控压钻井技术

合集下载

精细控压钻井技术简介

精细控压钻井技术简介
一、 精细控压钻井技术概述
1、MPD提出背景
近年来随着对石
BHP
油天然气勘探开发力 度的加大,各种复杂 地区钻井日益增多, 应 用 常 规 OBD技 术 以 及 UBD 技 术 均 不 能 很 好 解 决 窄 密 度 窗 口 安 BHP 全 钻 井 、 含 H2S 气 体 、高密度泥浆漏失引
井涌
起的钻井复杂和井控 风险等问题。
即 :MPD是一种适用的钻井程序,用于精确地控制整个井眼的 环空压力剖面,其目的在于确定井底压力范围(使环空压力剖面在安 全密度窗口之类),从而合适地控制环空液压剖面。
一、 精细控压钻井技术概述
2、精细控压钻井技术定义(Managed Pressure Drilling-MPD)
技术注解: (1)MPD将工具与技术相结合,通过预先控制环空液压剖面,可以减少 与井底压差范围狭窄的井眼钻井有关的风险和投资; (2)MPD可以包括对回压、流体密度、流体流变性、环空液面、循环摩 擦力和井眼几何尺寸进行综合分析与加以控制; (3)MPD可以更快地纠正作业,来处理观察到的压力变化。能够动态控 制环空压力,从而能够完成其他技术不可能经济地完成的钻井作业; (4)MPD技术可用于避免地层流体侵入,使用适当的工艺作业中产生的 任何流动都是安全的。
井底恒压 CBHP
加压泥浆帽 PMCD
窄密度窗口... 高温高压层
大漏失地层
双梯度 DGD
海洋钻井
一、 精细控压钻井技术概述
应用最广泛,适用区域最 广,技术上最先进 溶洞、大裂缝地区 地层压力梯度规律突变 (深海海底)
HSE 健康安全环保
减少污染
仅在概念阶段
陆上力
地层压力
一、 精细控压钻井技术概述
2、精细控压钻井技术定义(Managed Pressure Drilling-MPD)

