利用抽水试验确定承压含水层参数方法

合集下载

抽水试验的初步讲解ppt课件

抽水试验的初步讲解ppt课件
1.抽水试验的目的与方法 2. 抽水试验孔布置要求 3. 稳定流抽水试验要求 4. 非稳定流抽水试验要求 5. 抽水试验资料整理
一、抽水试验的目的与方法
1.抽水试验的目的
(1) 确定含水层及越流层的水文地质参数:渗透系数K、导水系数T、 给水度μ、弹性释水系数μ∗、导压系数a、弱透水层渗透系数K'、 越流系数b、越流因素B、影响半径R 等。
3.观测孔的布置要求
(4) 多孔抽水孔组的第一个观测孔应尽量避开三维流的影响,相 邻两观测孔的水位下降值相差不小于0.1m,最远观测孔的下降值 不宜小于0.2m。 (5) 在半承压水含水层进行抽水试验时,宜在观测孔附近覆盖层 (半透水层或弱含水层)中布置副观测孔。 (6) 在进行试验性开采抽水试验时,应在水位下降漏斗范围内的 重要建筑物附近增设工程地质、环境地质观测点。
4
混合抽水
是从两个或更多含水层 同时抽水。一次混合抽 水只能得到各含水层的 平均渗透系数。
5
试验性开采抽水试验
是模拟未来开采方案而进 行的抽水试验;一般在地 下水天然补给量不很充沛 或补给量不易查清,或者 勘察工作量有限而又缺乏 地下水长期观测资料的水 源地,为充分暴露水文地 质问题,宜进行试验性开 采抽水试验,并用钻孔实 际出水量作为评价地下水 可开采量的依据。
三、稳定抽水试验
1.试验水井分类
根据地下水有无压力,水井分为无压井和承压井。当水 井布置在具有潜水自由面的含水层中时,称为无压井;当 水井布置在承压含水层中时称为承压井。
当水井底部达到不透水层时称为完整井,否则称为非 完整井。 在巨厚的岩溶含水层中,应该根据岩溶发育深度确定合理 的有效含水带厚度。
注意:①要消除区域水位下降值;②在基岩地区要消除固体潮的影响; ③傍河抽水要消除河水位变化对抽水孔水位变化的影响。

单井稳定抽水试验计算含水层渗透系数的快速求解方法

单井稳定抽水试验计算含水层渗透系数的快速求解方法
更快 地利 用实 验结果 进行 求解 .
根据式( ) 8 可得出 , 7 和( ) 潜水井 的 百 Q A2 h一
和 压 井 占 Q 间 直 关 ,当 一 承 水 的 一之 为 线 系且 Q 。
时, 潜水 井 的 一 。 承压水 井 的 一 a ; 5 .
水 含 水 层 渗 透 系 数 的方 法 . 于 不 符 合 裘 布 依 理 论 基 本 假 设 条 件 的 潜 水 或 承 压 水 含 水 层 , 别 以 对 分
潜 水 完 整 井 和承 压 水 完整 井 为 例 进 行 了 分 析 和 公 式 求 解 方 法 的 讨 论 . 此 基 础 上 加 以分 析 整 理 , 在
潜水井 : h 一 口 Q A 百2 +6
( 7)
承 水 : n6 压 井 吉一 +Q
( 8)
公 式进 行变 换后 采 用 截距 法 计 算 渗 透 系数 , 面 下 主要 是对潜 水井 和承 压水 井截距 法计 算 过程进 行 了必要 的完善 , 同时 编 制 了相 应 的 计 算程 序 便 于
勘察 时 , 常是通 过单 井稳定 抽 水试 验 的结果 , 常 应 用裘 布依 公式 计算 含水 层 的参透 系数 .
() 2
式 中 : 为承 压 含 水 层 厚 度 , 为 井 的水 位 下 M m;
降值 ; 其他 变量 同式 ( ) 1.
总结上 述公 式 可 以 看 出 , 于潜 水 井 的裘 布 对 依 公式 ( ) 可 以假 设 : 一h = A 则 A Q 1, H h, h一
m, 管井 过 滤器半 径 .
1 2 承 压 水 完 整 井 .
Q 一 2 7 K .3
l g
水 文地 质 参 数 是 表 征 含 水 层 性 质 的重 要 参 数, 其数 值 大小是 含水 层各 种性 能 的综合 反 映 , 是

