大学基础物理学》张三慧(第二版)清华大学出版社课后答案

合集下载

大学物理说课ppt课件

大学物理说课ppt课件

加速度:a 角动量定理 角加速度:β
质F量t =:mmv1 – mv0
Mt转=动Jω惯1 量– J:ω0J
质量:F
角动量守恒 力矩:M
动力学方程
当外力F=0时,
当外力矩M=0时,
p =Fm=vm=a常量
L = JMω == J常β 量
牛顿第二定律
转动定理
四. 章节举例 在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确
——说 课 环 节——
一. 课程总述 二. 教材教法
三. 课程设计 四. 章节举例
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
三. 课程设计
教学内容与学时分配:
序号
1 2 3 4 5 6 7 8
章节目录
质点运动学 质点动力学 刚体力学基础
四. 章节举例 在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确
难点剖析:
三. 角动量守恒定律
对于形变物体, 转速与转动惯量成反比
跳水运动员
花滑运动员
四. 章节举例 在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确
——说 课 环 节——
一. 课程总述 二. 教材教法
三. 课程设计 四. 章节举例
二. 教材教法 在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确
说教材:
• 《新编基础物理学 (上册)》王少杰、 顾牡主编,科学出 版社,2009年1月

大学物理学孙厚谦答案

大学物理学孙厚谦答案

大学物理学孙厚谦答案【篇一:普通物理12章习题解】t>12.1 如图所示,ab长度为0.1m,位于a电子具有大小为v0?10?107m/s的初速度。

试问:(1)磁感应强度的大小和方向应如何才能使电子从a运动到b;(2)电子从a运动到b需要多长时间????解:右。

根据f??e??b?的右手方向规则b的方向应该内(在纸平面)。

?为了电子向右偏转电子上作用的落论磁力的方向在a点应向结果电子在这种磁场中圆周运动根据牛顿第二定律(落仑磁力提供向心力)即e?ob?m?o212.1习题rb?m?oe?1.6?10?19c er1r?ab?0.05m2?m?9.1?10?31kg9.1?10?31?10?107?b??1.14?10?2t ?191.6?10?0.05(2) tab1?t t是周期 212.1习题?b?t?2?r?o?tab??r3.14?0.05??1.57?10?19s 7?o10?10?2答:(1)b?1.14?10t 方向 ?(2)tab?1.57?10s12.2 有一质子,质量是0.5g,带电荷为2.5?10c。

此质子有6?10m/s的水平初速,要使它维持在水平方向运动,问应加最小磁场的大小与方向如何?解:?84?9先分析该质点上所受力的情况该质点没有其他场的作用下只有重力作用,质点平抛运动,所以质点上方向向上的大小为mg的一个力作用才能保证该质点作水平方向运动。

此题中我们用加一磁场来产生落论兹力提供该需要的的力。

???f?q??b?考虑f的方向向上,的方向必须纸平面上向内?如图所示mg0.5?10?3?9.8q?b?mg?b???q?2.5?10?8?6?10?4习题12.212.3 如图所示,实线为载有电流i的导线。

导线由三部分组成,ab 部分为1/4圆周,圆心为o,半径为a,导线其余部分为伸向无限远的直线,求o点的磁感应.强度b。

解:设直导线部分ca和bd产生的磁感应强度b1和b2,而1圆周导线ab产生的磁感应强度为 4?(方向纸平?oib1?4?a面上向上)b2??(方向纸平面上向上) 4?a圆周导线产生的磁感应强度为b??oi2r1圆周导线产生的磁感应强度为 4习题12.4b3b3?1?oi?oi?? ?(方向纸平面上向上) 42a8a????b0?b1?b2?b3b0?b1?b2?b3??oi?oi?oi?oi???(4??) ?(向纸平面上向上)4?a4?a8a8?a12.4 三根平行长直导线处在一个平面内,1,2和2,3之间距离都是3cm,其上电流i1?i2及i3??(i1?i2),方向如图所示。

清华大学张三慧大学物理第一册第一章

清华大学张三慧大学物理第一册第一章
4
§1.1 参考系 、坐标系
一.参考系(frame of reference, reference system)
由运动的相对性,描述运动必须选取参考系。
参考系:用来描述物体运动而选作参考的物体
或物体系。 运动学中参考系可任选,不同参考系中物体
的运动形式(如轨迹、速度等)可以不同。 常用的参考系:
一个任意的平面曲线运动,可以视为由一系
列小段圆周运动所组成。 加速度:
et1
·e
P1
n1
· 1 O1
曲率圆2 运动轨迹
O2
·· 2 P2 en2
et2
a
dv dt
et
v2
en
―曲率半径
在曲线上的各点固结一系列由
当地的切线和法线所组成的坐标
曲率圆1
系称自然坐标系。
21
§1.7 相对运动(relative motion)
v (t+Δt )
0
y
x
加速度:a lim
t 0
v t
d v dt
d2 r dt2
r
加速度的方向:v 变化的方向
加速度的大小:a
a
d v
dv
dt dt
12
§1.4 匀加速运动 (uniformly acceleration motion)
特点:a const.

