细菌的遗传与变异ppt课件
合集下载
细菌的基础知识—细菌的遗传与变异

1、染色体
二、细菌的变异物质基础
2、质粒
二、细菌的变异物质基础
3、转位因子
二、细菌的变异物质基础
4、噬菌体
侵袭细菌、放线菌、螺 旋体、真菌等微生物的 病毒。
二、细菌的变异物质基础
4、噬菌体
疾病的诊、预、治 致癌物质的检测 基因工程方面
1.识别变异细菌,才能做出正 确的诊断。 2.合理使用抗菌药物,避免耐 药菌株的形成 3.制备疫苗,预防传染病发生 。
一、细菌的遗传变异
04 毒力变异
含链霉素培基 痢疾杆菌──→依链株(耐药菌株)
长期培养
一、细菌的遗传变异
05 抗原性变异
人工培养基多次培养
伤寒沙门菌────────→ 伤寒沙门菌
具有Vi抗原
无Vi抗原
二、细菌的变异物质基础
染色体
噬菌体
细菌遗传变异 的物质基础
质粒
转位因子
二、细菌的变异物质基础
一、细菌的遗传变异
01
形态结构变异
青霉素、溶菌酶 正常形态细菌──────-─→细菌L型
抗体或补体(部分或完全失去胞壁)
一、细菌的遗传变异
02 菌落变异
在陈旧培养基中长期培养
光滑型菌落────────→粗糙型菌落。
S
或在有免疫力的人体内 R
一、细菌的遗传变异
03 毒力变异
少量化学药物、免疫血清 强毒株────────→弱毒株或无毒株。
疾病的诊、预、治 致癌物质的检测
利用变异细菌筛选可疑致癌物
基因工程方面
鼠伤寒沙门菌 His-株
缺乏组氨酸的培养基
─────Байду номын сангаас his+株
可疑致癌物质
二、细菌的变异物质基础
2、质粒
二、细菌的变异物质基础
3、转位因子
二、细菌的变异物质基础
4、噬菌体
侵袭细菌、放线菌、螺 旋体、真菌等微生物的 病毒。
二、细菌的变异物质基础
4、噬菌体
疾病的诊、预、治 致癌物质的检测 基因工程方面
1.识别变异细菌,才能做出正 确的诊断。 2.合理使用抗菌药物,避免耐 药菌株的形成 3.制备疫苗,预防传染病发生 。
一、细菌的遗传变异
04 毒力变异
含链霉素培基 痢疾杆菌──→依链株(耐药菌株)
长期培养
一、细菌的遗传变异
05 抗原性变异
人工培养基多次培养
伤寒沙门菌────────→ 伤寒沙门菌
具有Vi抗原
无Vi抗原
二、细菌的变异物质基础
染色体
噬菌体
细菌遗传变异 的物质基础
质粒
转位因子
二、细菌的变异物质基础
一、细菌的遗传变异
01
形态结构变异
青霉素、溶菌酶 正常形态细菌──────-─→细菌L型
抗体或补体(部分或完全失去胞壁)
一、细菌的遗传变异
02 菌落变异
在陈旧培养基中长期培养
光滑型菌落────────→粗糙型菌落。
S
或在有免疫力的人体内 R
一、细菌的遗传变异
03 毒力变异
少量化学药物、免疫血清 强毒株────────→弱毒株或无毒株。
疾病的诊、预、治 致癌物质的检测
利用变异细菌筛选可疑致癌物
基因工程方面
鼠伤寒沙门菌 His-株
缺乏组氨酸的培养基
─────Байду номын сангаас his+株
可疑致癌物质
《遗传与变异》生长与变化PPT课件

遗传物质的本质:遗传物质的化学本质、所包含的遗传信息以及其结构、组织和变化等;遗传物质的传递:遗传物质的复制、染色体的行为、遗传规律和基因在群体中的数量变迁;遗传信息的实现:基因的原始功能、基因的相互作用、基因作用的调控以及个体发育中基因的作用机制等。
2. 没有遗传,就没有物种的相对稳定性;没有变异,不会产生新的性状,也就不可能有物种的进化和新品种的选育。
3.遗传和变异的表现都
与环境具有不可分割关系。