水文地质参数-渗透系数和导水系数的确定

水文地质参数-渗透系数和导水系数的确定
B B B B B B B B
s = a1Q + a 2 Q 2 + KK + a n Q n

Q 以 1/ a1代换,分别进行计算。 H − h2
2
B B
3. 当 s / Q (或 Δh / Q )~Q关系曲线呈直线时,可采用作图截距法求出a1后,按上述
2
B B
方法计算。 二、单孔稳定流抽水试验观测孔水位下降资料求渗透系数 当利用观测孔中的水位下降资料计算渗透系数时,若观测孔中的值 s(或 Δh )在 s(或
2
(1)承压水完整孔: K = (2)承压水非完整孔:
Q R ln 2πsM r Q R M − l 1.12M (ln + ln ) 2πsM r πr l
(6-9)
当 M﹥150r, l/M﹥0.1 时, K =
(6-10)
当过滤器位于含水层的顶部或底部时, K =
Q R M −l M [ln + ln(1 + 0.2 )] (6-11) 2πsM r r l
(6-12)
(3)潜水完整孔: K = (4)潜水非完整孔:
Q R ln 2 2 π (H − h ) r
l/ h ﹥0.1 时,K = 当 h ﹥150r,
1.12h Q R h −l (ln + ⋅ ln ) 2 r l πr π (滤器位于含水层的顶部或底部时, K =
K=
t Q ln(1 + k ) 2 2 tT 2π ( H − h )
(6-24)
; tk—抽水孔从开始到停止的时间(min)
B B
; tT—抽水停止时算起的恢复时间(min)
B B
s—水位恢复时的剩余下降值(m) ; h—水位恢复时的潜水含水层的厚度(m) 。

42-2 水电水利工程钻孔抽水试验规程

42-2 水电水利工程钻孔抽水试验规程

分别测定每一个单层的渗透性参数 以往有些工程为解决此问题
采用将过滤器置于哪层 计算所得渗透性参数就认为是哪层的
这显然存在一定问题 本标准再次提出的有关分段抽水的要求
可以部分地改善以往存在的问题 理由是 目前 对于非完整孔
的参数计算 多采用巴布什金和吉林斯基的公式
其中

巴布什金
吉林斯

该公式是采用线流理论 对在无限厚的含水层中抽水时压力
据已有的试验研究资料证明 一般在抽水孔的
范围内
裘布衣公式也没有考虑钻孔附近的地下水产生三维流场
所造成的水头损失 根据理论研究成果 承压含水层完整孔三维
流场的范围约等于含水层厚度的 倍 潜水含水层完整孔三维
流场的范围 据部分专门试验资料分析 平行地下水流向方向可
达含水层厚度 倍以上 垂直地下水流向方向约等于含水层厚度
深不大 抽水 孔附近 的降落 漏斗曲 线的水 力坡度 小于或 等于
的情况下 是可以得到满足的
修订后的本标准分别明确了稳定流单孔抽水试验和多孔
抽水试验的稳定延续时间 规定Байду номын сангаас定延续时间的目的主要是为了
使抽水孔抽出的水量与地下水对孔的补给量达到相对平衡 并保
钻孔抽水试验是确定含水层渗透性参数比较有效 的方法 在水电水利工程地质勘察中 它是水文地质试验的重要 手段之一 制定本标准的目的 就是为了使该项试验工作有章可 循 达到预期的目的和效果
钻孔抽水试验设计书是抽水试验工作的指南 现场试验工 作也需要结合场地的地质结构和水文地质条件 合理选择钻孔结 构和配置必须的试验器材设备 因此 在抽水试验前应按设计书 做好安排和准备工作 以保证现场试验有序进行和成果质量
基本规定