a dv dt
t
v(t)
adt dv
t0
v(t0 )

v dr dt
t
r (t )
vdt dr
t0
r (t0 )
r(t
)
r (t0
)
v(t0

大学物理电磁学

大学物理电磁学

大学物理电磁学电磁学是物理学的一个重要分支,它研究的对象是电磁运动及其所引起的各种现象最基本的规律。

电磁学的发展不仅与人们的日常生活和生产技术有着十分密切的关系,而且也是电工学、无线电电子学、电子计算机技术以及其他新科学、新技术发展的基础。

这里我们着重从场的观点阐述静电场和稳恒磁场的基本概念、基本规律和基本定理,揭示电磁感应现象的物理本质,最后介绍电磁场理论的初步知识。

通过课程学习,学生掌握电场、磁场、电磁感应的基本规律和基本现象,特别是电磁场的基本定律定理,包括库仑定律、静电场的高斯定理、静电场的环路定理、安培定律、磁场的高斯定理及安培环路定理、电磁感应定律等,并利用这些定理定律分析和解决电磁学中的一些问题。

讲师介绍胡海云北京理工大学物理学院教授英国谢菲尔德大学博士,现为物理学院教授,大学物理教学与实验中心主任,物理学院副院长,全国物理力学专业委员会委员。

在《中国大学教学》、《大学物理》等刊物及国内外教学会议上已发表教研论文20余篇;在Physics Letters A、Materials Science、Applied Surface Sciene等刊物和国际学术会议上已发表学术论文30余篇。

曾被评为北京教育先锋管理育人先进个人(2011年),荣获北京市高等学校教学名师奖(2012年),北京高校青年教师教学基本功比赛优秀指导教师奖(2013年),北京市教育教学成果二等奖(2009年),主讲的《大学物理》课被评为北京市精品课(2008年),主编教材《大学物理》被评为北京高等教育精品教材(2011年)。

吴晓莉北京理工大学物理学院副教授北京理工大学博士,现为物理学院副教授。

曾获北京理工大学第六届青年教师教学基本功比赛一等奖(2008年),北京市教育教学成果二等奖(2009年),北京理工大学第五届T-more优秀教师奖(2010年);主讲的《大学物理》课程被评为北京市精品课(2008年),参编专著《原子结构与光谱》获国防工业出版社优秀图书(2008年),参编教材《大学物理》被评为北京高等教育精品教材(2011年)。