精细控压钻井技术创新及应用探讨

精细控压钻井技术创新及应用探讨

精细控压钻井技术创新及应用探讨
随着石油勘探开发的深入和技术的不断进步,精细控压钻井技术成为了当前钻井工程中的重要创新技术之一。

该技术通过控制井底压力,减少井漏和井喷等事故的发生,提高钻井效率和安全性。

本文将探讨精细控压钻井技术的创新及应用。

精细控压钻井技术的创新主要体现在以下方面。

一是钻井液的创新。

传统钻井液主要通过添加压力控制剂来实现对井底压力的控制,但该方法存在效率低、成本高等问题。

而精细控压钻井技术通过改变钻井液的物理性质,如密度、粘度等,来实现对井底压力的控制。

可以通过添加聚合物或气体泡沫等成分,改变钻井液的密度和粘度,从而达到精确控制井底压力的目的。

二是井底压力的实时监测。

精细控压钻井技术通过在井底安装压力传感器和数据采集设备,实时监测井底压力变化,并将数据传输到地面控制中心。

控制中心可以根据井底压力变化的趋势,实施相应的控制措施,从而实现对井底压力的精确控制。

精细控压钻井技术可以应用于高压油气藏的开发。

高压油气藏开发中,井底压力往往较大,容易导致井漏和井喷事故的发生。

精细控压钻井技术可以通过实时监测井底压力,精确控制钻井液的密度和粘度,减少井漏和井喷的风险,提高钻井效率和安全性。

精细控压钻井技术还可以应用于复杂地层的钻井。

复杂地层中存在多种岩性、多个层位,井底压力的变化较大。

传统的钻井方法难以满足对复杂地层的要求。

精细控压钻井技术通过实时监测井底压力,并调整钻井液的密度和粘度,可以有效应对复杂地层的挑战,提高钻井效果。

《控压钻井技术》课件

《控压钻井技术》课件

防喷器
防喷器是控压钻井中最重要的设 备之一,用于控制井口压力。
节流装置
节流装置通过控制钻井液流量和 压力,保持井底压力平衡。
泥浆泵
泥浆泵用于循环钻井液,清除井 底的岩屑和杂质。
控压钻井中的挑战和风险
控压钻井面临着压力控制、井漏井喷、井眼稳定等技术挑战和风险。
控压钻井的发展趋势和前景
随着油气勘探技术的不断发展,控压钻井技术将会得到更广泛的应用和推广。
2 高温高压井
控压钻井技术可解决高温高压井下的钻井作业难题。
3 特殊地质条件
控压钻井技术用于处理特殊地质条件下的油气井。
控压钻井的优势和意义
安全性
控压钻井技术可有效控制井 口压力,保障作业人员和设 备的安全。
提高效率
控压钻井技术可以减少钻井 作业中的停工时间,提高施 工效率。
增加产量
通过控制井底压力,控压钻 井技术能够提高油气井的产 量。
《控压钻井技术》PPT课 件
控压钻井技术是一种用于油气井的高压控制和安全钻井技术。本课件将介绍 该技术的定义、应用领域、优势和意义,以及关键设备和工具。
控压钻井技术的定义
控压钻井技术是一种在高压环境下进行的钻探作业,用于油气井的开发和生产。
控压钻井技术的应用领域
1 海洋石油开发
控压钻井技术广泛应用于海洋深水油气田的勘探和开发。
控压钻井的基本原理和流程
控压钻井的根本原理是通过控制井底压力,使井筒保持良好稳定,防止井漏和井喷。
1
压力控制
通过在井口设置控制设备,控制钻井液的进出,保持井底压力稳定。
2
循环钻井液
通过循环钻井液,清除井底的岩屑和杂质,保持井筒畅通。
3
井眼壁稳定

精细控压钻井技术创新及应用探讨

精细控压钻井技术创新及应用探讨

精细控压钻井技术创新及应用探讨随着石油工业的发展,传统的钻井技术已经不能满足日益复杂的油气田开发需求,钻井工程中的控压钻井技术应运而生。

精细控压钻井技术是一种将压力控制作为主要目标的钻井技术,通过优化井探、井涌和井泥等环节,实现在高压高温、脆弱地层和易燃易爆气体层块等困难机井状况下的安全高效钻井作业。

精细控压钻井技术的创新主要体现在以下几个方面:1.压力预测与控制:传统钻井过程中,地层压力预测准确度较低,容易导致井溢漏现象,而精细控压钻井技术采用了先进的井下测量技术和分析方法,能够实时准确地预测地层压力,及时采取相应措施进行压力控制,有效避免井溢漏风险。

2.岩石力学与井壁稳定:精细控压钻井技术注重研究地层力学行为,针对不同地层岩石的物理力学特性进行分析,并结合井壁稳定性评价方法,科学合理地选择钻井液,优化钻井参数,提高井壁稳定性和钻井效率。

3.井探技术与井眼质量控制:精细控压钻井技术引入了先进的测井和地层评价方法,能够实时监测并评估井壁稳定性、岩性、孔隙度等地层参数,及时调整钻井液和钻井工艺,确保井眼质量,避免井下事故和作业延误。

