大学生高等数学竞赛试题汇总及答案
高等数学竞赛真题及答案解析

高等数学竞赛真题及答案解析高等数学竞赛是对学生在该学科中的深入理解和应用能力的考察,对于提升学生的数学素养和能力有着重要的意义。
本文将为大家介绍一些高等数学竞赛的真题,并提供相应的解析,帮助大家更好地理解和掌握数学知识。
一、题目1让我们先来看一个简单的问题:计算$\int \frac{1}{x} dx$。
解析:这是一个基本的积分题目,我们可以使用积分的基本公式来解答。
首先,我们要找到该函数的原函数,即使得它的导数等于$\frac{1}{x}$的函数。
显然,原函数是$ln|x|$。
所以,该积分的结果就是$ln|x|+C$,其中C为常数。
二、题目2接下来,我们来看一个稍微复杂一些的题目:设$f(x)$在[0,1]上连续,且$\int_0^1 f(x) dx = c$,求证:存在$\xi \in (0,1)$,使得$f(\xi) = c$。
解析:根据题目要求,我们需要找到一个$\xi$,使得$f(\xi) = c$。
根据平均值定理,即在[0,1]区间上存在一个点$\xi$,使得$f(\xi) = \frac{1}{b-a} \int_a^b f(x) dx$,其中a和b为区间的两个端点。
由于$\int_0^1 f(x) dx = c$,所以存在$\xi \in (0,1)$,使得$f(\xi) = c$。
三、题目3现在我们来考虑一个涉及到函数极限的题目:设函数$f(x)$在0的某个去心邻域内有定义,且$\lim_{x \to 0} f(x) = A$,证明:$\lim_{x \to 0} \frac{f(x)}{x} = A$。
解析:根据题目给出的条件,我们知道当$x$趋近于0时,$f(x)$会趋近于A。
我们需要证明的是,当$x$趋近于0时,$\frac{f(x)}{x}$也会趋近于A。
我们可以通过将分子和分母都除以$x$来简化问题,得到$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0}\frac{\frac{f(x)}{x}}{1} = \lim_{x \to 0} \frac{f(x)}{x} = A$。
历届大学生高等数学竞赛真题及答案非数学类14页

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x y x x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,令u t -=1,则21t u -=2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,解得34=A 。
因此3103)(2-=x x f 。
3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。
第十届高等数学竞赛理工类(一)试题答案

第十届高等数学竞赛理工类(一)试题答案南昌大学第十届高等数学竞赛(前湖校区理工类)试题答案序号:姓名:学生编号:学院(学科部):检查室:考试号:2022年10月13日题号1,15,2,15,3,7,4,8,5,9,6,8,9,6,总分,累积分数签名:这个卷有X页,主要问题,考试时间是8:30~1130评分审阅者。
填空(每个问题3分,共15分)1。
曲面x2?2y2?3z2?21点?1.2,2? 正态方程是3nx?1岁?2z?2.1.461? 十、1.十、1.十、1.2.设n为正整数,则Lim=x?1n 3.设置向量a??1,2,3?, B1,1,0?,如果非负实数k构成向量a?KB和a?KB垂直,然后K?(1?x)n?17.4.穿过直线x?1岁?2z?2.2.32并且垂直于平面3x?2岁?Z5.0的平面方程是x?8岁?13z?9? 0 N5。
幂级数1.N212n?3x的收敛域是??2,2?. N2n第1页,共6页二、单项选择题(每题3分,共15分)得分评阅人1、设f?x??2x?3x?2,则当x?0时(b)(a)f?x?与x是等价无穷小.(b)f?x?与x是同阶但非等价无穷小.(c)f?x?是比x低阶的无穷小.(d)f?x?是比x高阶的无穷小.2、x?0是f?x??2?12?11x1x的(b).(a)可去间断点.(b)跳跃间断点.(c)无穷间断点.(d)振荡间断点.?g(x),x?0?3、设f?xx其中g?x?在x?0的某个邻域内二阶导数存在,且g?0??0,??0,x?0g??0??0,则(c)(a)f?x?在x?0处不连续.(b)f?x?在x?0处连续但不可导.(c)f?x?在x?0处可导,但导函数在x?0处不一定连续.(d)f?x?在x?0处导函数连续.4、设线性无关的函数y1?x?,y2?x?,y3?x?均是二阶非齐次线性方程yp?x?y??q?x?y?f?x?的解,c1,c2是任意常数,则该非齐次方程的通解是(d)(a)c1y1?c2y2?y3.(b)c1y1?c2y2??c1?c2?y3.(c)c1y1?c2y2??1?c1?c2?y3.(d)c1y1?c2y2+?1?c1?c2?y3.5、设a为常数,则级数?sinna1n2??(a).n?n?1??(a)发散.(b)绝对收敛.(c)条件收敛.(d)敛散性与a的取值有关.第2页共6页评分评审员3,(满分7分)找到极限limx2?lnarctan(x?1)?lnarctanx?。
