝⎭=-= ,当10x a<< 时,()'0f x > ,()f x 单调递增, 当1x a > 时,()'0f x < ,()f x 单调递减;(2)①由(1)的讨论可知,当0a ≤ 时,()f x 单调递增,在(]0,1x ∈ ,()()max 10f x f == ,满足题意; 当11a≥ 时,在(]0,1x ∈ ,()()max 10f x f ==,满足题意; 当101a << 时,即1a >,在(]0,1x ∈,()max 11ln 1ln 1f x f a a a a a ⎛⎫==-+=-- ⎪⎝⎭, 令()ln 1g x x x =-- ,则()'111x g x x x-=-= ,当1x >时,()'g x >0 ,()g x 单调递增, ()()10g x g ∴=> ,即ln 10a a --> ,不满足题意; 综上,a 的取值范围是1a ≤ ;①由题意,1k ≥ ,2ln 31x ax a kx ax -+≤-+ ,即()2ln 121kx x a x -+≥+ ,考虑直线()21y a x =+ 的极端情况a =1,则2ln 2kx x x ≥+ ,即2ln 2x x k x +≥ ,令()2ln 2x x h x x += ,()'3122ln x x h x x --= ,显然()122ln k x x x =-- 是减函数, 333222471033e e e k ⎛⎫== ,44302e e k = ,①存在唯一的0432e ex ⎛⎫∈ 使得()'00h x = ,当0x x > 时,()'h x <0 ,当0x x < 时,()'h x >0 ,00122ln 0x x --= ,()()002max 012x h x h x x +== ,()max 432e e h h x h ⎛⎫∴<< , 即()max 24h x << ,故k 的最小值可能是3或4,验算23ln 20x x x --≥ , 由于ln 1≤-x x ,223ln 2331x x x x x ∴--≥-+ ,23340∆=-⨯< , 223ln 23310x x x x x ∴--≥-+> ,满足题意; 综上,a 的取值范围是1a ≤ ,k 的最小值是3.。
湖南省长沙市第一中学2022-2023学年高三上学期月考(一)数学试题(解析版)

【解析】
【详解】当E,F排在前三位时, =24,当E,F排后三位时, =72,当E,F排3,4位时, =24,N=120种,选D.
6.函数 ( 且 )在一个周期内的图象如图所示,将函数 图象上的点的横坐标伸长为原来的2倍,再向右平移 个单位长度,得到函数 的图象,则 ()
A. B.1C.-1D.
参考数据:
参考时间轴:
A.宋B.唐C.汉D.战国
【答案】D
【解析】
【分析】根据给定条件可得函数关系 ,取 即可计算得解.
【详解】依题意,当 时, ,而 与死亡年数 之间的函数关系式为 ,
则有 ,解得 ,于是得 ,
当 时, ,于是得: ,解得 ,
由 得,对应朝代为战国,
所以可推断该文物属于战国.
故选:D
(1)记 ,写出 ,并求出数列 的通项公式;
(2)求数列 的前2022项和 .
【答案】(1) , ,
(2)
【解析】
【分析】(1)根据 的定义求得 ,求出 ,由等比数列通项公式可得结论;
(2)由 得 , ,然后用并项求和法结合等比数列前 项和公式计算.
【小问1详解】
,
又
【小问2详解】
,则
18.如图, 为 中点,曲线 上任一点到 点的距离相等, 在曲线 上且关于 对称.
长沙市一中2023届高三月考试卷(一)
数学
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 ,则 ()
A. B. C. D.
【答案】B
【解析】
【分析】利用对数不等式及分式不等式的解法求出集合 ,结合集合的补集及交集的定义即可求解.
河北省大名县第一中学2022届高三(实验班)上学期第一次月考数学(文)试题 Word版含答案

高三文科数学月考试题学校:姓名:班级:考号:评卷人得分一、选择题1. [2021·吉大附中高三四模(文)]已知集合A={x|x2+x-2≤0},B={y|y=2x,x∈R},则A∩B等于()A. (0,1]B. [1,+∞)C.(0,2] D.2. [2021·哈三中一模(文)]已知f(x)是定义在R上的偶函数,周期为2,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的()A. 既不充分也不必要条件B. 充分不必要条件C. 必要不充分条件D. 充要条件3. [2021·哈三中一模]下列结论中正确的个数是()①“x=”是“”的充分不必要条件;②若a>b,则am2>bm2;③命题“∀x∈R,sin x≤1”的否定是“∀x∈R,sin x>1”;④函数f(x )=-cos x在[0,+∞)内有且仅有两个零点.A. 1B. 2C. 3D. 44. [2021·吉林长春普高高三二模]下列函数中,既是奇函数又在(0,+∞)上单调递增的函数是() A. y=e x+e-x B. y=ln(|x|+1) C.y= D. y=x-5. [2021·吉大附中高三四模(文)]设函数f(x)=ln(1+x2)-,则使得f(x)>f(2x-1)成立的x的取值范围是()A. B. C.D.6. [2021·吉林市普高高三第三次调研]若直角坐标平面内的两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称点对(P,Q)是函数y=f(x)的一对“友好点对”(点对(P,Q)与(Q,P)看作同一对“友好点对”).已知函数f(x)=则此函数的“友好点对”有()A. 3对B. 2对C. 1对 D. 0对7. [2021·河北唐山高三摸底月考]设函数,“是偶函数”是“的图象关于原点对称”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. [2021·吉林长春高三二模(文)]关于函数y=2sin+1,下列叙述有误..的是()A. 其图象关于直线x=-对称B. 其图象可由y=2sin+1图象上全部点的横坐标变为原来的倍得到C. 其图象关于点对称D. 其值域为[-1,3]9. [2022·甘肃省高考诊断(二)(文)]已知△ABC的外接圆半径为1,圆心为O,且=0,则△ABC 的面积为()A. 1+B.C.1+ D.10. [2022·哈尔滨市第六中学高三一模(文)]已知向量a=(cosθ,-sinθ),b=(-cos2θ,sin2θ)(θ∈(π,2π)),若向量a,b的夹角为φ,则有()A. φ=θB. φ=π-θC.φ=θ-π D. φ=θ-2π11. [2021·河北武邑中学高二入学考试]已知数列,都是公差为1的等差数列,是正整数,若,则( )A. 81B. 99C. 108D. 11712. [2021·河南南阳一中高三第三次月考]已知函数,关于的方程R)有四个相异的实数根,则的取值范围是( )A. B. C.D.评卷人得分二、填空题13. [2021·河北五个一名校联盟高三一模(文)]设△的内角,,所对的边长分别为,若,则的值为.14. [2021·河南南阳方城一中高二开学考试]设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sin A=5sin B,则角C= . 15. [2021·河南许昌五校高二第一次联考]已知在中,,,,,,则的值为.16. [2010·高考辽宁卷,16]已知数列{a n}满足a1=33,a n+1-a n=2n,则的最小值为.评卷人得分三、解答题17. [2021·吉林市普高高三第三次调研]已知函数f(x)=cos 2x+2sin2x+2sin x.(1)将函数f(2x)的图象向右平移个单位得到函数g(x)的图象,若x∈,求函数g(x)的值域;(2)已知a,b,c分别为△ABC中角A,B,C的对边,且满足f(A)=+1,A∈,a=2,b=2,求△ABC的面积.18. [2021·吉林长春高三二模(文)]已知数列{a n}满足a1=,a n+1=3a n-1(n∈N*).(1)若数列{b n}满足b n=a n-,求证:{b n}是等比数列;(2)求数列{a n}的前n项和S n.19. [2021·河南八市重点高中高二第一次月考(文)]正项数列满足.(1)求数列的通项公式;(2)令,求数列的前项和为.20. [2021·吉林长春高三二模(文)]已知三棱锥A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.(1)求证:平面ABC⊥平面ACD;(2)若E为AB中点,求点A到平面CED的距离.21. [2021·湖南长沙长郡中学高三入学考试]已知椭圆的两个焦点分别为,以椭圆短轴为直径的圆经过点.(1)求椭圆的方程;(2)过点的直线与椭圆相交于两点,设点,直线的斜率分别为,问是否为定值?并证明你的结论.22. [2021·广东省仲元中学、中山一中等七校高三联考(一)]在中,角所对的边分别为,且.(1)求的大小;(2)设的平分线交于,求的值.参考答案1. 【答案】A【解析】本题考查集合的基本运算、解一元二次不等式及求指数函数的值域,属于基础题.由于x2+x-2≤0,所以-2≤x≤1,依据指数函数的性质知y=2x>0,所以集合A =,B =,则A∩B =,故选A.2. 【答案】D【解析】本题考查充分条件与必要条件,函数的奇偶性与周期性,属于中档题.函数在上递增,利用偶函数得函数在上递减,利用周期得函数在上递减,故充分性成立;函数在上递减,利用周期得函数在上递减,利用偶函数得函数在上递增,必要性成立,综上,充分性与必要性均成立,故选D.3. 【答案】A【解析】本题考查充分必要条件、不等式性质、命题的否定及命题真假的判定,属于中档题.对于①,当x=时,sin ,充分性成立;当sin 时,x ++2kπ或x ++2kπ,k∈Z,得x=-+2kπ或x=+2kπ,k∈Z,故必要性不成立,故①正确;对于②,当m=0时,若a>b,am2>bm2不成立,故②不正确;对于③,命题“∀x∈R,sin x≤1”的否定是“∃x0∈R,sin x0>1”,故③不正确;对于④,函数y =与y=cos x的图象有且只有一个交点,故函数f(x )=-cos x 在内有且仅有一个零点,故④不正确.综上,正确的只有一个,故选A.4. 【答案】D【解析】本题考查函数的单调性与奇偶性学问,属于基础题.A,B选项中的函数为偶函数,排解,C选项中的函数是奇函数,但在(0,+∞)上不是单调递增函数.故选D.5. 【答案】A【解析】本题考查函数的奇偶性及导数在争辩函数中的应用,解一元二次不等式、确定值不等式,属于难题.∵f(-x )= ln =ln =f(x),∴函数f(x)为偶函数.当x≥0时,f(x)=ln (1+x2),求导得f'(x )=恒为正,即函数f(x)在单调递增,∵f(x)是偶函数,∴f(x)在(-∞,0)上单调递减,则f(x)>f(2x-1)等价于f(|x|)>f(|2x-1|),即|x|>|2x-1|,平方得3x2-4x+1<0,解得<x<1,故选A.6. 【答案】C【解析】本题考查新概念和函数的图象与性质,考查了数形结合的数学思想,属于中档题.设f(x )=(x>0)图象上任一点为A(x,y)(x>0,y>0),点A关于原点的对称点A'(-x,-y)在y=x+1上,所以-y=-x+1,即y=x-1,得“友好点对”的个数就是方程组的根的个数,而y=x-1(x>0)的图象与y的图象有且只有一个交点,∴“友好点对”共1对,故选C.7. 