4.井涌与井泥控制:在复杂地层条件下,井涌和井泥控制是精细控压钻井技术的重要研究内容。

通过合理设计固井策略、优化钻井液配方和监测井下压力变化等手段,控制井涌和井泥,防止井下气体和地层流体逆进,确保井口安全。

精细控压钻井技术在石油工业中的应用也得到了广泛推广。

通过应用该技术,可以提高钻井作业的安全性、稳定性和效率,降低边际成本,提高项目经济效益。

精细控压钻井技术能够有效地控制井下压力,降低井溢漏风险,保障作业人员和设备的安全。

在高压高温、脆弱地层和易燃易爆气体层块等复杂环境下,精细控压钻井技术可以准确预测地层压力,及时采取相应措施,实现安全高效的钻井作业。

精细控压钻井技术还可以降低油气井的开发成本,提高项目经济效益。

通过优化钻井液配方和控制井涌和井泥,可以减少资源的浪费,降低开发成本;通过提高钻井效率,可以缩短开发周期,提前实现投资回收。

控压钻井技术规程

控压钻井技术规程

控压钻井技术规程1. 引言控压钻井技术是一种重要的钻井方法,可以有效地控制井口的压力,并确保钻井作业的安全进行。

本文档将介绍控压钻井技术的基本原理、操作流程以及安全注意事项,旨在提供指导和参考。

2. 基本原理控压钻井技术依靠合理的井控装置和良好的密封措施来控制井口的压力。

其基本原理包括以下几个方面:2.1 井控装置井控装置是控压钻井中最关键的设备之一。

常见的井控装置包括旋转顶盖、替换泥浆池和活塞。

为保证井口压力能够被有效控制,需要对井口进行密封处理。

常见的密封措施有旋转顶盖密封、井口套管和井口防喷帽等。

2.3 排水能力控压钻井中,排水能力的大小直接影响着井口压力的控制效果。

因此,在进行控压钻井作业之前,需要对井口进行足够的排水准备。

3. 操作流程控压钻井技术的操作流程一般包括以下几个步骤:3.1 检查井口装置在进行控压钻井之前,需要检查井口装置的完整性和工作状态,确保其能够正常工作。

根据现场情况和使用的井控装置,选择相应的密封措施对井口进行密封处理,确保井口压力能够得到有效控制。

3.3 排水准备在进行控压钻井作业之前,需要对井口进行排水准备,确保其排水能力能够满足需要。

3.4 控制井口压力通过调整井控装置和密封措施,以及合理地控制钻井液的注入速率等参数,实现对井口压力的有效控制。

3.5 安全监测在控压钻井过程中,需要持续地进行安全监测,及时发现和解决可能存在的安全隐患,确保作业的安全进行。

4. 安全注意事项在使用控压钻井技术进行作业时,需要注意以下几个安全事项:4.1 定期检查井控装置井控装置是控压钻井作业的核心设备,其工作状态直接影响着作业的安全性。

因此,需要定期检查井控装置的完整性和工作状态,并及时进行维护和修理。

4.2 提前做好密封措施准备控压钻井需要对井口进行密封处理,以确保井口压力能够得到有效控制。

在进行控压钻井作业之前,需要提前做好相应的密封措施准备工作。

4.3 严格按照操作规程进行作业在进行控压钻井作业时,需要严格按照相应的操作规程进行操作,确保作业的安全进行。

控压钻井技术

控压钻井技术

o 美国在上世纪60年代后期开始应用控制压力钻井。
o MPD第一次正式出现是在2004年阿姆斯特丹的IADC/SPE钻井 会议上。
o MPD技术的意图是利用欠平衡工具和技术控制进入井眼的地 层流体,其主要目的是避免通过加重钻井液来解决钻井复杂问 题。减少套管层数,提高钻井效益,降低钻井成本。
MPD与UBD、PD的关系
o 控制压力钻井是一种在整个井眼内精确控制环空压力剖面 的自适应钻井过程( Adaptive drilling process) 。 o 其目的在于确定井下压力窗口,从而控制环空液压剖面。 o MPD旨在避免地层流体连续地流入到地面,钻井作业任何 意外的流动将使用适当的方法进行安全的控制。( Jan 2008 ) MPD也有翻译为:压力管理钻井
系统包括: o 自动节流管汇 o 回压泵 o 集成压力控制器 o 流体力学模型
控制回压(AtBalance的动态环空压力控制DAPC) 被Schlumberger收购
控制回压(Halliburton的GeoBalance MPD)
o GeoBalance Self-Managed:旋转控制装置、双液动节流阀的节流管汇。
MPD解决漏涌并存的原理
o 在裂缝性井漏情况下,钻井液密度窗口非常狭窄,往 往不到0.02 g/cm3,环空循环摩阻足以造成漏失。
MPD解决井漏的原理
当量泥浆密度(g/cm3) 0.8 300 地漏试验 800 破裂压力 1300 漏失压力 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
海底泥浆举升钻井 (SMD)
SMD 是一个联合工业项目, 参与的公司: BP, Conoco, Chevron, Texaco, Schlumberger, Hydril 。