长沙理工大学高等数学竞赛试题及答案1

长沙理工大学非数学专业竞赛试题一、填空题(每小题3分,共30分)1. 123ln 1ln 1ln 1ln 1lim 123n n n n n n n n n n n n n n n →+∞⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪++++= ⎪++++ ⎪⎝⎭.2.⎥⎦⎤⎢⎣⎡+-+-+∞→1)2(lim 6123x e x x x x x = . 3.221ln(1)n n+∞=-∑= 4.π22π22sin d (1cos )x xx x -+=+⎰。
5. 设D 为闭区域221,x y +≤则2222()Dx y dxdy a b +=⎰⎰ 。
6. 设arcsin y x =,求()()0n y = 。
7. 交换积分的次序()110,,xx ydx dy f x y z dz -+=⎰⎰⎰。
(变换为先y 后x,z )8.2006π0|sin |d _______.x x x =⎰22229.(,),(,)(,)d d ,(,)_____.x y a f x y f x y y xf x y x y f x y +≤=+=⎰⎰设为连续函数且则10、设111,sin (1,2,)n n x x x n +=== ,则lim n n x →∞= 。
二、(本小题10分)设),(y x f 有二阶连续偏导数, ),(),(22y x e f y x g xy +=, 且))1((1),(22y x o y x y x f +-+--=, 证明),(y x g 在)0,0(取得极值, 判断此极值是极大值还是极小值, 并求出此极值.三、(10分)设函数(,),(,)u x y v x y 在闭区域22:1D x y +≤上有一阶连续偏导数,又(,)(,)(,),(,),u u v v x y v x y u x y x y x y x y ⎛⎫⎛⎫∂∂∂∂=+=-+- ⎪ ⎪∂∂∂∂⎝⎭⎝⎭f i jg i j 且在D 的边界上有(,)1,(,),u x y v x y y ≡≡求d Dσ∙⎰⎰f g 。
东北大学大二公共课专业高等数学竞赛模拟试题及答案

东北大学高等数学竞赛模拟试题〔二〕一、 填空题〔每题5分,共50分〕 1.函数|sin |sin x x y =〔其中2||π≤x 〕的反函数为 。
2.设a 与b 是非零向量,且,2||=b 及,3),(π=b a 则=-+→xb b x a x ||||lim0 。
3.t t x yd cost de 220 20 t ⎰⎰=,则=dxdy。
4.假设,0>a 且有]3tan )6[sin(lim sin 1lim 60 20x x dt t a t x x x x x -=+-→→⎰ππ,则a = 。
5.=-+⎰+dx e xx xx 1)11( 。
6.=+⎰/20 3)(cot 1πx dx 。
7.=∞→n n n nn !2lim 。
8.设ϕϕ,),,()(1f yxxy y xy f x z +=分别具有二阶连续导数和二阶连续偏导数,则=∂∂∂yx z2 。
9.级数∑∞=1n nu的一般项n u 与前n 项局部和n S 有如下关系:),2( 222≥-=n u S u S n n n n 且21=u ,则级数∑∞=1n n u = 。
10.由曲线⎩⎨⎧==+0122322z y x 绕y 轴旋转一周所得旋转曲面在点)2,3,0(处的指向外侧的单位法向量为 = 。
二、〔每题6分,共18分〕1.求极限)||sin 12(41x xee xx +++2.设,d e )( t1 2x t f x ⎰=求⎰12)(t dt t f3.在平面01:=-++z y x π内作一直线,此直线通过直线⎩⎨⎧=-+=+-0102:z y z x L 与平面π的交点,且垂直于直线L ,试求该直线的方程。
三、〔7分〕设)(x f 在区间],[b a 上为正值连续函数,且,)]([ba⎰dx x f n,则数列⎭⎬⎫⎩⎨⎧+n n a a 1收敛。
四、〔7分〕设222)3()1()(--=x x x x f ,试问曲线)(x f y =有几个拐点,证明你的结论。
大学生数学竞赛试卷及答案(数学类)

Fe1 = e2 , F 2 e1 = Fe2 = e3 ," , F n −1e1 = F ( F n − 2 e1 ) = Fen −1 = en
由
(*)
Me1 = (an1 F n −1 + an −11 F n − 2 + " + a21 F + a11 E )e1 = an1 F n −1e1 + an −11 F n − 2 e1 + " + a21 Fe1 + a11 Ee1 = an1en + an −11en −1 + " + a21e2 + a11e1 = α1 = Ae1
圆柱面的半径即为平行直线 x = y = z 和 x − 1 = y + 1 = z 之间的距离. P0 (1, −1, 0) 为 L0 上的点.