【答案】B【解析】本题考查函数的奇偶性,考查图象的对称性.若是偶函数,而不肯定是奇函数,故的图象不肯定关于原点对称;当的图象关于原点对称时,函数是奇函数,则是偶函数,因此“是偶函数”是“的图象关于原点对称”的必要不充分条件.故选B.8. 【答案】C【解析】本题考查三角函数的性质、图象变换,属于中档题.关于函数y =2sin+1,令x=-,求得y=-1,为函数的最小值,故A正确;由y =2sin+1图象上全部点的横坐标变为原来的倍,可得y =2sin+1的图象,故B正确;令x =π,求得y=1,可得函数的图象关于点对称,故C错误;函数的值域为[-1,3],故D正确.故选C.9. 【答案】D【解析】本题考查向量的运算.由=0得=-,两边平方可得·=0,则∠AOB =90°;由=0得=-,两边平方可得·=,则∠AOC=135°;同理可得∠BOC=135°,则△ABC的面积为S△AOB+S△BOC+S△AOC =,故选D.10. 【答案】C【解析】本题考查向量的夹角、向量的坐标运算、二倍角、同角三角函数的基本关系、诱导公式.由题意知cosφ==- () =-cosθ=cos(θ-π).由于θ∈(π,2π),所以θ-π∈(0,π),而φ∈[0,π],所以φ=θ-π,故选C.11. 【答案】D【解析】本题考查等差数列的通项公式与数列求和,考查计算力量.,.故选D. 12. 【答案】A【解析】本题考查分段函数导函数的应用,函数与方程的关系.=,当时时,单调递减,时,单调递增,且当,当, 当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.13. 【答案】4【解析】本题考查正弦定理与余弦定理、两角和与差公式,考查计算力量.由正弦定理可得=,又由于==,所以=,即, 所以.14. 【答案】【解析】本题考查正弦定理及余弦定理.由正弦定理得, 5b=3a,又b+c=2a,则,由余弦定理得,,又,所以.15. 【答案】【解析】本题主要考查平面对量的线性运算及平面对量数量积.在中,,建立直角坐标系,,,,依题意有D,E(2,0)得,得,故填. 16. 【答案】【解析】由已知可得a n-a n-1=2(n-1),a n-1-a n-2=2(n-2),…,a3-a2=2×2,a2-a1=2×1,左右两边分别相加可得a n-a1=2(1+2+3+…+(n-1)]=n(n-1),∴a n=n2-n+33.=n+-1,令F(n)=n+-1,n≤5时为减函数,n≥6时为增函数且F(5)>F(6),∴F(n)≥F(6)=,故的最小值为.17.(1) 【答案】f(x)=cos 2x+2sin2x+2sin x=cos2x-sin2x+2sin2x+2sin x=cos2x+sin2x+2sin x=1+2sin x,所以f(2x)=1+2sin2x.由于函数f(2x)的图象向右平移个单位得到函数g(x)的图象,所以g(x )=2sin+1,即g(x )=2sin+1.由于x ∈,所以2x ∈所以sin ∈,所以g(x)∈[0,3],所以函数g(x)的值域为[0,3].(2) 【答案】由于f(A )=+1,所以sin A =,由于A ∈,所以cos A=.又cos A =,a =2,b=2,所以c=4.所以△ABC面积S△ABC=bc sin A =2.18.(1) 【答案】由题可知a n+1=3(n∈N*),从而有b n+1=3b n,b1=a1-=1,所以{b n}是以1为首项,3为公比的等比数列.(2) 【答案】由第1问知b n=3n-1,从而a n=3n-1+,有S n=30++3++…+3n-1+=30+31+32+…+3n-1+×n =.19.(1) 【答案】由,得,由于数列是正项数列,所以.(2) 【答案】由第1问得,,所以.20.(1) 【答案】由于AD⊥平面BCD,BC⊂平面BCD,所以AD⊥BC,又由于AC⊥BC,AC∩AD=A, 所以BC⊥平面ACD,BC⊂平面ABC,所以平面ABC⊥平面ACD.(2) 【答案】由已知可得CD =,取CD中点为F,连接EF,由于ED=EC=AB =,所以△ECD为等腰三角形,从而EF =,S△ECD =,由第1问知BC⊥平面ACD,所以E到平面ACD的距离为1,S△ACD =,令A到平面CED的距离为d,由V A-ECD=·S△ECD·d=V E-ACD=·S△ACD·1,解得d =.所以点A到平面CED 的距离为21.(1) 【答案】由题意得,,, 解得,所以椭圆的方程为.(2) 【答案】①当直线的斜率不存在时,由, 解得,设,则.②当直线的斜率存在时,设直线的方程为,代入整理化简,得,依题意,直线与椭圆必相交于两点,设,则, 又,所以====.综上所述,为定值2.(说明:若假设直线为,按相应步骤给分)22.(1) 【答案】,,,,.(2) 【答案】在中,由正弦定理:,得,,.。
湖南省长沙市湖南师范大学附属中学2024-2025学年高三上学期月考(一)数学试题及答案

大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选选选:本选共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ( )A. {}32xx −≤≤∣ B. {32}x x −≤<∣ C. {12}x x <≤∣D. {12}x x <<∣2. 若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于( )A.B.54C.D.3. 已知平面向量()()5,0,2,1ab ==−,则向量a b +在向量b上投影向量为( )A. ()6,3−B. ()4,2−C. ()2,1−D. ()5,04. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( ) A. 21B. 19C. 12D. 425. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A 136人 B. 272人C. 328人D. 820人6. 已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( ) A.π6 B.π4C.π3D.2π37. 已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条的.渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A.B.C. (D. (8. 已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( ) A. ()0,1B. ()(),00,1−∞∪C. [)1,+∞D. ()()0,11,+∞二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN10. 已知函数()5π24f x x=+,则( )A. ()f x 的一个对称中心为3π,08B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象 C. ()f x 在区间5π7π,88上单调递增 D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =−=∑ 三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +−的展开式中2x y 的系数为______.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.14. 已知点C 为扇形AOB 弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=. (1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB =,求CD 的长.16. 已知1ex =为函数()ln af x x x =的极值点. (1)求a 的值; (2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围. 17. 已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.的(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值; (2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 12345678910销售量千张 1.9 1.98 2.2 2.36 2.43 2.59 2.68 2.76 2.7 04经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑ (1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ; (3)记(2)中所得概率n P 的值构成数列{}()N n P n ∗∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛...参考公式: ()()()1122211ˆˆ,n ni ii ii i n n i i i i x x y y x y nx yay bx x xx nx====−−−==−−−∑∑∑∑.大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选选选:本选共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ( )A. {}32xx −≤≤∣ B. {32}x x −≤<∣ C. {12}x x <≤∣ D. {12}x x <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集. 【详解】集合{}()32,{lg 10}{12}A x x B x x x x =−≤≤=−<=<<∣∣∣,则{12}A B xx ∩=<<∣, 故选:D .2. 若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于( )A.B.54C.D.【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =−+,再由模长公式即可得出结果. 【详解】依题意()1i 3i z +=−+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z −+−−+−+====−+++−,所以z =. 故选:C3. 已知平面向量()()5,0,2,1a b ==−,则向量a b +在向量b上的投影向量为( )A. ()6,3−B. ()4,2−C. ()2,1−D. ()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=−+⋅==所以向量a b +在向量b 上的投影向量为()()236,3||a b b b bb +⋅==− .故选:A4. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( ) A. 21 B. 19C. 12D. 42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a == 故公差76162,53d a a a a d =−=∴=−=−,()767732212S ×∴=×−+×=, 故选:A5. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A. 136人B. 272人C. 328人D. 820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22µσ=×==,()()(),0.750.547p k P k X k p µσµσ=−≤≤+≈ ,()5790P X ∴≤≤ ()0.750.547p ≈,()()900.510.5470.2265P X ≥×−,∴该校及格人数为0.22651200272×≈(人),故选:B . 6. 已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( ) A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 6sin sin 4cos cos αβαβαβαβ⋅+⋅=⋅ =⋅ , 解得1cos cos 62sin sin 3αβαβ⋅=⋅=,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅−⋅=−,π,0,2αβ∈,()0,παβ∴+∈, 2π,3αβ∴+=,故选:D .7. 已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A.B.C. (D. (【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay −=交于,A B 两点, 则2F 到渐近线0bx ay −=的距离d b,所以AB =, 因为123AB F F >,所以32c ×>,可得2222299a b c a b −>=+, 即22224555a b c a >=−,可得2259c a <,所以2295c a <,所以e <,又1e >,所以双曲线的离心率的取值范围是 .故选:B8. 已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( ) A. ()0,1 B. ()(),00,1−∞∪C. [)1,+∞D. ()()0,11,+∞【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可. 【详解】令()u f x =,则()0f u =.�当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u==,得1u =. 所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;�当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u==,得1u =. 所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x==,可得2x =, 因为关于x 的方程()()0f f x =有且仅有两个实数根,则方程()1f x =在(,0∞−]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥; 若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞, 故选:C .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN , 由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =, 所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=°, 90EMG ∴∠=°,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.���BD .10. 已知函数()5π24f x x=+,则( )A. ()f x 的一个对称中心为3π,08B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象 C. ()f x 在区间5π7π,88上单调递增 D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 24x+求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f =+×=≠,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得: 3π3π5ππ228842y f x x x x=−−++,为奇函数,故B 正确; 对于C ,当5π7π,88x∈时,则5π5π2,3π42x +∈ ,由余弦函数单调性知,()f x 在区间5π7π,88 上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 24x+ππ4x k =+或ππ,2k k +∈Z , ()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242, 而第7个交点的横坐标为13π4, 5π13π24m ∴<≤,故D 正确. 故选:BD11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =−=∑ 【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++−=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =−=∑,可得D 错误. 【详解】由题意()()()(),f x f x g x g x −=−=−,且()()()00,21g f x g x =++−=, 即()()21f x g x +−=①, 用x −替换()()21f x g x ++−=中的x ,得()()21f x g x −+=②, 由①+②得()()222f x f x ++−=, 所以()f x 的图象关于点(2,1)对称,且()21f =,故A 正确;由()()222f x f x ++−=,可得()()()()()42,422f x f x f x f x f x ++−=+=−−=−, 所以()()()()82422f x f x f x f x +=−+=−−= , 所以()f x 是以8为周期的周期函数,故B 正确; 由①知()()21g x f x =+−,则()()()()882121g x f x f x g x +=++−=+−=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数, 所以()()202400g g ==,C 正确;又因为()()42f x f x ++−=,所以()()42f x f x ++=, 令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…, 令8090x =,则有()()809080942f f +=, 所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =−=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +−的展开式中2x y 的系数为______. 【答案】180− 【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅−,化简即可得到结果. 【详解】在6(31)x y +−的展开式中, 由()2213264C C 3(1)180x y x y ⋅⋅−=−,得2x y 的系数为180−. 故答案为:180−.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,−∪+∞ 【解析】【分析】根据函数奇偶性并求导可得()()f x f x ′′−=,因此可得()()2f x f x ′>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论. 【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x −=−,两边同时求导可得()()f x f x ′′−−=−,即()()f x f x ′′−=且()00f =,又因为当0x >时,()()2f x f x ′−>,所以()()2f x f x ′>. 构造函数()()2xf x h x =e,则()()()22x f x f x h x ′−′=e , 所以当0x >时,()()0,h x h x ′>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零, 又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零, 因为()f x 为奇函数,所以()f x 在(),1∞−−上小于零,在()1,0−上大于零, 综上所述,()0f x >的解集为()()1,01,−∪+∞. 故答案为:()()1,01,−∪+∞14. 已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.【答案】【解析】【分析】建系设点的坐标,再结合向量关系表示λµ+,最后应用三角恒等变换及三角函数值域求范围即可. 【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()1,1,0,cos ,sin 2A B C θθ ,其中π,0,3BOC θθ ∠=∈ , 由(),R OC OA OB λµλµ=+∈,即()()1cos ,sin 1,02θθλµ =+,整理得1cos sin 2λµθθ+=,解得cos λµθ=,则ππcos cos ,0,33λµθθθθθ+=++=+∈,ππ2ππ,,sin 3333θθ+∈+∈所以λµ +∈ . 方法二:设k λµ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λµ=+=; 当点C 运动到AB的中点时,k λµ=+,所以λµ +∈故答案为:四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=. (1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB =,求CD 的长.【答案】(1)2π3C = (2)3CD = 【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解. 