基于水位恢复法的含水层水文地质参数的求解

基于水位恢复法的含水层水文地质参数的求解

基于水位恢复法的含水层水文地质参数的求解摘要:稳定流抽水试验求取水文地质参数一般要求地下水处于稳定流动状态,由于受各种地质因素的影响,地下水很难保持稳定状态,所以采用传统的方法所预测的水文地质参数精确度并不高。

而水文地质勘测中的水位恢复阶段,由于没有人力和机械因素干扰,其测量数据可以画出平滑的曲线,更适用于水文地质参数的分析。

因此,本文基于水位恢复原理,利用Aquifertest软件中的Theis Recovery对水位恢复数据进行拟合,充分利用停抽后短时间内的恢复水位数据,求出了含水层各种参数,对含水层的贮水性能及释水性能进行了评价。

关键词:水位恢复;水文地质参数;渗透系数;储水系数1绪论在水文地质勘探实践中,一个重要的工作就是确定含水层的水文地质参数[1,2]。

抽水试验则是确定含水层参数的主要途径之一,是以地下水井流理论为基础,通过在井孔中抽水与观测,研究井的涌水量与水位降深的关系及其与抽水延续时间的关系、含水层之间及含水层与地表水体之间的水力联系,求得含水层水文地质参数、评价含水层富水性的一种野外水文地质试验,是获取含水层水文地质参数最有效的手段之一[3]。

水文地质参数,如渗透系数、导水系数、水位传导系数、压力传导系数、给水度、释水系数、越流系数等,是反映含水层或透水层水文地质性能的指标,能为水源井设计或有关水文地质预测提供依据。

而参数精度直接影响井水量计算及地下水资源评价,也为预测井涌水量和评价地下水开采量提供可靠的理论依据[4-7]。

稳定流抽水试验大多采用公式法求参,非稳定流抽水试验采用传统的配线法、直线图解法求参等[8,9],但这些传统方法人工计算同一井孔抽水试验参数时会因人为误差而得到不同结果,进而直接影响地下水资源的评价结果。

但是利用水位恢复资料求解水文地质参数则可以避免因抽水设备及其它边界条件的干扰因素所造成的不利影响,因此参数的计算结果一般比较可靠。

2“四含”水文地质特征祁南煤矿(隶属于淮北矿业股份有限公司)位于安徽省宿州市埇桥区祁县镇境内,水文地质单元属于南区,矿区范围内无基岩出露,均为松散层覆盖,经钻孔揭露地层有奥陶系、石炭系、二叠系、新近系和第四系。

抽水试验公式计算

抽水试验公式计算

采用承压转无压完整式大井涌水量解析法公式计算,即:20ln ])2[(r R h M M H K Q --=π (1)式中:Q —大井涌水量,m 3/d ;K —含水层渗透系数,m/d ;H —抽水前大井的水柱高度(从含水层底板到初始静止水位),(m )M —承压含水层厚度,(m )h 0—抽水稳定后大井中的水柱高度(从含水层底板到动水位),(m )r 0—大井的引用半径(基坑的等效半径),(m ); R 0—引用影响半径,R 0=R+r ,其中R —为用抽水试验资料或者经验公式计算出的影响半径,(m ):(1)基坑等效半径的确定r 0引用半径为基坑的假想等效半径,当基坑为矩形或者长条形时,基坑的等效半径可可按下式计算:40ba r +=η, (2) 式中,a ——基坑长度;b ——基坑宽度(m );η为概化系数,η值取值见下表:(基坑工程手册)表1 系数η与b/a 关系表本次降水基坑长度为98m,宽度为3m,这样计算出的r为:r0=1.15×(98+43)/4=40.54m(2)大井法引用影响半径的确定对承压水,当降深一定时,可采用承压水影响半径的经验公式吉哈尔特公式近似计算大井的影响半径:=(3)R10ksR——影响半径,m;s——大井中的水位降深,m;K——渗透系数对于潜水,当降深一定时,可采用下面的经验公式来计算大井的影响半径:=(4)R2sKH其中,H——含水层厚度,m;若采用承压水计算影响半径的公式,则计算出的影响半径为:⨯10⨯sR=433.5m=k=10.17750.5若采用潜水计算影响半径的公式,则计算出的影响半径为:2=20.5⨯==75⨯⨯.s17mR37KH6212.由于本次基坑的降水过称为承压转无压,所以既不能采用承压水的经验公式,也不能采用潜水的经验公式来计算大井的影响半径。