G JJJG G JJJG | n ×ቤተ መጻሕፍቲ ባይዱP0 S | | n × P0O | G G = 对圆柱面上任意一点 S ( x, y, z ) , 有 , 即 |n| |n| (− y + z − 1) 2 + ( x − z − 1) 2 + (− x + y + 2) 2 = 6 ,
地, Wm 在 g 下是不变的. 下面证明, Wm 在 f 下也是不变的.事实上,由 f (η ) = λ0η ,知
fg (η ) = gf (η ) + f (η ) = λ0 g (η ) + λ0η
fg 2 (η ) = gfg (η ) + fg (η ) = g (λ0 g (η ) + λ0η ) + (λ0 g (η ) + λ0η ) = λ0 g 2 (η ) + 2λ0 g (η ) + λ0η
天津市高等数学竞赛试题及答案_4套(05~08)

2005年天津市大学数学竞赛试题参考答案一、填空:(本题15分,每空3分。
请将最终结果填在相应的横线上面。
) 1.=+++-++∞→xx x x x sin 114lim22x 3 。
2.设函数)(x y y =由方程xyy x arctan22e =+所确定,则曲线)(x y y =在点)0,1(处的法线方程为01=-+y x 。
3.设函数)(x f 连续,则=-⎰xt t x tf x 022d )(d d )(2x xf 。
4.设函数f 和g 都可微,()x,xy f u =,()xy x g v +=,则=∂∂⋅∂∂xv x u ()g yf f y '⎪⎭⎫ ⎝⎛'+'+211 。
5.=-+⎰-21212d 1arcsin sin x x xx x π631-。
二、选择题:(本题15分,每小题3分。
每个小题的四个选项中仅有一个是正确的,把你认为“正确选项”前的字母填在括号内。
选对得分;选错、不选或选出的答案多于一个,不得分。
)1. 函数)(x f 在闭区间[1,2]上具有二阶导数,0)2()1(==f f ,f(x)x x F 2)1()(-=,则)(x F ''在开区间(1,2)内 ( B ) (A ) 没有零点; (B )至少有一个零点;(C ) 恰有两个零点; (D )有且仅有一个零点。
2. 设函数)(x f 与)(x g 在开区间(a ,b )内可导,考虑如下的两个命题, ⑴ 若)()(x g x f >,则)()(x g x f '>'; ⑵ 若)()(x g x f '>',则)()(x g x f >。
则( A )(A )两个命题均不正确; (B )两个命题均正确;(C )命题⑴正确,命题⑵不正确; (D )命题⑴不正确,命题⑵正确。
3. 设常数0>δ,在开区间()δδ,-内,恒有0)(,)(2>''≤x f x x f ,记⎰-=δδx x f I d )(,则( C )(A ) I < 0; (B ) I = 0; (C ) I > 0; (D ) I 非零,且其符号不确定。
高等数学竞赛最新试题及答案

高等数学竞赛最新试题及答案高等数学竞赛试题一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 - 4x + 3 \)的顶点坐标是:A. (2, -1)B. (1, 0)C. (2, 1)D. (2, -1)2. 已知\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),求\( \lim_{x \to 0} \frac{\sin 3x}{3x} \)的值是:A. 1B. 0C. 3D. 无法确定3. 曲线\( y = x^3 - 2x^2 + x \)在点(1,0)处的切线斜率是:A. 0B. -1C. 1D. 24. 以下哪个级数是发散的?A. \( \sum_{n=1}^{\infty} \frac{1}{n^2} \)B. \( \sum_{n=1}^{\infty} \frac{1}{n} \)C. \( \sum_{n=1}^{\infty} (-1)^n \frac{1}{n} \)D. \( \sum_{n=1}^{\infty} \frac{1}{2^n} \)5. 函数\( f(x) = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \frac{\pi}{2} \)D. \( \pi \)6. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = |x| \)D. \( f(x) = \sin x \)7. 已知\( \int_{0}^{1} x^2 dx = \frac{1}{3} \),求\( \int_{0}^{1} x^3 dx \)的值是:A. \( \frac{1}{4} \)B. \( \frac{1}{3} \)C. \( \frac{1}{2} \)D. \( 1 \)8. 以下哪个是二阶常系数线性微分方程?A. \( y'' + 3y' + 2y = 0 \)B. \( y' + y = x^2 \)C. \( y'' + y' = 0 \)D. \( y'' - 2y' + y = \sin x \)9. 