4.遗传和变异组成生物
多样性
简述遗传学的研究内容。
遗传与变异
- 我繁殖——遗传性复杂有序的物质结构
糖蛋白质(酶)核酸脂类(维生素)
构成生命的有机化合物
生命活动的物质基础
—— 生物大分子
遗传与变异的对立统一关系
1. 遗传是相对的、保守的;变异是绝对的,发展的。
2. 没有遗传,就没有物种的相对稳定性;没有变异,不会产生新的性状,也就不可能有物种的进化和新品种的选育。
3.遗传和变异的表现都
与环境具有不可分割关系。
4.遗传和变异组成生物
多样性
简述遗传学的研究内容。
遗传与变异
- 我繁殖——遗传性复杂有序的物质结构
糖蛋白质(酶)核酸脂类(维生素)
构成生命的有机化合物
生命活动的物质基础
—— 生物大分子
遗传与变异的对立统一关系
1. 遗传是相对的、保守的;变异是绝对的,发展的。
细菌的遗传与变异

第四节
细菌遗传变异在医学上的实际意义
medical significance of bacterial heredity and variation
医学微生物学(第9版)
一、细菌形态结构的变异与细菌学诊断
Hfr将其部分染色体转入F-菌,产生重组的F-菌 备注:图片源自人卫社《医学微生物学》第8版,主编李凡、 徐志凯。(P55, 图4-5,b、c)
医学微生物学(第9版)
(二)R质粒(resistant plasmid)
1. 耐药传递因子(resistance transfer factor,RTF)编 码性菌毛
F质粒从F+菌转移到F-菌,使F-菌变为F+菌 备注:图片源自人卫社《医学微生物学》第8版,主编李凡、 徐志凯。(P55, 图4-5, a)
医学微生物学(第9版)
高频重组菌株(high-frequency recombination strain,Hfr) 1. F质粒与染色体整合 2. 具有接合和转移功能 3. 细菌染色体转移频率高,F质粒低 4. 受体菌获得供体菌遗传性状 5. 用于绘制基因图
1. 基因型回复突变 (genotypic reversion),机率很低 2. 表型回复突变(phenotypic reversion)
抑制突变(suppressor mutation):包括基因内抑制(intragenic suppression)和基因间抑制(extragenic suppression)
2. 噬菌体(phage)
(1)侵袭细菌或真菌的病毒 (2)蝌蚪型:头部由核心(DNA 或 RNA)与蛋白质衣壳组成;尾部为蛋白质,与吸附宿主有关 (3)感染细菌的结果
溶菌性周期:毒性噬菌体、温和噬菌体 溶原性周期:温和噬菌体、前噬菌体(pro(第9版)
05细菌的遗传与变异

12
分类: (1) 插入序列(IS) 最简单的或序列较短的转座子(长度 <2kbp),仅携带自身转座所需酶及蛋白的 基因。 存在于多种细菌的染色体或质粒中。
13
14
(2)转座子或复合转座子
序列长度一般超过2kbp,除携带与转 座有关的基因外,还携带其他特殊功能 的基因(耐药性基因、重金属抗性基因、 肠毒素基因和其他结构基因等)。
聚乙二醇 原生质体融合
47
小结: 细菌-细菌
转化:供-受(直接) 接合:供-受(性菌毛) 转导:供-受(噬菌体) 原生质体融合:原-原(PEG)
噬菌体-细菌 溶原性转换(前噬菌体)
48
第四节 基因突变
概念 细菌遗传物质的结构发生突然而稳定的
改变,是DNA序列的永久性变化。(不考虑 细菌表型是否有可察觉的改变)
整合后的细菌有可能提高转移染色体基因的频率,
故称高频重组株(Hfr)。
33