【小问1详解】 由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=, 因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠, 因此1cos 2C =−,所以2π3C =. 【小问2详解】因为CD 是角C的平分线,AD DB=所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==, 因此sin 3sin BADA BD==,即sin 3sin B A =,所以3b a =, 又由余弦定理可得2222cos c a b ab C =+−,即222293a a a =++, 解得4a =,所以12b =.又ABCACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅, 即4816CD =,所以3CD =. 16. 已知1ex =为函数()ln af x x x =的极值点. (1)求a 的值; (2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围. 【答案】(1)1a = (2)(]()10,−∞−+∞ , 【解析】【分析】(1)直接根据极值点求出a 的值;(2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围. 【小问1详解】()()111ln ln 1a a f x ax x x x a x xα−−==′+⋅+,由1111ln 10e e e a f a −=+=′,得1a =, 当1a =时,()ln 1f x x =′+,函数()f x 在10,e上单调递减,在1,e∞ +上单调递增, 所以1ex =为函数()ln af x x x =的极小值点, 所以1a =. 【小问2详解】由(1)知min 11()e ef x f ==−. 函数()g x 的导函数()()1e xg x k x −=−′ �若0k >,对()1210,,x x k ∞∀∈+∃=−,使得()()12111e 1e k g x g f x k=−=−<−<−≤,即()()120f x g x −≥,符合题意. �若()0,0kg x =,取11ex =,对2x ∀∈R ,有()()120f x g x −<,不符合题意.�若0k <,当1x <时,()()0,g x g x ′<在(),1∞−上单调递减;当1x >时,()()0,g x g x ′>在(1,+∞)上单调递增,所以()min ()1ekg x g ==, 若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x −≥,只需min min ()()g x f x ≤, 即1e ek ≤−,解得1k ≤−. 综上所述,k 的取值范围为(](),10,∞∞−−∪+.17. 已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD ∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD【答案】(1)证明见解析 (2)F 位于棱PC 靠近P 的三等分点 【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证; (2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ∩平面,ABCD AB PE =⊂平面PAB , 所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以PE BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= , 所以BD EC ⊥,因为,,PE EC E PE EC ∩=⊂平面PEC , 所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥. 【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,【设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E −,设(),,,(01)F x y z PF PC λλ=<<, 所以()(),,11,2,1x y z λ−=−,所以,2,1x y z λλλ===−,即(),2,1F λλλ−.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==−=−,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⋅=⋅=,,即2020a b a b c += +−= ,,取()1,2,3m =−− , 设EF 与平面PCD 所成的角为θ,由cos θ=sin θ=.所以sin cos ,m EF m EF m EF θ⋅===整理得2620λλ−=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240r x r x r −+−+−=的两个解,即可利用韦达定理代入化简求解定点. 【小问1详解】 由题意得椭圆的方程:221116y x +=,所以短半轴14b = 所以112242p b ==×=,所以抛物线1C 的方程是2y x =. 设点()2,P t t ,则111222PQ PE ≥−=−=≥, 所以当232ι=时,线段PQ . 【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴设()()22,,,M a a N b b ,则: 直线()222:b a MN y a x a b a −−=−−,即()21y a x a a b −=−+,即()0x a b y ab −++=. 直线()21:111a DM y x a −−=−−,即()10x a y a −++=. 由直线DMr =,即()()()2222124240r a r a r −+−+−=..同理,由直线DN 与圆相切得()()()2222124240r b r b r −+−+−=. 所以,a b 是方程()()()2222124240r x r x r −+−+−=的两个解, 22224224,11r r a b ab r r −−∴+==−− 代入方程()0x a b y ab −++=得()()222440x y r x y +++−−−=, 220,440,x y x y ++= ∴ ++= 解得0,1.x y = =− ∴直线MN 恒过定点()0,1−.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x −=−,则直线过定点()00,x y ;若直线方程为y kx b =+ (b 为定值),则直线过定点()0,.b 19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 1 2 3 4 5 6 7 8 9 10 销售量千张 1.9 1.98 2.2 2.36 2.43 259 2.68 2.76 2.7 0.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑. (1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;..(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()Nn P n ∗∈. ①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛.参考公式: ()()()1122211ˆˆ,n ni ii i i i n n ii i i x x y y x y nx y ay bx x x x nx ====−−−==−−−∑∑∑∑. 【答案】(1)673220710001200y t + (2)433774n n P =+⋅−(3)①最大值为1316,最小值为14;②证明见解析 【解析】 【分析】(1)计算出新数据的相关数值,代入公式求出 ,ab 的值,进而得到y 关于t 的回归方程; (2)由题意可知1213,(3)44n n n P P P n −−=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证. 【小问1详解】 解:剔除第10天的数据,可得2.2100.4 2.49y ×−==新, 12345678959t ++++++++=新, 则9922111119.73100.4114,73,38510285i i i i t y t = =−×==−= ∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t == − −×× ==−× − ∑∑新新新新新, 可得6732207ˆ 2.4560001200a =−×=,所以6732207ˆ60001200y t +. 【小问2详解】 解:由题意知1213,(3)44n n n P P P n −−=+≥,其中12111313,444416P P ==×+=, 所以11233,(3)44n n n n P P P P n −−−+=+≥,又由2131331141644P P ++×, 所以134n n P P − +是首项为1的常数列,所以131,(2)4n n P P n −+=≥ 所以1434(),(2)747n n P P n −−=−−≥,又因为1414974728P −=−=−, 所以数列47n P − 是首项为928−,公比为34−的等比数列, 故1493()7284n n P −−=−−,所以1934433()()2847774n n n P −=−−+=+−. 【小问3详解】 解:①当n 为偶数时,19344334()()28477747n n n P −=−−+=+⋅>单调递减, 最大值为21316P =; 当n 为奇数时,19344334()()28477747n n n P −=−−+=−⋅<单调递增,最小值为114P =, 综上可得,数列{}n P 的最大值为1316,最小值为14. ②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中 []x 表示取整函数, 当 347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε−=⋅−=⋅<⋅=, 所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。
辽宁省营口市第二高级中学2022届高三上学期第一次月考数学(文)试题Word版含答案

营口市第二高级中学2022届上学期第一次月考高三数学(文)试题一、选择题:每小题给只有一项是符合题目要求的(每小题5分,共60分)1、设集合,则()A . B. C. D.2. 复数在复平面上对应的点位于 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、设:,:,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4、下列函数中,既是奇函数又在区间上是减函数的是( )A. B. C. D.5若,则()A. B. C. D.6.已知实数,且则的最小值为( )A.9B.C.5D.47.已知下面四个命题:①“若,则或”的逆否命题为“若且,则”②命题:“,若,则”,用反证法证明时应假设x≠1或y≠1。