以下哪个是二元函数的偏导数?A. \( \frac{\partial^2 f}{\partial x \partial y} \)B. \( \frac{\partial f}{\partial x} \)C. \( \frac{\partial f}{\partial y} \)D. \( \frac{d^2f}{dx^2} \)10. 已知\( \lim_{x \to \infty} \frac{f(x)}{x} = 0 \),那么\( f(x) \)是:A. 常数B. 有界函数C. 无穷小量D. 无穷大量二、填空题(每题4分,共20分)11. 函数\( f(x) = \sqrt{x} \)的定义域是_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前三届高数竞赛预赛试题非数学类参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题;2009-2010年 第一届全国大学生数学竞赛预赛试卷一、填空题每小题5分1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(16/15,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,⎰-=102d 1u uu 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=2d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A ;因此3103)(2-=x x f ; 3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由xz x =,yz y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x ;4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d x y________________. 解: 方程29ln )(y y f e xe =的两边对x 求导,得 因)(29ln y f y xe e =,故y y y f x '=''+)(1,即))(1(1y f x y '-=',因此二、5分求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数. 解 :因 故 因此三、15分设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.解 : 由A x x f x =→)(lim和函数)(x f 连续知,0)(lim lim )(lim )0(000===→→→xx f x x f f x x x因⎰=10d )()(t xt f x g ,故0)0(d )0()0(10===⎰f t f g , 因此,当0≠x 时,⎰=xu u f xx g 0d )(1)(,故 当0≠x 时,xx f u u f x x g x )(d )(1)(02+-='⎰, 这表明)(x g '在0=x 处连续.四、15分已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:1⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;22sin sin 25d d π⎰≥--Ly y x ye y xe .证 :因被积函数的偏导数连续在D 上连续,故由格林公式知 1y x ye y xe x x ye y xe Dx y Lx y d d )()(d d sin sin sin sin ⎰⎰⎰⎥⎦⎤⎢⎣⎡-∂∂-∂∂=---而D 关于x 和y 是对称的,即知 因此 2因 故 由知即 2sin sin 25d d π⎰≥--Ly y x ye y xe五、10分已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解 设x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是二阶常系数线性非齐次微分方程的三个解,则x x e e y y 212-=--和x e y y -=-13都是二阶常系数线性齐次微分方程 的解,因此0=+'+''cy y b y 的特征多项式是0)1)(2(=+-λλ,而0=+'+''cy y b y 的特征多项式是因此二阶常系数线性齐次微分方程为02=-'-''y y y ,由)(2111x f y y y =-'-''和 x x x e xe e y 212++=',x x x e xe e y 2142++='' 知,1112)(y y y x f -'-''=)(2)2(42222x x x x x x x x e xe e e xe e e xe +-++-++= 二阶常系数线性非齐次微分方程为六、10分设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.