Hfr接合F-菌→F- 菌→F-菌(很难获完整F质粒)
质粒
切开
Hfr与F-菌的接合
34
从Hfr菌中染色体上脱离下来的F质粒有时会携 带相邻的染色体基因或DNA片段,称为F’质粒 (该菌被称为F’菌)。
F+菌、Hfr、F’菌都有性菌毛,均可通过接 合方式进行基因的转移。
22
基因重组: 被转移的基因在受体菌胞质中能自行复制
与表达,或与受体菌DNA整合在一起 —— 基因重组
基因重组使受体菌获得供体菌的某些特性。
23
重组:
同源重组:发生在紧密相关的DNA之间。 非同源重组:发生在无关的DNA之间。
24
1.转化 供体菌裂解游离的DNA片段被受体菌 直接摄取,使受体菌获得新的性状
分类: (1) 插入序列(IS) 最简单的或序列较短的转座子(长度 <2kbp),仅携带自身转座所需酶及蛋白的 基因。 存在于多种细菌的染色体或质粒中。
13
14
(2)转座子或复合转座子
序列长度一般超过2kbp,除携带与转 座有关的基因外,还携带其他特殊功能 的基因(耐药性基因、重金属抗性基因、 肠毒素基因和其他结构基因等)。
聚乙二醇 原生质体融合
47
小结: 细菌-细菌
转化:供-受(直接) 接合:供-受(性菌毛) 转导:供-受(噬菌体) 原生质体融合:原-原(PEG)
噬菌体-细菌 溶原性转换(前噬菌体)
48
第四节 基因突变
概念 细菌遗传物质的结构发生突然而稳定的
改变,是DNA序列的永久性变化。(不考虑 细菌表型是否有可察觉的改变)
整合后的细菌有可能提高转移染色体基因的频率,
故称高频重组株(Hfr)。
33
Hfr接合F-菌→F- 菌→F-菌(很难获完整F质粒)
质粒
切开
Hfr与F-菌的接合
34
从Hfr菌中染色体上脱离下来的F质粒有时会携 带相邻的染色体基因或DNA片段,称为F’质粒 (该菌被称为F’菌)。
F+菌、Hfr、F’菌都有性菌毛,均可通过接 合方式进行基因的转移。
22
基因重组: 被转移的基因在受体菌胞质中能自行复制
与表达,或与受体菌DNA整合在一起 —— 基因重组
基因重组使受体菌获得供体菌的某些特性。
23
重组:
同源重组:发生在紧密相关的DNA之间。 非同源重组:发生在无关的DNA之间。
24
1.转化 供体菌裂解游离的DNA片段被受体菌 直接摄取,使受体菌获得新的性状
细菌的遗传与变异

三、转 导(Transduction)
以噬菌体为载体,将供体菌的一 段DNA片段转移给受体菌,使其获得 新的性状。
根据转导基因片段的范围,可分为两种:
普遍性转导:
可转移供体菌DNA的任何片段。
局限性转导:
只转移前噬菌体插入部位邻近的供体菌DNA片段
1)普 遍 性 转 导
噬菌体的溶菌周期发生装配错误,误将 供体菌DNA装入噬菌体内成为一个转导噬菌 体,再以正常方式感染另一宿主菌。
F′质粒:
Hfr菌中的F质粒可以从细菌染色体上 切离下来,终止其Hfr状态,切离时可能 带有染色体上临近的基因,这种质粒称为 F′质粒。
2)R质粒的接合
R质粒由耐药传递因子(RTF)和耐药(r) 决定子两部分组成,这两部分可单独,也可结 合在一起,只有结合在一起才能发生质粒的接 合性传递。
RTF的功能与F质粒相似,因此可介导类似 F质粒的接合过程;r决定子能编码对抗菌药物 的耐药性。
2、温 和 噬 菌 体
1)概 念:
前噬菌体: 整合在宿主菌染色体上的噬菌体基因组。
溶原性细菌:带有前噬菌体基因组的细菌 。 溶原状态:
噬菌体基因随溶原性细菌的分裂而传给子代 的状态。
2)溶原性周期和溶菌性周期