③命题存在,使得,则:任意,都有④若且为假命题,则均为假命题,其中真命题个数为()A.1 B.2 C.3 D.48、在公差不为的等差数列中,,数列是等比数列,且,则()A. B. C.D.9、若将函数的图象向右平移个单位,得到的图象关于轴对称,则的最小值是()A. B. C. D.10.设函数f(x)=+lnx ,则()A.x=为f(x)的极大值点B.x=为f(x)的极小值点C.x=2为 f(x)的极大值点D.x=2为 f(x)的极小值点11. 函数的图象大致是()12.已知函数, g(x)=f(x)+x+a.若g(x)存在2个零点,则a 的取值范围是()A. B. C. D.二、填空题:(本大题共4小题,每小题5分)13、已知向量与的夹角为,且,,则__________.14、已知函数则的值为__________.15、等差数列,的前项和分别为,,且,则__________.16、已知函数(为常数).若在区间上是增函数,则的取值范围是__________.三.解答题:(共6道大题,满分70分)17.(本小题满分12分)已知,设向量,.(1)若∥,求x的值;(2)若,求的值.18.(本小题满分12分)已知正项等差数列的前项和为,且满足,.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足且,求数列的前项和.19、(本小题满分12分)在△ABC中,角A,B,C的对边分别是a,b,c,点(a,b)在直线上.(1)的值;(2)若,求a和c.20.已知向量(1)求函数f(x)的最大值及取得最大值时x的值。
湖南省长沙市雅礼中学2022-2023学年高三上学期第一次月考数学试卷含答案
注意事项:1.答题前,先将自己的姓名、考号填写在试卷和答题卡上,并将考号条形码粘贴在答 题卡上的指定位置。
2.请在答题卡上各题号对应的答题区域内答题,写在试卷、草稿纸和答题卡上的非答 题区域均无效。
3.选择题用 2B 铅笔把所选答案的标号涂黑,非选择题用黑色签字笔作答。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合=+<∈=P x x x N Q |log (1)1,,1,3,56}{}{,M =P ∪Q ,则集合M 中的元素共有( ) A .4个B .6个C .8个D .无数个2.设函数f x mx mx =−−2()1,命题“x ∃∈1,3][,f x m ≤−+()2是假命题”,则实数m 的取值范围是( )A .,37−∞⎛⎝⎤⎦⎥ B .−∞,3]( C .37,+∞⎛⎝ ⎫⎭⎪ D .3,+∞)(3.《九章算术》是我国古代数学成就的杰出代表,其中《方田》章有弧田面积计算问题, 计算术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面积的计算公式为:弧田面积=21(弦×矢+矢×矢).弧田是由圆弧(简称为弧田弧)和以圆弧的端点为端点的线段(简称为弧田弦)围成的平面图形,公式中“弦”指的是弧田弦的长,“矢”等于弧田弧所在圆的半径与圆心到弧田弦的距离之差.现有一弧田,其弦长AB 等于6m ,其弧所在圆为圆O ,若用上述弧田面积计算公式算得该弧田的面积为2m 72,则∠=AOB cos ( )A .251 B .−257C .51D .257 4.已知⎝⎭ ⎪+=⎛⎫απ32sin 1,则⎝⎭ ⎪+⎛⎫απ6sin 2的值为( )A .21B .−21CD5.如图,在棱长为2的正方体−ABCD A B C D 1111中,E ,F 分别是棱AA 1,CC 1的中点,过BE 的平面α与直线A F 1平行,则平面α截该正方体所得截面的面积为( ) AB.C .4D .56.已知函数f (x )=x 3+ax 2-x 的图象在点A (1,f (1))处的切线方程为y =4x -3,则函数y =f (x)湖南省雅礼中学高三年级第一次月考 数学试卷的极大值为( ) A .1B .527−C .−2527D .-17. 20222022202232022322022212022020202222C C C C C +−+−的值为A .0B .1C .-1D .202228.已知函数()f x 是定义在R 上的奇函数,对任意的x ∈R ,均有(2)()f x f x +=且(1)0f =,当[0,1)x ∈时,()21x f x =−,则方程()1||0f x g x −=的实根个数为( ) A .6B .8C .10D .12二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知由样本数据点集合{}(,)123,i i x y i n =,,,,求得的回归直线方程为 1.50.5y x =+,且3x =,现发现两个数据点12,2(2)..和4.8,(7)8.误差较大,去除后重新求得的回归直线l 的斜率为1.2,则( )A .变量x 与y 具有正相关关系B .去除后y 的估计值增加速度变快C .去除后与去除前均值x ,y 不变D .去除后的回归方程为 1.2 1.4y x =+10.如图所示,是一个3×3九宫格,现从这9个数字中随机挑出3个不同的数字,记事件A 1:恰好挑出的是1、2、3;记事件A 2:恰好挑出的是1、4、7;记事件A 3:挑出的数字里含有数字1.下列说法正确的是( )12 B .事件A 1,A 2是独立事件 C .P (A 1|A 3)=P (A 2|A 3)D .P (A 3)=P (A 1)+P (A 2)11.在正四面体ABCD 中,若AB = ) A .该四面体外接球的表面积为3πB .直线与平面BCDC .如果点M 在CD 上,则AM BM +D .过线段一个三等分点且与 12.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()2f x x =(R x ∈),()1g x x=(0x <),()2eln h x x =(e 为自然对数的底数),则( )A .()()()m x f x g x =−在x ⎛⎫∈ ⎪⎝⎭内单调递增B .()f x 和()g x 间存在“隔离直线”,且k 的取值范围是[]4,1−C .()f x 和()g x 之间存在“隔离直线”,且b 的最小值为1−三、填空题:本题共4小题,每小题5分,共20分.13.已知随机变量X 服从正态分布()28,X N σ~,(10)P x m ≥=,(68)P x n ≤≤=,则182m n+的最小值为____________.14.某中学元旦晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在节目乙的前面,节目丙不能排在最后一位,则该晚会节目演出顺序的编排方案共有_________. 15.=−−20cos 6420cos 120sin 3222_________. 16.已知函数()eln 2x f x x =,()22x g x x m=−,若函数()()()h x g f x m =+有3个不同的零点x 1,x 2,x 3(x 1<x 2<x 3),则()()()1232f x f x f x ++的取值范围是_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知.2,4,53)4sin(,4,0,553cos sin ⎪⎭⎫⎝⎛∈=−⎪⎭⎫ ⎝⎛∈=+ππβπβπααα (1)求α2sin 和α2tan 的值; (2)求()βα2cos +的值.18.已知2mx⎛⎝的展开式中,第4项的系数与倒数第4项的系数之比为.(1)求m 的值;(2)求展开式中所有项的系数和与二项式系数和; (3)将展开式中所有项重新排列,求有理项不相邻的概率.19.已知函数2()(,)f x x bx c b c R =++∈,且()0f x ≤的解集为[1,2]−. (1)求函数()f x 的解析式;(2)解关于x 的不等式mf(x)>2(x −m −1);(3)设g(x)=2f(x)+3x−1,若对于任意的x 1,x 2∈[−2,1]都有()()12g x g x M −≤,求M 的最小值.20.某学校共有2000名学生,其中女生1200人,为了解该校学生在学校的月消费情况,采取分层抽样随机抽取了200名学生进行调查,月消费金额分布在550~1050元之间.根据调查的结果绘制的学生在校月消费金额的频率分布直方图如图所示,将月消费金额不低于850元的学生称为“高消费群”.(1)求a 的值,并估计该校学生月消费金额的平均数;(同一组中的数据用该组区间的中点值作代表)(2)若样本中属于“高消费群”的男生有10人,完成下列2×2列联表,并判断是否有99.9%以上的把握认为该校学生属于“高消费群”与“性别”有关.(()()()()()2n ad bc K a b c d a c b d −=++++,其中n =a +b +c +d )21.在多面体ABCDE 中,平面ACDE ⊥平面ABC ,四边形ACDE 为直角梯形,CD ∥AE ,AC ⊥AE ,AB ⊥BC ,CD =1,AE =AC =2,F 为DE 的中点,且点E 满足4EB EG =.(1)证明:GF ∥平面ABC ;(2)当多面体ABCDE 的体积最大时,求二面角A -BE -D 的余弦值.22.已知函数()e cos x f x x x =+.(1)判断函数()f x 在[0,)+∞上的单调性,并说明理由;(2)对任意的0x ≥,e sin cos 2x x x x ax ++≥+,求实数a 的取值范围.湖南省雅礼中学高三年级第一次月考数学试卷参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B 2.B 3.D 4.B 5.B 6.A 7.B 8.D二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.ACD 10.AC 11.ACD 12.AD三、填空题:本题共4小题,每小题5分,共20分.13.25 14.300种 15.-32 16.()11002⎛⎫−⋃ ⎪⎝⎭,,四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.18.(1)展开式的通项为()152222122rrm m rrr r r mm T C x x C x −−−+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭, ∴展开式中第4项的系数为332m C ⋅,倒数第4项的系数为332m m m C −−⋅,33332122m m m m C C −−⋅∴=⋅,即611,722m m −=∴=. (2)令1x =可得展开式中所有项的系数和为732187=,展开式中所有项的二项式系数和为72128=.(3)展开式共有8项,由(1)可得当522rm −为整数,即0,2,4,6r =时为有理项,共4项, ∴由插空法可得有理项不相邻的概率为484485 114A A A =. 19.