解 因抛物线c bx ax y ln 22++=过原点,故1=c ,于是 即而此图形绕x 轴旋转一周而成的旋转体的体积 即 令0)1(278)21(3152)(=---+='a a a a V πππ, 得 即 因此45-=a ,23=b ,1=c .七、15分已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n, 且neu n =)1(, 求函数项级数∑∞=1)(n n x u 之和.解x n n ne x x u x u 1)()(-+=', 即由一阶线性非齐次微分方程公式知 即 因此由)1()1(nC e u n e n +==知,0=C , 于是下面求级数的和:令 则 即由一阶线性非齐次微分方程公式知令0=x ,得C S ==)0(0,因此级数∑∞=1)(n n x u 的和八、10分求-→1x 时, 与∑∞=02n n x 等价的无穷大量.解 令2)(t x t f =,则因当10<<x ,(0,)t ∈+∞时,2()2ln 0t f t tx x '=<,故xt t ex t f 1ln22)(-==在(0,)+∞上严格单调减;因此即()d ()1()d n f t t f n f t t ∞+∞+∞=≤≤+∑⎰⎰,又2()n n n f n x ∞∞===∑∑,21ln 1d 1ln1d d d )(01ln222πxt e xt et x t t f t xt t====⎰⎰⎰⎰∞+-∞+-∞+∞+,所以,当-→1x 时, 与∑∞=02n n x 等价的无穷大量是x-121π;2010-2012年 第二届全国大学生数学竞赛预赛试卷参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题; 一、25分,每小题5分1设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞2求21lim 1x x x e x-→∞⎛⎫+ ⎪⎝⎭;3设0s >,求0(1,2,)sx n I e x dx n ∞-==⎰;4设函数()f t 有二阶连续导数,1(,)r g x y f r ⎛⎫== ⎪⎝⎭,求2222g g x y ∂∂+∂∂;5求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离; 解:122(1)(1)(1)n n x a a a =+++=22(1)(1)(1)(1)/(1)nn x a a a a a =-+++- =222(1)(1)(1)/(1)na a a a -++-==12(1)/(1)n a a +--2 22211ln (1)ln(1)1lim 1lim lim x x x e x x xx xx x x e e e x -++--→∞→∞→∞⎛⎫+== ⎪⎝⎭令x=1/t,则原式=21(ln(1))1/(1)112(1)22lim lim lim t t t t ttt t t eeee +-+---+→→→===30000112021011()()[|](1)!!sx n n sx n sx sx n n sx n n n n n I e x dx x de x e e dx s s n n n n n n e x dx I I I s s s s s ∞∞∞---∞-∞----+==-=--=-=====⎰⎰⎰⎰二、15分设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0,lim ()0,lim ()0,x x f x f x f x αβ→+∞→-∞''''>=>=<且存在一点0x ,使得0()0f x <;证明:方程()0f x =在(,)-∞+∞恰有两个实根;解: 二阶导数为正,则一阶导数单增,fx 先减后增,因为fx 有小于0的值,所以只需在两边找两大于0的值;将fx 二阶泰勒展开: 因为二阶倒数大于0,所以lim ()x f x →+∞=+∞,lim ()x f x →-∞=-∞证明完成;三、15分设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ; 解:这儿少了一个条件22d ydx=由()y t ψ=与22132t u y e du e-=+⎰在1t =出相切得 3(1)2e ψ=,'2(1)eψ= 22d y dx ='3''()(2(/)(/)//(22)2)2()d dy dx d dy dx dt dx dx d t t t t t ψψ==++-=;;; 上式可以得到一个微分方程,求解即可; 四、15分设10,,nn n k k a S a =>=∑证明:1当1α>时,级数1nn na S α+∞=∑收敛; 2当1α≤且()n s n →∞→∞时,级数1nn na S α+∞=∑发散; 解:1n a >0, n s 单调递增 当1n n a ∞=∑收敛时,1n n n a a s s αα<,而1n a s α收敛,所以nna s α收敛; 当1n n