温和噬菌体感染宿主菌后所建立的溶原 状态可中断,前噬菌体可自发或在一定理化 因素诱导下从宿主菌染色体切离下来,重新 复制新的子代噬菌体,最终裂解细菌。
(5)质粒的相容性与不相容性
3、几种常见质粒:
F质粒 R质粒 Col质粒
fertility factor
性菌毛有关
resistance plasmid 与耐药性有关
Col plasmid
编码大肠菌素
Vi质粒 virulence plasmid 与细菌毒力有关
第3.4章噬菌体细菌遗传与变异

将二种经处理后失去细胞壁的 细菌(称为原生质体)进行 融合,获得的新的细菌个体
细菌遗传变异在医学上的实际意义
一、影响细菌学诊断 二、预防耐药菌株的扩散 三、制备疫苗 四、检测致癌物 五、基因工程方面的应用
复习要点
• 名词解释 转化、接合、转导、溶原性转换、毒性噬 菌体、温和噬菌体、前噬菌体、溶原性细 菌、普遍性转导、局限性转导
有荚膜肺炎链球菌 (活菌)IIIS
无荚膜肺炎链球菌 (活菌)IIR
分离出 ⅢS
有荚膜肺炎链球菌 (死菌)IIIS
IIR活菌+IIIS死菌 或
IIR活菌+提取的IIIS DNA
分离出 ⅢS型有 荚膜的活 菌
(二)接合 conjugation
• 供体菌通过性菌毛将遗传物质 (质粒)传递给受体菌
• 接合性质粒——能通过接合方式 转移的质粒(F质粒、R质粒等)
▪ 但由于噬菌体过于专一,限制了噬菌体 在临床上的广泛应用
第四章 细菌的遗传与变异
细菌变异的现象
• 形态结构变异 • 抗原性变异 • 菌落变异 • 毒力变异 • 耐药性变异
• 遗传性变异:
是微生物的基因结构发生了改变, 故又称基因型变异
常发生于个别的微生物,不受环 境因素的影响,变异发生后是不 可逆的,产生的新性状可稳定地 遗传给后代
• 毒性噬菌体的溶菌周期(复制周期)
吸附→释放子代噬菌体——噬菌体的复 制周期
• 增殖过程
吸附——穿入——生物合成——成熟与释放
毒性噬菌体溶菌现象
• 液体培养基:使浑浊菌液变为澄清
固体培养基:若用适量噬菌体和宿主菌 液混合后接种培养,培养基表面可有透 亮的溶菌空斑出现
一个空斑系由一个噬菌体复制增殖并 裂解细菌后形成的,称为噬斑
细菌遗传变异在医学上的实际意义
一、影响细菌学诊断 二、预防耐药菌株的扩散 三、制备疫苗 四、检测致癌物 五、基因工程方面的应用
复习要点
• 名词解释 转化、接合、转导、溶原性转换、毒性噬 菌体、温和噬菌体、前噬菌体、溶原性细 菌、普遍性转导、局限性转导
有荚膜肺炎链球菌 (活菌)IIIS
无荚膜肺炎链球菌 (活菌)IIR
分离出 ⅢS
有荚膜肺炎链球菌 (死菌)IIIS
IIR活菌+IIIS死菌 或
IIR活菌+提取的IIIS DNA
分离出 ⅢS型有 荚膜的活 菌
(二)接合 conjugation
• 供体菌通过性菌毛将遗传物质 (质粒)传递给受体菌
• 接合性质粒——能通过接合方式 转移的质粒(F质粒、R质粒等)
▪ 但由于噬菌体过于专一,限制了噬菌体 在临床上的广泛应用
第四章 细菌的遗传与变异
细菌变异的现象
• 形态结构变异 • 抗原性变异 • 菌落变异 • 毒力变异 • 耐药性变异
• 遗传性变异:
是微生物的基因结构发生了改变, 故又称基因型变异
常发生于个别的微生物,不受环 境因素的影响,变异发生后是不 可逆的,产生的新性状可稳定地 遗传给后代
• 毒性噬菌体的溶菌周期(复制周期)
吸附→释放子代噬菌体——噬菌体的复 制周期
• 增殖过程
吸附——穿入——生物合成——成熟与释放
毒性噬菌体溶菌现象
• 液体培养基:使浑浊菌液变为澄清