(1)因为()0f x ≤的解集为[1,2]−,所以20x bx c ++=的根为1−,2, 所以1b −=,2c =−,即1b =−,2c =−;所以2()2f x x x =−−;(2)mf(x)>2(x −m −1),化简有()222(1)m x x x m −−>−−,整理得(2)(1)0mx x −−>,所以当0m =时,不等式的解集为(,1)−∞,当02m <<时,不等式的解集为2(,1),⎛⎫−∞+∞ ⎪⎝⎭m ,当2m =时,不等式的解集为(,1)(1,)−∞+∞, 当2m >时,不等式的解集为()2(,)1,−∞+∞m,(3)因为[2,1]x ∈−时2()3123f x x x x +−=+−,根据二次函数的图像性质,有2()3123[4,0]f x x x x +−=+−∈−, 则有2()3123()22f x x xx g x +−+−==,所以,1(),116⎡⎤∈⎢⎥⎣⎦g x ,因为对于任意的x 1,x 2∈[−2,1]都有()()12g x g x M −≤, 即求()()12max g x g x M −≤,转化为()()−≤max min g x g x M , 而()(1)1==max g x g , 1()(1)16min g x g =−=, 所以,此时可得1516M ≥, 所以M 的最小值为1516. 20.(1)由频率分布直方图中所有小矩形的面积之和为1得到方程,解得a ,再根据频率分布直方图中平均数计算公式计算可得;(2)按照分层抽样求出样本中男生、女生的人数,再由频率分布直方图求出“高消费群”的人数,即可完善列联表,计算出卡方,即可判断; (1)解:由频率分布直方图可得()1000.00150.00350.00150.0011a ⨯++++=,解得0.0025a =, 所以样本的平均数为()6000.00157000.00358000.00259000.001510000.001100770⨯+⨯+⨯+⨯+⨯⨯=(元)(2)解:依题意知,样本中男生20001200200802000−⨯=人,女生12002001202000⨯=人,属于“高消费群”的有()0.00150.00110020050+⨯⨯=人,列出下列22⨯列联表:所以22001080407011.1110.828 5015080120K⨯−⨯=≈>⨯⨯⨯,所以有99.9%以上的把握认为该校学生属于“高消费群”与“性别”有关.21.(1)取AB,EB中点M,N,连接CM,MN,ND.在梯形ACDE中,DC∥EA且DC=12EA,且M,N分别为BA,BE中点,∴MN//EA,MN=12EA,∴MN//CD,MN=CD,即四边形CDNM是平行四边形,∴CM//DN,又14EG EB=,N为EB中点,∴G为EN中点,又F为ED中点,∴GF//DN,即GF//CM,又CM⊂平面ABC,GF⊄平面ABC,∴GF∥平面ABC.(2)在平面ABC内,过B作BH⊥AC交AC于H.∴平面ACDE⊥平面ABC,平面ACDE平面ABC=AC,BH⊂平面ABC,BH⊥AC,∴BH⊥平面ACDE,则BH为四棱锥B-ACDE的高,又底面ACDE 面积确定,要使多面体ABCDE 体积最大,即BH 最大,此时AB =BC过点H 作HP ∥AE ,易知HB ,HC ,HP 两两垂直,以{HB ,HC ,HP }为正交基底建立如图所示的平面直角坐标系H -xyz ,∴A (0,−1,0),B (1,0,0),E (0,−1,2),D (0,1,1),则AB =(1,1,0),BE =(−1,−1,2),DE =(0,−2,1).设n 1⃗⃗⃗⃗ =(x 1,y 1,x 1)为平面ABE 的一个法向量,则1100n AB n BE ⎧⋅=⎪⎨⋅=⎪⎩,即11111020x y x y z +=⎧⎨−−+=⎩,取n 1⃗⃗⃗⃗ =(1,−1,0),设n 2⃗⃗⃗⃗ =(x 2,y 2,z 2)为平面DBE 的一个法向量,则220n DE n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222222020y z x y z −+=⎧⎨−−+=⎩,取n 2⃗⃗⃗⃗ =(3,1,2), ∴1212127cos ,7n n n n n n ⋅<>==⋅,由图知:二面角A −BE −D 为钝二面角,∴二面角A −BE −D 的余弦值为. 22.(1)解:函数()f x 在[0,)+∞上是单调增函数,理由如下: 因为()e cos x f x x x =+,所以()e cos (sin )x f x x x x =+−'+. 记()e 1x g x x =−−,则()e 1x g x '=−,令()0g x '=,得0x =. 当0x >时,()0,()'>g x g x 为单调增函数; 当0x <时,()0,()g x g x '<为单调减涵数,所以min ()(0)0g x g ==,所以()e 10x g x x =−−≥,即e 1x x ≥+. 又sin 1,cos 1x x ≤≥−,所以()1cos (sin )(1sin )(1cos )0f x x x x x x x x ≥+++−=−++≥', 所以函数()f x 在[0,)+∞上是单调增函数. (2)解:记()e sin cos 2(0)x p x x x ax x =++−−≥,是()e cos x p x x x a =+−'. 由(1)知,()e cos x p x x x a =+−'为[0,)+∞上的单调增函数.1°当10a −≥时,(0)10p a =−≥',所以()(0)0p x p ''≥≥,所以()p x 为[0,)+∞上的单调增函数,所以()(0)0p x p ≥=,即e sin cos 2x x x x ax ++≥+.所以1a ≤符合题意. 2°当10a −<时,(0)10p a =−<',又()e cos e 2a a p a a a a a =−≥'+−. 记()e 2(1)x q x x x =−>,则()e 2e 20x q x =−>−>',所以()q x 为(1,)+∞上的单调增函数,所以()(1)e 20q x q >=−>, 所以e 20(1)x x x −>>,所以()e 20a p a a ≥−>'.又()p x 在[0,)+∞上的图象不间断,且()p x 为[0,)+∞上的单调增函数, 根据零点存在性定理知,存在唯一的零点0(0,)x ∈+∞,使得()00p x =. 所以当00x x ≤≤时,()0p x '≤,()p x 单调递减,所以()0(0)0p x p <=, 这与任意的0x ≥,e sin cos 2x x x x ax ++≥+矛盾, 所以1a >不符合题意 综上可得1a ≤.。
贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案
江西省贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案贵溪市实验中学高中部2019-2020学年第一学期第一次月考高三(文科)数学试卷考试时间:120分钟 总分:150 命题人:第Ⅰ卷(选择题 共60分)一、 选择题:本大题共12小题.每小题5分,共60分。
在每个小题给出的四个选项中 ,只有一项是符合题目要求的。
1.已知集合{}31|<<-=x x A ,(){}1lg |-==x y x B ,则()=⋂B C A R ( )A 。
()3,1B 。
()3,1- C.()1,1- D.(]1,1-2.已知命题:p x R ∀∈,1sin x e x ≥+。
则命题p ⌝为( ) A .x R ∀∈,1sin x e x <+ B .x R ∀∈,1sin x e x ≤+ C .0x R∃∈,001sin x e x ≤+D .0x R∃∈,001sin x e x <+3.下列哪一组函数相等( ) A 。
()()xx x g x x f 2==与B.()()()42x x g x x f ==与C.()()()2x x g x x f ==与D.()()362x x g x x f ==与 4. = 255tan ( )A .3-2- B .32-+C .3-2D .32+5.设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的() A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.()的图像为函数R x x y x ∈-=22( ) A.B.C 。
D 。
7.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )①f (b )>f (a )>f (c );②函数f (x )在x =c 处取得极小值在x =e 处取得极大值;③函数f (x )在x =c 处取得极大值在x =e 处取得极小值;④函数f (x )的最小值为f (d ).A.③ B 。
高三数学第一次月考试卷及解答试题
卜人入州八九几市潮王学校2021届一中高三第一次月考数学试卷〔理科〕本套试卷总分值是150分,考试时间是是120分钟.一.选择题:本大题一一共8小题,每一小题5分,一共40分.在每一小题给出的四个选项里面, 只有一项为哪一项哪一项符合题目要求的.请把答案填在答卷页的表格内.}6,5,4,3,2,1,0{=U ,集合}4,3,1,0{=A ,集合}6,5,3,1{=B ,那么)(B C A U =〔〕A.}3,1{ B.}4,0{ C.}4,1,0{ D.}4,3,2,1,0{1:+x p ≤4,条件65:2+-x x q ≤0,那么p ⌝是q ⌝的〔〕 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.假设011<<b a ,那么以下结论中,不正确的选项是〔〕A .2b ab<B .22b a<C .2>+b a a bD .||||||b a b a -=-“,R x ∈∀x 2cos ≤x 2cos 〞的否认为()A.,R x ∈∀x 2cos x 2cos >B.,R x ∈∃x 2cos x 2cos >C.,R x ∈∀x 2cos <x 2cos D.,R x ∈∃x 2cos ≤x 2cos0>a ,假设关于x 的不等式2+ax ≥bx +2的解集为R ,那么b 的取值范围是〔〕A.<b2B.b ≤2 C.0<b ≤2D.0<<b 26.在极坐标系中,直线1cos =θρ与圆θρcos =的位置关系为〔〕A .相切B .相离C .直线过圆心D .直线与圆相交但不过圆心7.现从甲、乙、丙等6名学生中安排4人参加4×100m 接力赛跑。