a ∞=∑发散时,lim n n s →∞=∞所以,11111211n n n s s n s s n n na a a dx dx s s x s x ααααα-∞∞==<+=+∑∑⎰⎰而1111111111lim 11ns n s n s s a a s dx k x s s αααααααα---→∞-=+=+=--⎰,收敛于k; 所以,1nn na s α∞=∑收敛; 2lim n n s →∞=∞所以1n n a ∞=∑发散,所以存在1k ,使得112k n n a a =≥∑于是,111122212k k k n n n n nk a a a s s s α≥≥≥∑∑∑依此类推,可得存在121...k k <<<使得112i i k n k n a s α+≥∑成立,所以112Nk n na N s α≥⋅∑ 当n →∞时,N →∞,所以1nn na s α∞=∑发散 五、15分设l 是过原点、方向为(,,)αβγ,其中2221)αβγ++=的直线,均匀椭球2222221x y z a b c ++≤,其中0,c b a <<<密度为1绕l 旋转; 1求其转动惯量;2求其转动惯量关于方向(,,)αβγ的最大值和最小值; 解:1椭球上一点Px,y,z 到直线的距离 由轮换对称性, 2a b c >>∴当1γ=时,22max 4()15I abc a b π=+ 当1α=时,22min 4()15I abc b c π=+六、15分设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422()cxydx x dyx yϕ++⎰的值为常数; 1设L 为正向闭曲线22(2)1,x y -+=证明422()0;cxydx x dyx y ϕ+=+⎰2求函数()x ϕ;3设C 是围绕原点的光滑简单正向闭曲线,求422()cxydx x dyx y ϕ++⎰;解:(1) L 不绕原点,在L 上取两点A,B,将L 分为两段1L ,2L ,再从A,B 作一曲线3L ,使之包围原点; 则有 (2) 令42422(),xy x P Q x y x yϕ==++ 由1知0Q P x y∂∂-=∂∂,代入可得 上式将两边看做y 的多项式,整理得 由此可得 解得:2()x x ϕ=-(3) 取'L 为424x y ξ+=,方向为顺时针2011-2012年 第三届全国大学生数学竞赛预赛试卷参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题;一. 计算下列各题本题共3小题,每小题各5分,共15分1.求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭;解:用两个重要极限:2.求111lim ...12n n n n n →∞⎛⎫+++⎪+++⎝⎭; 解:用欧拉公式令111...12n x n n n n=++++++ 其中,()1o 表示n →∞时的无穷小量,3已知()2ln 1arctan tt x e y t e ⎧=+⎪⎨=-⎪⎩,求22d y dx ; 解:222222221211,121121tt t t t t t t t tte dx e dy e dy e e e e dt e dt e dx e e --++==-∴==+++ 二.本题10分求方程()()2410x y dx x y dy +-++-=的通解;解:设24,1P x y Q x y =+-=+-,则0Pdx Qdy +=1,P Q y x ∂∂==∴∂∂0Pdx Qdy +=是一个全微分方程,设dz Pdx Qdy =+ ,P Q y x∂∂=∴∂∂该曲线积分与路径无关 三.本题15分设函数fx 在x=0的某邻域内具有二阶连续导数,且()()()'"0,0,0f f f 均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()1232230lim0h k f h k f h k f h f h→++-=;证明:由极限的存在性:()()()()1230lim 2300h k fh k f h k f h f →++-=⎡⎤⎣⎦即[]()123100k k k f ++-=,又()00f ≠,1231k k k ∴++=①由洛比达法则得由极限的存在性得()()()'''1230lim 22330h k fh k f h k f h →⎡⎤++=⎣⎦即()()'1232300k k k f ++=,又()'00f ≠,123230k k k ∴++=②再次使用洛比达法则得123490k k k ∴++=③由①②③得123,,k k k 是齐次线性方程组1231231231230490k k k k k k k k k ++=⎧⎪++=⎨⎪++=⎩的解设1231111123,,01490k A x k b k ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则Ax b =, 增广矩阵*111110031230010314900011A ⎛⎫⎛⎫⎪ ⎪=- ⎪⎪⎪ ⎪⎝⎭⎝⎭,则()(),3R A b R A ==所以,方程Ax b =有唯一解,即存在唯一一组实数123,,k k k 满足题意, 且1233,3,1k k k ==-=;四.