而应该根据实际情况和以往经验综合判定。

结合以往的降水经验,本次采用二者的平均值,即323m。

抽水试验方法及过程讲解

抽水试验方法及过程讲解

图5.1.1 潜水非完整井示意图
5.1.2 潜水非完整井,一个观测孔、中心井抽水试验计算 渗透系数k:
k 0.366Q(lg r1 lg r) (S S1 )(S S1 L)
k——渗透系数(m/d); Q——抽水井涌水量(m3/d); S——抽水井水位下降值(m); S1——观测孔水位下降值(m); r——抽水井半径(m) r1——观测孔到抽水井中心距离(m); L——过滤器长度(m)。
2.5 抽筒 当钻孔水位较深,水量不大,试验要求不高时,可选择抽 筒提水。
2.6 量测器具
观测水位宜使用电测水位计。地下水位较浅时,可采用浮 标水位计。观测读数应精确到1cm。
流量的测试用具应根据流量大小选定。流量小于1L/s时, 可采用容积法或水表;流量为1L/s~30L/s时,宜采用三角 堰;流量大于30L/s时,应采用矩形堰。
卵(碎)石、圆(角)砾、粗砂、中砂 包网过滤器或缠丝过滤器
细砂、粉砂
填砾过滤器
2.2 离心泵 当含水层地下水位高出地面或埋藏较浅,动水位在吸程范 围内时,宜采用离心泵抽水。
2.3 深井泵或潜水泵 当孔(井)水位深度较大、要求抽水降深大、出水量也较 大时,宜选用深井泵或深井潜水泵。
2.4 空压机 当抽水孔直径较小,水位埋深较深,含水层富水性好,且 要求降深很大时,宜采用空压机抽水。
图5.1.3 潜水非完整井示意图
5.1.4 承压水非完整井,单孔抽水试验计算渗透系数k:
k Q
2rS
k——渗透系数(m/d); Q——抽水井涌水量(m3/d); r——抽水井半径(m); S——抽水井水位下降值(m)。
4.4 抽水试验宜三次降深,最大降深应接近工程设计所 需的地下水位降深的标高。三次降深的分配原则宜满足: 最大降深s3(m),s2=2/3s3,s1=1/3s3(s1为第一次降 深,s2为第二次降深)。

抽水试验

抽水试验

1.抽水试验资料整理试验期间,对原始资料和表格应及时进行整理。

试验结束后,应进行资料分析、整理,提交抽水试验报告。

单孔抽水试验应提交抽水试验综合成果表,其内容包括:水位和流量过程曲线、水位和流量关系曲线、水位和时间(单对数及双对数)关系曲线、恢复水位与时间关系曲线、抽水成果、水质化验成果、水文地质计算成果、施工技术柱状图、钻孔平面位置图等。

并利用单孔抽水试验资料编绘导水系数分区图。

多孔抽水试验尚应提交抽水试验地下水水位下降漏斗平面图、剖面图。

群孔干扰抽水试验和试验性开采抽水试验还应提交抽水孔和观测孔平面位置图(以水文地质图为底图)、勘察区初始水位等水位线图、水位下降漏斗发展趋势图(编制等水位线图系列)、水位下降漏斗剖面图、水位恢复后的等水位线图、观测孔的S-t、S-lg t曲线[注]、各抽水孔单孔流量和孔组总流量过程曲线等。