第一棒只能从甲、乙两人中安排1人,第四棒只能从甲、丙两人中安排1人,那么不同的安排方案一共有〔〕A .24种B .36种C .48种D .72种α+=+n 2009)310(,其中n 是正整数,α是小数,且10<<α,那么n 的值是〔〕A.αα-1B.21αα- C.αα21- D.αα-1二.填空题:〔只要求写出最后结果,并把结果写在答卷页的相应位置上,每一小题5分,一共35分〕x x x f 2666)(-+-=的最大值为nxx )1(+的展开式中,只有第6项的系数最大,那么,nx x )2(+展开式中2x 项的 系数为22cos lg(9)cos lg(9)x x x x +-<+-的解集为12.有10名同学先站成了前排3人后排7人来照毕业纪念像,但如今摄影师要从后排7人中抽2人 调整到前排,并使另外8个人的相对顺序不变,那么不同调整方法的总数是〔用数字答题〕13.假设参数方程⎩⎨⎧-=+=--θθsin )(cos )(t t t t e e y e e x (其中t 为参数,θ为常数,且θ为锐角)所表示的是离心率为2的双曲线,那么锐角θ的值是11)(--+=x x x f ,那么使)2()12(+=+x f x f 成立的x 取值范围是Rt △ABC 中,CA ⊥CB ,斜边AB 上的高为h1,那么有:2221111CB CA h +=;类比此性质,在四面体P —ABC 中,假设PA ,PB ,PC 两两垂直,底面ABC 上的高为h , 那么得到的正确结论为:一.选择题答案卡:〔每一小题5分,一共40分.〕二、填空题答案卡:〔每一小题5分,一共35分.〕10.18011.)22,2()2,22(ππ --;12013π4.),0[]3,(+∞--∞ ;15.22221111PC PB PA h++= 三、解答题:〔本大题一一共6小题,总分值是75分.解容许写出文字说明、证明过程或者演算步骤.〕 16.〔此题总分值是12分〕p :[]21,2,0x x a ∀∈-≥.q :x ∃∈R ,使得2(1)10x a x +-+<.假设p 或者q 为真,p 且q 为假,求a 的取值范围.解:假设p 真,那么2x 的最小值≥a ,即1≥a ;(2分)假设q 真,那么04)1(2>--=∆a ,即,3>a 或者1-<a ;(2分) 假设p 或者q 为真,p 且q 为假,那么p 与q 为一真一假。
江西省新建二中高三数学第一学期第一次月考卷文科试题及答案
江西省新建二中2010届高三第一学期第一次月考卷数学(文科)第(Ⅰ)卷 (选择题 共60分)一.选择题(本大题12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合要求)1.如果全集,{1,2},{|13}U R A B x x ===≤<,则U A B ð等于( ).A.(1,2)(2,3)B.(1,2)(2,3]C.(1,2)D.(1,3]2.若“p 且q ”与“p 或q ⌝”均为假命题,则( ).A.p 真q 假B.p 假q 真C.p 与q 均为真D.p 与q 均为假3.已知映射f :A B →,其中A B R ==,对应法则f :22x y x x →=-+,对于实数k B ∈,在集合A 中不存在原象,则k 的取值范围是( ).A.1k <B.1k ≤C.1k >D.1k ≥4.函数43232()432f x x x x =-+-的极值点是( ).A.0x =B.1x =C.0x =或1x =D.0x =或1x =-5.设()f x 是定义在R 上以6为周期的函数,()f x 在(0,3)内单调递减,且()y f x =的图像关于直线3x =对称,则下面正确的结论是( ).A.(1.5)(3.5)(6.5)f f f <<B.(3.5)(1.5)(6.5)f f f <<C.(6.5)(3.5)(1.5)f f f <<D.(3.5)(6.5)(1.5)f f f <<6.对于R 上可导的任意函数()f x ,若满足(1)()0x f x '-≥,则必有( ).A.(0)(2)2(1)f f f +< B.(0)(2)2(1)f f f +≤ C.(0)(2)2(1)f f f +>D.(0)(2)2(1)f f f+≥ 7.已知12(1)3log log 1,01a a x x x a +==><<,则123,,x x x 的大小关系是( ).A.321x x x <<B.213x x x <<C.132x x x <<D.231x x x <<8.已知奇函数()f x 和偶函数()g x 满足()()2x x f x g x a a -+=-+,且()g b a =,则(2)f =( ).A.2a B.2 C.174 D.154 9.设函数()y f x =的反函数是()y g x =,若()()()f ab f a f b =+,则下列结论中成立的是( ). A.()()()g a b g a g b += B.()()()g a b g a g b +=+ C.()()()g ab g a g b =D.()()()g ab g a g b =+10.函数()()y f x x R =∈的图象如图所示,则函数12()(log )g x fx =的单调减区间是A. B. 2[C. (,1]-∞和)+∞ D.(0,1]和)+∞11.已知2()f x x px q =++和4()x g x x =+是定义在52{|1}A x x =≤≤上的函数,对任意的x A ∈,存在常数0x A ∈,使得0()()f x f x ≥,0()()g x g x ≥,且00()()f x g x =, 则()f x 在A 上的最大值为( ).A.52 B.174 C.5 D.411012.当1a >时,若12,x x 分别是方程1xx a +=-和log 1a x x +=-的解,则12x x +=( ).A.2a -B.a -C.1-D.0 第(Ⅱ)卷 (非选择题 共90分)二.填空题(本大题4个小题,每小题4分,共16分,把答案填在题中横线上)13.若函数()f x 在区间[2,3]-上是增函数,则函数(5)f x +的单调递增区间是__________.14.已知函数221()xxf x +=,则111432()()()(1)(2)(3)(4)f f f f f f f ++++++=__________.15.如果函数3232()f x x x a=-+在[1,1]-上的最大值是2,那么()f x 在[1,1]-上的最小值是___.16.已知1230x x x >>>,设211log (22)x x a +=,222log (22)x x b +=,233log (22)x x c +=,则,,a b c 的大小关系是______.三.解答题(本大题6个小题,共74分,解答题应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)设命题p :若()y f x =为单调增函数,则()(0,1)xy f a a a =>≠也是单调增函数.命题q :存在实数a ,使关于x 的方程2322log 0a x x ++=的解集只有一个子集.当p 或q 有且只有一个正确时,求实数a 的取值范围.18.(本小题满分12分)已知()y f x =是定义在R 上的奇函数,当0x ≤时,2()2f x x x =+.(Ⅰ)求0x >时,()f x 的解析式;(Ⅱ)是否存在正数a 、()b a b ≠,当[,]x a b ∈时,()()f x g x =,且()g x 的值域为11[,]b a .若存在,求出a 、b 的值;若不存在,说明理由.19.(本小题满分12分)已知函数21()(1)x x x f x a a -+=+>.(Ⅰ)用定义法证明:函数()f x 在(1,)-+∞上为增函数;(Ⅱ)用反证法证明:方程()0f x =没有负数根.20.(本小题满分12分)设a R ∈,()f x 为奇函数,且4241(2)xxa a f x ⋅+-+=.(Ⅰ)求()f x 的反函数1()f x -及其定义域;(Ⅱ)设1()xg x +=若1223[,]x ∈,1()()f x g x -≤恒成立,求实数k 的取值范围.21.(本小题满分12分)已知函数3213()(0)F x ax bx cx d a =-++≠的图象过原点,()()f x F x '=,()()g x f x '=,(1)0f =,函数()y f x =与()y g x =的图象交于不同的两点A 、B .(Ⅰ)若()y F x =在1x =-处取得极大值2,求函数()y F x =的单调区间;(Ⅱ)若使()0g x =的x 值满足1122[,]x ∈-,求线段AB 在x 轴上的射影长l 的最大值与最小值.22.(本小题满分14分)设1212,()x x x x ≠是函数322()(0)f x ax bx a x a =+->的两个极值点.(Ⅰ)若121,2x x =-=,求()f x 的表达式;(Ⅱ)若12||||x x +=,求b 的最大值;(Ⅲ)若12x x x <<,且2x a =,函数1()()()g x f x a x x '=--,求证:2112|()|(32)g x a a ≤+.新建二中20092010-学年度第一学期第一次月考卷高三数学(文科)答案二、填空题13.[7,2]-- 14.72 15.12-16.a b c <<三.解答题(本大题6个小题,共74分,解答题应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分) 解:当p 为真命题时,1a >. ……4分 当q 为真命题时,必有方程2322log 0a x x ++=无实数根, ∴3244log 0a ∆=-<,得32log 1a>.∴321a <<.……10分故当p 或q 有且只有一个正确时,a 的取值范围32[,)+∞.……12分18.(本小题满分12分) 解:(Ⅰ)任取0x >,则0x -<,∴2()2()f x x x -=-+-.∵()f x 是奇函数,∴2()()2f x f x x x =--=-. 故0x >时,2()2f x x x =-. ……5分(Ⅱ)由(Ⅰ)知0x >时,22()2(1)11f x x x x =-=--+≤,若存在正数a 、()b a b ≠满足题意,则111ba<≤,即1b a >≥.又函数2()()2f x g x x x ==-在(1,)+∞上是减函数,∴2211()2()2a b g a a a g b b b ⎧=-=⎪⎪⎨⎪=-=⎪⎩,得22(1)(1)0(1)(1)0a a a b b b ⎧---=⎪⎨---=⎪⎩.注意到1b a >≥,解得1a =,12b +=.故存在正数1a =,12b +=满足题意. ……12分19.(本小题满分12分)证明:(Ⅰ)任取121x x -<<,∵1a >,∴12x x a a <,1212122112223()331111(1)(1)x x x x x x x x x x ---++++++-=-=<, ∴12122211x x x x --++<,即12()()f x f x <,故函数()f x 在(1,)-+∞上为增函数. ……6分(Ⅱ)假设方程21xx x a -++=有负数根0x .∵01x ≠-,则当01x <-时,0021x x -+>,00x a >,∴00021x x x a -++>,矛盾.当010x -<<时,0011x <+<,000231112x x x -++=-<-.而011x a a -<<,∴00021211x x x a -++<-+=-,矛盾.故方程()0f x =无负数根.……12分20.(本小题满分12分) 解:(Ⅰ)由4241(2)xxa a f x ⋅+-+=,得2221()xxa a f x ⋅+-+=.∵()f x 是R 上的奇函数,∴222(0)0a f -==,得1a =.∴2121()xxf x -+=,得1211()log xx f x -+-=.由此得1120x y y+-=>,∴11y -<<. 故反函数1()f x -的定义域为(1,1)-.……6分 (Ⅱ)当1223[,]x ∈时,1()()f x g x -≤恒成立,∴2111log x xx++-≤,即2111()xx xk++-≤.