物理学教程(第二版)上册课后习题答案详解

物理学教程(第二版)上册课后习题答案详解

物理学教程(第二版)上册习题答案 第一章 质点运动学 1 -1分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t st d d d d =r ,即|v |=v .由此可见,应选(C).1 -2 分析与解 t rd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t sd d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 分析与解 td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t s d d 在自然坐标系中表示质点的速率v ;而td d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B). 1 -5解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t xv2s0.422m.s 36d d -=-==t t x a1 -6 解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位臵. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r1 -7 .解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v 0x =-10 m ·s-1 , v 0y =15 m ·s-1,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v 0与x 轴的夹角为α,则23tan 00-==xy αv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==t a xx v , 2s m 40d d -⋅-==t a y y v 则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==xy a a β β=-33°41′(或326°19′)1 -8 解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v vs 705.02=+=ag ht(2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=ag ht(2) 由于升降机在t 时间内上升的高度为2021at t h +='v则m 716.0='-=h h d1 -9 解 由分析知,应有⎰⎰=tta 0d d 0v v v得03314v v +-=t t (1)由⎰⎰=tx x tx 0d d 0v得00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m ·s-1代入(1)、(2)得v 0=-1 m ·s-1, x 0=0.75 m于是可得质点运动方程为75.0121242+-=t t x 1 -10 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知v vB A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v vvvv得石子速度)e 1(Bt BA--=v 由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度. (2) 再由)e 1(d d Bt BAt y --==v 并考虑初始条件有 t BAy tBt yd )e 1(d 00⎰⎰--= 得石子运动方程)1(e 2-+=-Bt BAt B A y 1 -11解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==tt tt 0)d 46(d d j i a v vj i t t 46+=v又由td d r=v 及初始条件t =0 时,r 0=(10 m)i ,积分可得⎰⎰⎰+==tt rr t t t t 0)d 46(d d 0j i r vj i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示. 1 -12 解 (1) 由参数方程 x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 22222s m 0.4d d d d )(-⋅-=+=tyt x t则t 1 =1.00s时的速度 v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t ttt e e e a 222s1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v则m 17.112==na ρv1 -13解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m ·s -1,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gyx v(2) 视线和水平线的夹角为o 5.12arctan==xyθ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gtαx y arctan arctan ==取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g g a n α1 -14解 在图示坐标系中,有t v x )cos (0α= (1) 2021sin (gt t v y -=)α (2) gt v v y -=αsin 0 (3)(1) 由式(1),令57m ==x x m ,得飞跃时间37.1cos 0mm ==αv x t s(2)由式(3),令0=y v ,得飞行到最大高度所需时间gv t αsin 0m =’将’m t 代入式(2),得飞行最大高度67.02sin 220m ==gv y αm则飞车在最高点时距河面距离为10m +=y h m 67.10= m(3)将37.1m=t s 代入式(2),得西岸木桥位臵为y = - 4.22 m“-”号表示木桥在飞车起飞点的下方.讨论 本题也可以水面为坐标系原点,则飞车在 y 方向上的运动方程应为10=y m + 2021)sin (gt t v -α 1 -15解 1 由分析知,在图(a )坐标系中,有20)sin (21)]cos([t g t v x ααβ-+-= (1)20)cos (21)]sin([t g t v y ααβ-+-= (2)落地时,有y =0,由式(2)解得飞行时间为31.230tan 20==gv t s 将 t 值代入式(1),得1.263220===gv x OP m解 2 由分析知,在图(b )坐标系中,对小球 t v x )cos (0β= (1)2021)sin (gt t v y -=β (2) 对点P αtan x y =' (3)由式(1)、(2)可得球的轨道方程为ββ2202cos 2tan v gx x y -= (4)落地时,应有y y '=,即60cos 260tan 30tan 2202v gx x x -=解之得落地点P 的x 坐标为gv x 3320=(5)则 1.263230cos 20===gv xOPm 联解式(1)和式(5)可得飞行时间31.2=t s讨论 比较两种解法,你对如何灵活运用叠加原理有什么体会?1 -16 解 (1) 质点作圆周运动的速率为bt ts-==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v故加速度的大小为R)(402222bt b a a a a t tn-+=+=v其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v =(3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为bs s s t 2200v =-=因此质点运行的圈数为bRR s n π4π22v ==1 -17 解 因ωR =v ,由题意ω∝t 2得比例系数322s rad 2-⋅===Rtt ωk v 所以22)(t t ωω==则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω 2s rad 0.24d d -⋅='==t tωα2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+=()()2222s m 01.1-⋅=+=R ωR αa 在2.0s内该点所转过的角度rad 33.532d 2d 2032220====-⎰⎰t t t t ωθθ1 -18 解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s2s m 80.4d d -=⋅==tωra t t(2) 当22212/t n t a a a a +==时,有223nt a a =,即 ()()422212243t r rt =得 3213=t此时刻的角位臵为rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt =t =0.55s1 -191'22v v v += (如图所示),于是可得1o12s m 36.575tan -⋅==v v 1 -20 解 由122v v v -='[图(b)],有θθcos sin arctan221v v v -=α而要使hlαarctan≥,则 h lθθ≥-cos sin 221v v v⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v第二章 牛顿定律2 -1分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F T (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征. 2 -2 分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2 -3 分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2 -4 分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位臵有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程Rm θmgF N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).