注意:(1)要消除区域水位下降值;(2)在基岩地区要消除固体潮的影响;3)傍河抽水要消除河水位变化对抽水孔水位变化的影响。

多孔抽水试验、群孔干扰抽水试验和试验性开采抽水试验均应编写试验小结,其内容包括:试验目的、要求、方法、获得的主要成果及其质量评述和结论。

2. 稳定流抽水试验求参方法求参方法可以采用Dupuit 公式法和Thiem公式法。

(1) 只有抽水孔观测资料时的Dupuit 公式承压完整井:潜水完整井:式中K——含水层渗透系数(m/d);Q——抽水井流量(m3/d);sw——抽水井中水位降深(m);M——承压含水层厚度(m);R——影响半径(m);H——潜水含水层厚度(m);h——潜水含水层抽水后的厚度(m);rw——抽水井半径(m)。

(2) 当有抽水井和观测孔的观测资料时的Dupuit 或Thiem公式式中hw ——抽水井中水柱高度(m);h1、h2——与抽水井距离为r1和r2处观测孔(井)中水柱高度(m),分别等于初始水位H0与井中水位降深s之差,h1= H0 –s1;h2= H0 –s2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用抽水试验确定承压含水层参数方法
摘要:地下水资源评价与地下水可开采量计算,需要对地下含水层组参数进行分析确定。

本文探讨定流量(单孔或多孔)抽水试验确定含水层参数的可行性,并对定降深抽水试验确定水文地质参数方法进行了探索。

关键词:水文地质参数,抽水试验,承压水
地下水资源评价和以地下水作为供水水源的建设项目的水资源论证工作,在对评价区域水文地质条件进行勘测论证之后,主要任务就是对取水水源地所在区域地下水可开采量进行估算,以满足制定水资源开发利用规划和建设项目取用水规划的需要。

浅层地下水的评价论证,可开采量估算通常采用水量均衡法、数值法和统计分析法;但深层承压含水层组地下水可开采量的计算,比较成熟的方法相对较少,水文地质参数确定得合理与否,直接影响到计算成果的可靠程度,进而关系到水资源论证评价的科学性。

本文探讨承压含水层组水文地质参数确定的方法问题。

1.定流量抽水试验确定水文地质参数
1.1单井抽水试验推求水文地质参数
方法原理:
承压完整井非稳定抽水的泰斯公式为:
式中:S------与抽水井距离r处得水位降深(m)
Q------抽水井流量(m³/d)
T-------含水层导水系数(㎡/d)
A------含水层压力传导系数(㎡/d)
t-------抽水历时(d)
W(u)-------井函数,与α、t、r有关。

对式(1)两边取对数可得:
(2)
式中为常数。

由于,则为常数,两边取对数得:
(3)
由于(2)、(3)可知:lgs-lgt相当于,与标准曲线lgW(u)-lg(1/u)相似,只能纵横坐标相差一个常数,lgs-lgt是抽水试验观测孔的实测曲线(t为分钟)。

据此可根据抽水试验观测数据,采用图解分析法与分析计算含水参数。

操作步骤:首先制作标准曲线lgW(u)-lg(1/u),.再依据抽水试验资料在双对数纸上点绘lgS-lgt曲线,纵横坐标平行移动,找到一个最佳配合位置,使lgS-lgt 实测点据与标准曲线lgW(u)-lg(1/u)重和度最好,然后固定两曲线图位置,任意找到一个配合点M(S,t取整数),读取其W(u)、l/u/、S、t的值,有下列公式计算含水弹性给水度e::
1.2利用水位恢复曲线法推求水文地质参数
方法原理:
某井以定流量Q抽水停止,水位恢复过程可等同认为从停抽时刻起,有一个流量为Q的注水井开始工作,其水位回升适用泰斯公式。

当t≥5r2/a时,
由此可见,不同时刻t与对应的水位恢复高度S(从停抽时刻的稳定水位S0算起),在半对数纸上成直线,其斜率,由此得到.
利用第一组单孔抽水试验的水位恢复资料,在半对数纸上点绘水位恢复高度S与对应时刻t关系图,图解计算得到各水文地质参数值见表1。

表1 单孔抽水试验参数计算成果表
1.3多孔抽水试验推求含水层水文地质参数
为确保试验所得水文地质参数能客观反映水源地含水层组透水和弹性释水特性,在客观条件允许时还应在单孔抽水试验基础上进行多孔(也称群孔)抽水试验,进一步验证单孔试验取得参数的合理性。