固体培养基:若用适量噬菌体和宿主菌 液混合后接种培养,培养基表面可有透 亮的溶菌空斑出现
一个空斑系由一个噬菌体复制增殖并 裂解细菌后形成的,称为噬斑
细菌遗传与变异

6.细菌耐药性形成的主要方式是 A.转换 B.转化 C.转导 D.溶原性状态 E.接合 7.细菌的遗传物质包括 A.核质和质粒 B.核质、质粒和附加体 C. 核质、质粒和前噬菌体 D.核质和前噬菌体 E.核质、附加体和前噬 菌体 8. 细菌H—O变异是指细菌从_____到 _____的突变。 9细菌S—R变异是指细菌从_____到_____ 的突变。
第三章 细菌遗传与变异
基因型变异、表型变异 第一节 与细菌遗传相关的物质
(一)染色体:双股环状DNA分子。 特点:绝大多数基因单拷贝形式,无内含子,转录后的RNA 分子不必加工剪切。 全基因组序列分析:细菌种内和种间存在着广泛的遗传交换。 耐药性基因和致病岛的获得 细菌致病岛(PAI):病原菌染色体上编码许多毒力相关基因 的分子量较大的外源DNA片段,其两侧往往含有重复序列或 插入序列。 肠致病性大肠埃希菌:82min处有LEE致病岛,引起AE损伤。
(二)接合:细菌通过性菌毛相互沟通,将遗传 物质从供体菌转移给受体菌的过程。
1、F质粒:雄性菌(F+)、雌性菌(F-) 高频重组菌株(Hfr):F质粒可以整合到细菌的染色体上, 有可能引发宿主染色体发生高频率转移。
2、R质粒:分接合性和非接合性R质粒 接合性R质粒:耐药性传递因子(编码性菌毛、接 合)和耐药性决定因子 非接合性R质粒:耐药性决定因子(转化、转导)
(二)质粒:是存在于细菌细胞浆中的DNA,又 称细菌染色体外基因。 分类: 根据质粒能否通过细菌的接合作用进行传递: •接合性质粒:含有与接合传递有关的基因 (tra),分子量较大(F质粒、R质粒) •非接合性质粒:分子量小 根据质粒的不相容性:相容性和不相容质粒 根据质粒基因编码的生物学性状:F质粒、R质 粒、Col质粒、Vi质粒。
细菌的遗传与变异

二、细菌的基因突变
2. 基因突变的规律
1、随机发生 2、稳定 3、突变频率为10-10~10-6 4、可发生回复突变
二二、、细菌菌的的基基因因突突变变
3. 细菌常见的突变
● 耐药性突变 ● 毒力突变 ● 营养缺陷体突变 ● 形态结构突变 ● 抗原性突变 ● 菌落突变
细菌的遗传与变异
一、细菌的遗传物质 二、细菌的基因突变 三、细菌的基因转移与重组☺
4)质粒可通过接合、转化或转导等方式在细菌间 转移。根据质粒能否通过细菌的接合作用进行传 递,将其分为接合性质粒(如F质粒和多数R质粒) 和非接合性质粒。
5)质粒的相容性和不相容性。结构相似并密切相 关的质粒能稳定共存于一个宿主菌的现象称为不 相容性。
一、细菌的遗传物质
质粒作为一种独立的复制子,容易从细 胞中分离出来、在体外进行遗传操作和转入 到合适的受体细胞中,已成为现代分子生物 学研究和遗传工程的重要工具。
三、五细、菌温的和基噬因菌转体移与重组
局限性转导
三、五细、菌温的和基噬因菌转体移与重组
普遍性转导与局限性转导的区别
区别要点 转导发生的时期
普遍性转导 裂解期
局限性转导 溶原期
转导的遗传物质 供体菌染色体DNA 噬菌体DNA及供体菌
任何部位或质粒
DNA的特定部位
转导的后果 转导频率
完全转导或流产转 导
基因的多拷贝;
一、细菌的遗传物质
乳糖操纵子
一、细菌的遗传物质
细菌基因组转录的主要特征:
(1)转录形成mRNA分子不需要加工; (2)tRNA和rRNA转录后需加工;
一、细菌的遗传物质
细 菌 的 r R N A 加 工 过 程
一、细菌的遗传物质