控压钻井

控压钻井

实时调整井口回压,维持井底压力相对稳定,保证井筒内
的压力满足地层密度窗口的要求。井底恒压控压钻井技术 适用于处理海洋窄密度窗口、浅表层钻井等问题。
井底恒压控压钻井技术装备布置示意图
5
控制压力钻井
泥浆帽钻井
泥浆帽钻井技术作业是向环空注入高密度钻井液, 钻杆中注入“牺牲流体”;通常牺牲流体密度较低, 以此获得较高的机械钻速。牺牲流体与环空注入的 高密度钻井液在环空相遇,形成钻井液 — 牺牲流体 界面,界面以上的高密度钻井液被称为泥浆帽。
3
控制压力钻井
控压钻井技术方式
1. 恒定井底压力MPD(CBHP MPD)
2. 泥浆帽钻井(PMCD) 3. 双梯度钻井MPD 4. HSE(健康、安全、环境) MPD 又称回流控制钻井技术
4
控制压力钻井
井底恒压控压钻井
井底恒压控压钻井适用于窄密度窗口和未 知密度窗口情况下的钻井作业,可通过调节井 口回压维持井底压力等于或略大于地层压力, 保证钻井作业安全、高效。 井底恒压控压钻井装备的布置主要是在旋转防喷器与液 气分离器之间加入一个自动节流管汇系统,根据井底压力
旋转防喷器可以避免关闭闸板防喷器,将碳氢化合物释 放至钻台的可能性降至最低,且在循环出侵入流体或在 处理气侵钻井液过程中允许活动钻柱。 HSE控压钻井技术装备布置示意图
8
2
控制压力钻井 欠平衡、控压、常规钻井划分
井眼压力 欠平 坍塌压力~孔隙压力 衡钻 井 控压 油井,孔隙压力~孔隙压力+1.5钻井 3.5MPa 气井,孔隙压力~孔隙压力+3-5MPa 近平 油井,孔隙压力+1.5-3.5MPa 衡钻 气井,孔隙压力+3-5MPa 井 过平 油井, 孔隙压力+3.5MPa ~破裂压力 衡钻 气井, 孔隙压力+5MPa ~破裂压力 井

控压钻井(推荐完整)

控压钻井(推荐完整)