方法原理:
假设含水层均质、各向同性、等厚且无限延伸,水力坡度很小。

有n眼取水井布设,各井到中心井肼的距离分别为r1,r2,…,rn,各井同时抽水流量分别为Q1,Q2,…,Qn。

在各井抽水影响下,根据势叠加原理中心井肘点的水位降深,应等于n眼井取水对它引起降深的总和,且各井均是定流量非稳定流抽水,各井对M点的影响应符合泰斯公式,即有:
从式(6)可知,S与lgt为线性关系,将试验观测数据S、t点绘在半对数格纸上,即可图解分析得到含水层参数。

1.4不同试验方法取得水文地质参数的对比分析
通过2组单孔、1组多孔抽水试验,分析得到本水源地含水层多组水文地质参数,其中2#井孔取得2组参数,1#、3#。

井孔各取得一组参数。

对比分析可知,2#井孔第一组参数与其它两孔参数接近,第二组单孔试验资料分析得到的参数值偏大,分析其主要原因是观测孔距抽水孔距离较远,水位降深变化不灵敏,影响分析参数的精度,故确定水源地含水层参数时不予采用。

各观测孔参数取不同方法分析结果的平均值,在此基础上将各组参数应用于抽水孔计算抽水量,以与实际抽水量总体误差最小原则确定水源地采用的参数。

2.定降深抽水试验推求水文地质参数
在利用抽水试验的方法确定水源地水文地质参数时,往往受外部环境条件的限制,水源地取水井孔的数量或观测条件不能满足单孔、群孔抽水试验的基本要求。

如水源地取水井影响范围内无适合作为观测孔的管井,有井孔而一直处于取水状态不能专门作为观测孔使用等。

因此,有必要研究单孔取水而无观测孔条件下,利用抽水试验确定水文地质参数的方法。

定降深抽水试验推求水文地质参数,即是一种无观测孔条件下抽水试验确定含水层参数的方法。

方法原理
其中:Sw------取水井降深;
G(tD)------无越流系统定降深井流的流量函数;
无因此时间, α、rw意义同前;
零界第一类、第二类贝赛尔函数。

当tD≥104时,定降深井流的流量公式可近似写为:
式(10)在一般的条件下都是有效的,因为通常A的值都很大而r2又很小,条件tD≥104很容易满足。

上式可写为:
由于可见,将1/Q-t数据点在
当实验时间足够长,可相应得到若干组降深SW一定时的t-Q实验观测数据,确定稳定的1/Q-lgt曲线,可读得曲线在1/Q轴上的截距(1/Q)0,利用公式
计算出含水层参数α,再根据T、α、μe之间的关系推求出值。

3.结论
采用抽水试验确定水源地含水层组水文地质参数,是目前普遍采用的方法。

从2个水源地进行抽水试验的实践看,定流量单孔抽水试验确定水源地含水层组水文地质参数是一种便于操作、相对经济,且成果比较可靠的方法。

由单孔和多孔抽水试验取得的含水层参数对比分析可知,单孔抽水时如观测孔距取水孔距离在合理的范围内(100~250m为宜,太远取水影响水位降深不灵敏,太近对水源地含水层特性代表性不足),参数分析结果与群孔抽水试验结果基本吻合,能满足水源地评价与开发利用规划的需求。

抽水试验井孔位置的确定应在区域地质调查基础上进行,所求参数适用于地质构造与含水层岩性相同或相近的区域,如选定的水源地范围较大,抽水试验布井时应充分论证其代表性,必要时划分单元布井抽水试验,分别确定参数。

定降深抽水试验推求水文地质参数的方法,从祥光铜业水源地抽水试验过程看,试验条件容易满足,简便经济,也能够确定水源地含水层组的参数,但试验时阀门控制取水流量比较困难,试验时间足够长时需多次调控阀门调减出流量以稳定降深,深井电泵调控难度较大。

同时因条件限制,试验获取的参数不能采用其他方法验证,故不
宜在生产实践中推广应用。

注:文章内的图表及公式请以PDF格式查看。

相关文档
最新文档