由10x k+>,1223[,]x ∈,∴10x +>,10x ->,且0k >,∴221k x ≤-,令2()1h x x =-,则min 2539()()h x h ==.∴259k ≤,故30k <≤.……12分21.(本小题满分12分)解:(Ⅰ)∵()F x 的图象过原点,∴0d =.又2()()2f x F x ax bx c '==-+,(1)0f =,∴2a c b += ①.由()y F x =在1x =-处取得极大值2,得(1)20f a b c -=++=②,13(1)2F a b c -=---= ③.由①②③解得3a =,0b =,3c =-,∴3()3F x x x =-. 由2()()330f x F x x '==-≥,得1x ≤-或1x ≥.由2()()330f x F x x '==-≤,得11x -≤≤,∴函数()F x 的单调递减区间为(1,1)-,单调递增区间为(,1)-∞-和(1,)+∞. ……6分(Ⅱ)∵2a c b +=,∴22()2()y f x ax bx c ax a c x c ==-+=-++ ④,()222()y g x ax b ax a c ==-=-+ ⑤.由④⑤得2(3)20ax a c x a c -+++=.设11(,)A x y ,22(,)B x y ,则1233a c c aa x x ++==+,12212a c caa x x +==+⋅.∴线段AB 在x 轴上的射影长12||l x x =-==.由()0g x =,得12(1)cax =+.又由1122[,]x ∈-,得20ca-≤≤.∴当2ca=-时,l当0ca=时,l取得最大值. ……12分22.(本小题满分14分) 解:(Ⅰ)22()32(0)f x ax bx a a '=+->.∵121,2x x =-=是()f x 的两个极值点,∴(1)32f a b '-=-20a -=,2(2)1240f a b a '=+-=,解得6a =,9b =-,∴32()6936f x x x x =--. (Ⅱ)由题知12()()0f x f x ''==,∴12,x x 是方程22320ax bx a +-=的两根,∴234120b a ∆=+>对一切0,a b R>∈恒成立.又1223x x +=-,123ax x =-<,∴1212||||||x x x x +=-==,得223(6)b a a =-,∴23(6)0a a -≥,06a <≤.令2()3(6)h a a a =-,则2()369h a a a '=-,当04a <<时,()0h a '>,()h a 在(0,4)上单调递增, 当46a <<时,()0h a '<,()h a 在(4,6)上单调递减,∴当4a =时,()h a 在(0,6]上的最大值为(4)96h =.故b 的最大值为……9分(Ⅲ)∵12,x x 是方程22()320f x ax bx a '=+-=的两根,∴12()3()()f x a x x x x '=--又123a x x =-,2x a =,∴113x =-.∴111333|()||3()()()||()[3()1]|g x a x x a a x a x x a =+--+=+--.∵12x x x <<,即13x a-<<,∴1131333|()|()(331)3()()a g x a x x a a x x +=+-++=-+-33222233124343123()(32)aa a a a a x a a a a =--+++≤++=+. ……14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
********灿若寒星竭诚为您提供优质文档********* 灿若寒星 1)2()(22xaaaxxfaxy
2019高三第一次月考文科数学试题 总分150分 时量120分钟 一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)
1.若集合8,7,6,5,4,3,2,1U,8,5,2A,7,5,3,1B,那么()UCAB
等于( )
A.5 B . 7,3,1 C .4,6 D. 1,2,3,4,6,7,8 2.函数f(x)= 的定义域为( ) A.(-1,+∞)B.(-1,1)∪(1,+∞)C.[-1,+∞)D.[-1,1)∪(1,+∞) 3.函数y =log0. 5(x2-3x-10)的递增区间是 ( )
A.(- ∞,-2) B.(5,+ ∞) C.(- ∞,32) D.(32,+ ∞) 4.函数xxeexxf
的图像大致是( )
A. B. C. D. 5.若函数为偶函数,则实数a的值为( ) A.1 B. C.0 D.0或 6.下列说法不正确的是( ) A.若“p且q”为假,则p,q至少有一个是假命题 B.命题“∃x∈R,x2﹣x﹣1<0”的否定是““∀x∈R,x2﹣x﹣1≥0” C.设A,B是两个集合,则“A⊆B”是“A∩B=A”的充分不必要条件 D.当a<0时,幂函数在(0,+∞)上单调递减 ********灿若寒星竭诚为您提供优质文档********* 灿若寒星 7.已知)(xf是定义在实数集R上的偶函数,且在),0(上递增,则( ) A.0.72(2)(3)(log5)fff B.0.72(3)(2)(log5)fff
C.0.72(3)(log5)(2)fff D.0.72(2)(log5)(3)fff
8.定义在R上的奇函数fx和偶函数gx满足222xxfxgx
,则2f=
( ) A. 2 B. 154 C. 4 D. 174 9.规定记号“”表示一种运算,即2,,abababR,若14k,则函数222loglogloghxxkx的最小值是( )
A.34 B.14 C.14 D.74 10.已知定义在R上的偶函数,)(xf在0x时,)1ln()(xexfx, 若)1()(afaf,则a的取值范围是( ) A.)1,( B.)2
1,( C.)1,21
( D.)1(,
11.已知函数(1)fx是定义在R上的奇函数,若对于任意两个实数12xx
,不等式
12
12
()0fxfxxx恒成立,则不等式(3)0fx的解集为( )
A.(,3) B.(4,) C.(,4) D.(,1) 12. 已知函数sin3fxxx, 则12340292015201520152015ffff
L
的值为( ) A.4029 B.-4029 C.8058 D.-8058
二、填空题:本大题共四小题,每小题5分,共20分。 13.若集合A={a﹣5,1﹣a,9},B={﹣4,a2 },且A∩B={9},则a的值是 . 14.已知函数f(x)=2x+2xm是R上的偶函数,则f(x)的最小值为 . 15. 函数f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x-1,则不等式xf(x)>0在 ********灿若寒星竭诚为您提供优质文档********* 灿若寒星 [-1,3]上的解集为 . 16.已知函数, 1()(7)4,1xaxfxaxax满足对任意21xx,都有1212()()0fxfxxx成立,则a的取值范围是 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知3|:|axp(a为常数);q:代数式)6lg(1xx有意义. (1)若1a,求使”“qp为真命题的实数x的取值范围; (2)若p是q成立的充分不必要条件,求实数a的取值范围.
18. (本小题满分12分)在ABC中,内角CBA,,所对应的边分别为cba,,,且AbBa2sinsin.
(Ⅰ)求角A的大小; (Ⅱ)若7a,求ABC面积的最大值.
19.(本小题满分12分)已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样统计,先将800人按001002003800,,,,L进行编号. (Ⅰ)如果从第8行第7列的数开始向右读,请你依次写出最先检测的3个人的编号;(下面摘********灿若寒星竭诚为您提供优质文档********* 灿若寒星 取了第7行 至第9行) 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(Ⅱ)抽的100人的数学与地理的水平测试成绩如下表:
人数 数学 优秀 良好 及格
地 理
优秀 7 20 5
良好 9 18 6 及格 a 4 b 成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有2018442人,若在该样本中,数学成绩优秀率为30%,求ab,
的值. (Ⅲ)将108ab≥,≥的ab,表示成有序数对()ab,,求“在地理成绩为及格的学生中,数学成绩为优秀的人数比及格的人数少”的数对()ab,的概率.
20.(本小题满分12分)如图,在三棱锥ABCP中,ABPA,BCPA,ABBC, 2BCABPA,D为线段AC的中点,E为线段PC上一点.
(1)求证:BDPA (2)求证:平面BDE平面PAC (3)当PA∥平面BDE时,求三棱锥BCDE的体积 . ********灿若寒星竭诚为您提供优质文档********* 灿若寒星 21. (本小题满分12分)设函数Rxxfy)((且)0x对任意非零实数21,xx
恒有
)()()(2121xfxfxxf,且对任意1x,()0fx
。
(1)求)1(f及)1(f的值; (2)判断函数)(xf的奇偶性; (3)求不等式3()()02fxfx的解集。
22. (本小题满分10分)已知曲线C的参数方程为:为参数)(sin3cos2yx,直线l的参数方程为:为参数)ttytx(31,点)0,1(p,直线l与曲线C交于A,B两点. (1)分别写出曲线C在直角坐标系下的标准方程和直线l在直角坐标系下的一般方程; (2)求||1||1PBPA
的值. ********灿若寒星竭诚为您提供优质文档********* 灿若寒星 2019高三第一次月考文科数学试题(答案) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)
1.若集合8,7,6,5,4,3,2,1U,8,5,2A,7,5,3,1B,那么()UCAB
等于( C )
A.5 B . 7,3,1 C .4,6 D. 1,2,3,4,6,7,8 2.函数f(x)= 的定义域为( B ) A.(-1,+∞)B.(-1,1)∪(1,+∞)C.[-1,+∞)D.[-1,1)∪(1,+∞) 3.函数y =log0. 5(x2-3x-10)的递增区间是 ( A )
A.(- ∞,-2) B.(5,+ ∞) C.(- ∞,32) D.(32,+ ∞) 4.函数xxeexxf
的图像大致是( A )
A. B. C. D. 5.若函数f(x)=ax2+(2a2﹣a)x+1为偶函数,则实数a的值为( D ) A.1 B. C.0 D.0或 6.下列说法不正确的是( C ) A.若“p且q”为假,则p,q至少有一个是假命题 B.命题“∃x∈R,x2﹣x﹣1<0”的否定是““∀x∈R,x2﹣x﹣1≥0” C.设A,B是两个集合,则“A⊆B”是“A∩B=A”的充分不必要条件 D.当a<0时,幂函数y=xa在(0,+∞)上单调递减 7.已知)(xf是定义在实数集R上的偶函数,且在),0(上递增,则( D ) A.0.72(2)(3)(log5)fff B.0.72(3)(2)(log5)fff