本题17分设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值;解:设Γ上任一点(),,M x y z ,令()222222,,1x y z F x y z a b c=++-,则'''222222,,,x y z x y z F F F a b c ===∴椭球面1∑在Γ上点M 处的法向量为:222,,,x y z t a b c ⎛⎫=∴ ⎪⎝⎭1∑在点M 处的切平面为∏:原点到平面∏的距离为d =,令()222444,,,x y z G x y z a b c =++则1d =现在求()222444,,,x y z G x y z a b c =++在条件2222221x y z a b c++=,222z x y =+下的条件极值,令()()22222222212444222,,1x y z x y z H x y z x y z a b c a b c λλ⎛⎫=+++++-++- ⎪⎝⎭则由拉格朗日乘数法得:'1242'1242'1242222222222222022202220100x y z xx H x a a y y H y b b z z H z c c x y z ab c x y z λλλλλλ⎧=++=⎪⎪⎪=++=⎪⎪⎪=+-=⎨⎪⎪++-=⎪⎪⎪+-=⎪⎩, 解得2222220x b c y z b c =⎧⎪⎨==⎪+⎩或2222220a c x z a c y ⎧==⎪+⎨⎪=⎩, 对应此时的()()442222,,b c G x y z b c b c +=+或()()442222,,a c G x y z a c a c +=+此时的1d =2d =又因为0ab c >>>,则12d d <所以,椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值分别为:2d =1d =五.本题16分已知S 是空间曲线2231x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分0z≥取上侧,∏是S 在(),,P x y z 点处的切平面,(),,x y z ρ是原点到切平面∏的距离,,,λμν表示S 的正法向的方向余弦;计算:1(),,SzdS x y z ρ⎰⎰;2()3S z x y z dS λμν++⎰⎰解:1由题意得:椭球面S 的方程为()222310x y z z ++=≥令22231,Fx y z =++-则'''2,6,2x y z F x F y F z ===,切平面∏的法向量为(),3,n x y z =,∏的方程为()()()30x X x y Y y z Z z -+-+-=,原点到切平面∏的距离()222,,x y z ρ==将一型曲面积分转化为二重积分得:记22:1,0,0xz D x z x z +≤≥≥2方法一:λμν===六.本题12分设fx 是在(),-∞+∞内的可微函数,且()()f x mf x <、,其中01m <<,任取实数0a ,定义()1ln ,1,2,...,n n a f a n -==证明:()11n n n a a ∞-=-∑绝对收敛; 证明:()()112ln ln nn n n a a f a f a ----=-由拉格朗日中值定理得:ξ∃介于12,n n a a --之间,使得()()()'112n n n n f a a a a f ξξ---∴-=-,又()()f mf ξξ<、得()()'f m f ξξ<∴级数1101n n m a a ∞-=-∑收敛,∴级数11nn n aa ∞-=-∑收敛,即()11n n n a a ∞-=-∑绝对收敛;七.本题15分是否存在区间[]0,2上的连续可微函数fx,满足()()021f f ==,()()201,1fx f x dx ≤≤⎰、请说明理由;解:假设存在,当[]0,1x ∈时,由拉格朗日中值定理得: 1ξ∃介于0,x 之间,使得()()()'10,f x f f x ξ=+, 同理,当[]1,2x ∈时,由拉格朗日中值定理得:2ξ∃介于x,2之间,使得()()()()'222f x f f x ξ=+-即()()[]()()()[]''121,0,1;12,1,2f x f x x f x f x x ξξ=+∈=+-∈ ()11f x -≤≤、,显然,()()200,0f x f x dx ≥≥⎰()()()()()1221211111133x dx x dx f x dx x dx x dx ≤-+-≤≤++-=⎰⎰⎰⎰⎰()21f x dx ∴≥⎰,又由题意得()()221,1f x dx f x dx ≤∴=⎰⎰即()21f x dx =⎰,()[][]1,0,11,1,2x x f x x x ⎧-∈⎪∴=⎨-∈⎪⎩ ()'1f ∴不存在,又因为fx 是在区间[]0,2上的连续可微函数,即()'1f 存在,矛盾,故,原假设不成立,所以,不存在满足题意的函数fx;。