决海洋钻井中遇到的溶洞型及裂缝地层导致的严
重漏失有良好效果。
6
双梯度钻井技术
控制压力钻井ຫໍສະໝຸດ 作业时,隔水管内充满海水(或不使用隔水 管),通过海底泵和小直径回流管线旁路回输钻井 液;或在隔水管中注入低密度介质(空心微球、低 密度流体、气体),降低隔水管环空内返回流体的 密度,使之与海水相当,在整个钻井液返回回路中 保持双密度钻井液体系,有效控制井眼环空压力、 井底压力,确保井底压力处于安全的压力窗口之内。
泥浆帽钻井
泥浆帽钻井技术作业是向环空注入高密度钻井液, 钻杆中注入“牺牲流体”;通常牺牲流体密度较低, 以此获得较高的机械钻速。牺牲流体与环空注入的 高密度钻井液在环空相遇,形成钻井液—牺牲流体 界面,界面以上的高密度钻井液被称为泥浆帽。
海洋应用泥浆帽钻井的井口装备示意图
此方法已在海洋钻井作业中获得成功应用,对解
1. 解决了钻井中的窄密度窗口问题 2. 解决了海洋浅表层作业的相关问
题 3. 解决了隔水管进气对深水钻井的
影响问题 4. 减少非生产时间,降低作业成本
1
控制压力钻井
控压钻井原理
常规钻井:井底循环压力= 静液柱压力+ 环空摩阻 控压钻井:井底循环压力= 静液柱压力+ 环空摩阻+ 地面回压 (环控压耗折算当量钻井液密度0.03-0.15g/cm3)
3
控制压力钻井
控压钻井技术方式 1. 恒定井底压力MPD(CBHP MPD) 2. 泥浆帽钻井(PMCD) 3. 双梯度钻井MPD 4. HSE(健康、安全、环境) MPD 又称回流控制钻井技术
4
控制压力钻井
井底恒压控压钻井
井底恒压控压钻井适用于窄密度窗口和未 知密度窗口情况下的钻井作业,可通过调节井 口回压维持井底压力等于或略大于地层压力, 保证钻井作业安全、高效。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MPD解决漏涌并存的原理
o 在裂缝性井漏情况下,钻井液密度窗口非常狭窄,往 往不到0.02 g/cm3,环空循环摩阻足以造成漏失。
MPD解决井漏的原理
o 环空摩阻当量钻井液密度一般不高于
0.05g/cm3。
o 在深井和超高压地层,由于采用极高的钻 井液密度,环空摩阻高达0.15g/cm3。
o 在这种情况下,即使不是窄密度窗口,也 会造成漏喷并存或压裂地层的复杂情况。
点,静止、循环都发生井漏 o 密度窗口油井小于0.10(气井小于0.12)(假定环空摩阻折算当量钻
井液密度为0.05),静止不漏,但循环发生井漏。
窄密度窗口条件下常规钻井处理
o 控制钻井液密度 o 下技术套管封 o 堵漏提高承压能力
背景
o 地层漏失、压差卡钻、钻杆扭断、地层孔隙压力与地层破裂 压力窗口狭窄造成涌—漏等问题,增加非生产时间,导致勘探 费用大幅度提高。
o CPD (controlled pressure drilling)
欠平衡、控压、常规钻井划分
井眼压力 欠平 坍塌压力~孔隙压力 衡钻 井 控压 油井,孔隙压力~孔隙压力+1.5钻井 3.5MPa
气井,孔隙压力~孔隙压力+3-5MPa 近平 油井,孔隙压力+1.5-3.5MPa 衡钻 气井,孔隙压力+3-5MPa 井 过平 油井, 孔隙压力+3.5MPa ~破裂压力 衡钻 气井, 孔隙压力+5MPa ~破裂压力 井
MPD与UBD、PD的关系
o 欠平衡钻井的主要目标是避免损害将要开发的产层, 是以储层为本的。气体、雾化、泡沫、充气、液体钻 井。
o 而控制压力钻井MPD的主要目标是解决与钻井有关 的复杂压力控制问题,是以钻井为本的。液体。
o 提速钻井PD(performance drilling)或AD(air drilling)用于提高机械钻速。气体、雾化、泡沫。
o 控制压力钻井是一种在整个井眼内精确控制环空压力剖面 的自适应钻井过程( Adaptive drilling process) 。 o 其目的在于确定井下压力窗口,从而控制环空液压剖面。 o MPD旨在避免地层流体连续地流入到地面,钻井作业任何 意外的流动将使用适当的方法进行安全的控制。( Jan 2008 ) MPD也有翻译为:压力管理钻井
MPD原理
常规钻井:井底循环压力= 静液柱压力+ 环空摩阻
MPD:井底循环压力= 静液柱压力+ 环空摩阻+ 地面回压
(环控压耗折算当量钻井液密度0.03-0.15g/cm3)
MPD解决井漏的原理
o 井漏是经常发生的钻井复杂问题之一,常规钻井采用堵漏提高承
压能力往往费时、费钱、费力,而且效果往往不好。
(或漏失压力)
钻井压力(密度)窗口
窄压力(密度)窗口问题
常规钻井钻井液密度设计: o 油井,地层孔隙压力当量钻井液密度附加0.05-0.10g/cm3 o 气井,附加0.07-0.15g/cm3 钻井液窄密度窗口条件下的问题: o 密度窗口油井小于0.05(气井小于0.07),不能找到不漏不喷的平衡
o 直井高角度缝,缝宽达到毫米级时,就会出现严重井漏,甚至失 返,缝宽在100微米以上的裂缝就比较难以封堵了。
o 孔隙性漏失,漏失量与过平衡压差成正比(符合达西渗流定律), 裂缝性漏失,漏失量与过平衡压差成1.5至1.6次方的关系,且无任 何内外泥饼作用。
o MPD解决井漏的原理是控制环空压力接近于地层孔隙压力,其过 平衡压差不足以克服钻井液向孔隙性漏失层的渗流或向裂缝性地层 的流动阻力。
MPD的特点
o 始终精确控制井眼压力稍大于地层孔隙压力, 不会诱导地层流体侵入。 o 钻井液密度低于常规钻井密度,避免超出地层 破裂压力梯度。 o 通常使用液相钻井液。 o 使用闭合、承压的钻井液循环系统。
控制压力钻井(MPD)的作用
o 在地层破裂—孔隙压力窗口小的时候,减少井 涌—井漏现象,提高井控安全性,能够钻更深的 裸眼段; o 能够使套管下得更深,从而有可能减少一层甚至 更多层次的套管; o 提高较大井眼钻达目的层的可能性; o 减少由于环空压力引起的井漏;
控制压力钻井(MPD)的作用
o 减少钻遇大裂缝发生严重井漏时的钻井液成本, 及井漏引起的井控问题; o 避免地下井喷; o 提高HSE效果,尤其是在要求更高的海上; o 减少非生产作业时间
1 Fluid Balance
2 GDirsaplvaicteyment
钻井三压力剖面
o 地层孔隙压力 o 地层坍塌压力 o 地层破裂压力
o 被动型MPD(Reactive MPD)
➢使用MPD方法和/或设备作为应急,以减轻所出现的 钻井问题。 ➢采用常规套管程序和钻井液程序。 ➢ 配备旋转控制装置、节流管汇、钻具浮阀等设备。 ➢ 提高安全性和钻遇意外压力时(如孔隙压力或破裂 压力高于或低于预计值)的施工效率。 ➢ 目前在陆地施工的控制压力钻井大多是采用被动型 方式 。
井 深(m)
当量泥浆密度(g/cm3)
0.8
1
1.2 1.4 1.6 1.8
2
2.2
2.4
2.6
300

地漏试验


800
破裂压力
1300
漏失800
2300 坍塌压力



2800
孔隙压力
实际密度

3300


3800



4300

4800


5300
MPD分类
IADC UBO协会的MPD分会将MPD技术划分 为二大类:
o 需要精确地管理和控制井眼压力。
o 美国在上世纪60年代后期开始应用控制压力钻井。
o MPD第一次正式出现是在2004年阿姆斯特丹的IADC/SPE钻井 会议上。
o MPD技术的意图是利用欠平衡工具和技术控制进入井眼的地 层流体,其主要目的是避免通过加重钻井液来解决钻井复杂问 题。减少套管层数,提高钻井效益,降低钻井成本。
控制压力钻井(MPD)技术
内容
o MPD的概念、特点与作用 o MPD的原理、分类 、设备 o 三大控压钻井系统 o MPD的关键 o 胜利钻井院控压钻井系统 o MPD应用与展望
控制压力钻井(MPD)的概念
IADC对MPD(managed pressure drilling)的定义(Feb
2004 to Jan 2008)
相关文档
最新文档