*2 -5 分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,ma 为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).2 -6解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有ma αmg μαmg =-cos sin (1)又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -==则()αμααg lt cos sin cos 2-=(2)为使下滑的时间最短,可令0d d =αt,由式(2)有 ()()0sin cos cos cos sin sin =-+--αμαααμαα则可得 μα12tan -=,o49=α此时 ()s 99.0cos sin cos 2min =-=αμααg lt2 -7解 按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy 轴正方向(如图所示).当框架以加速度a 上升时,有F T-( m 1 +m 2 )g =(m 1 +m 2 )a (1)F N2 - m 2 g =m 2 a (2)解上述方程,得F T =(m 1 +m 2 )(g +a) (3)F N2 =m 2 (g +a) (4)(1) 当整个装臵以加速度a =10 m ·s-2上升时,由式(3)可得绳所受张力的值为F T =5.94 ×103N乙对甲的作用力为F ′N2 =-F N2 =-m 2 (g +a) =-1.98 ×103N(2) 当整个装臵以加速度a =1 m ·s-2上升时,得绳张力的值为F T =3.24 ×103N此时,乙对甲的作用力则为F ′N2=-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2 -8 解 分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A 、B 及滑轮列动力学方程,有m A g -F T =m A a (1) F ′T1 -F f =m B a ′ (2) F ′T -2F T1 =0 (3)考虑到m A =m B =m , F T =F ′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力()N 2.724f =+-=am m mg F2 -9解1 以地面为参考系,在摩擦力f F =μmg 的作用下,根据牛顿定律分别对木块、平板列出动力学方程f F =μmg =ma 1 f F =-f F =m ′a 2a 1 和a 2 分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a =a 1 +a 2 ,木块相对平板以初速度- v ′作匀减速运动直至最终停止.由运动学规律有- v ′2=2as由上述各式可得木块相对于平板所移动的距离为解2 以木块和平板为系统,它们之间一对摩擦力作的总功为mgs l F l s F W μ=-+=f f )( 式中l 为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m ′v ′=(m ′+m ) v ″由系统的动能定理,有()222121v v ''+'-''=m m m mgs μ 由上述各式可得()m m g μm s +'''=22v 2 -10解 取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程θωmR ma θF n N sin sin 2== (1)mg θF N =cos (2)且有 ()Rh R θ-=cos (3)由上述各式可解得钢球距碗底的高度为2ωg R h -=可见,h 随ω的变化而变化.2 -11解 隔离后,各物体受力如图(b )所示,有滑轮 02T =-F FA A A A T a m g m F =-B B B B T a m g m F =-联立三式,得2.15A =a 7.2s m B 2=⋅-a ,2s m -⋅2 -12 解 (1)由分析知F)(2/5cos 25.0d /d 22π+-===t t y ma (N ) 该式表示作用于物体上的合外力随时间t 按余弦作用周期性变化,F >0表示合力外力向下,F <0表示合外力向上. (2) Fy t t 25.1)]2/5(cos 20.0[25.1)2/5cos(25.0-=+-=+-=ππ.由上式知,合外力F 的大小与物体离开平衡位臵距离y 的大小成正比.“-”号表示与位移的方向相反.2 -13 解 因加速度a =d v /d t ,在直线运动中,根据牛顿运动定律有tmt d d 40120v =+ 依据质点运动的初始条件,即t 0 =0 时v 0 =6.0 m ·s-1,运用分离变量法对上式积分,得()⎰⎰+=ttt 0d 0.40.12d 0v v vv =6.0+4.0t+6.0t 2又因v =d x /d t ,并由质点运动的初始条件:t 0 =0 时 x 0 =5.0 m,对上式分离变量后积分,有()⎰⎰++=txx t t t x 020d 0.60.40.6dx =5.0+6.0t+2.0t 2 +2.0t 32 -14 解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有t αtmma F -===d d v⎰⎰-=tt mt α0d d 0vv v 得202t mα-=v v 因此,飞机着陆10s后的速率为v =30 m ·s-1又⎰⎰⎪⎭⎫ ⎝⎛-=t xx t t m αx 0200d 2d v 故飞机着陆后10s内所滑行的距离m 4676300=-=-=t mαt x x s v 2 -15解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为gh 20=v运动员入水后,由牛顿定律得P -fF -F =ma由题意P =F 、fF =bv 2,而a =d v /d t =v (d v /d y ),代入上式后得-bv 2= mv (d v /d y )考虑到初始条件y 0 =0 时,gh 20=v ,对上式积分,有⎰⎰=⎪⎭⎫⎝⎛-v v v v 0d d 0ty b m m by m by e gh e //02--==v v(2) 将已知条件b/m =0.4 m -1,v =0.1v 0 代入上式,则得m 76.5ln 0=-=v vb m y 2 -16解 小球在运动过程中受到重力P 和圆轨道对它的支持力F N .取图(b)所示的自然坐标系,由牛顿定律得t mαmg F t d d sin v=-= (1) R m m αmg F F N n 2cos v =-= (2)由tαr t s d d d d ==v ,得vαr t d d =,代入式(1),并根据小球从点A 运动到点C 的始末条件,进行积分,有 ()⎰⎰-=απαα2/sin 0d rg d vv v v得αrg cos 2=v则小球在点C 的角速度为r αg rω/cos 2==v由式(2)得 αmg αmg rm m F N cos 3cos 2=+=v 由此可得小球对圆轨道的作用力为αmg F F N Ncos 3-=-=' 负号表示F ′N 与e n 反向.2 -17解 (1) 设物体质量为m ,取图中所示的自然坐标,按牛顿定律,有R m ma F n N 2v ==tma F t d d f v-=-=由分析中可知,摩擦力的大小F f=μF N ,由上述各式可得tR μd d 2v v -=取初始条件t =0 时v =v 0 ,并对上式进行积分,有⎰⎰-=v v v v020d d μR t ttμR R 00v v v +=(2) 当物体的速率从v 0 减少到2/0v 时,由上式可得所需的时间为v μR t ='物体在这段时间内所经过的路程⎰⎰''+==t t t tμR R t s 000d d v v v2ln μRs =2 -18解 分别对物体上抛、下落时作受力分析,以地面为原点,竖直向上为y 轴(如图所示).(1) 物体在上抛过程中,根据牛顿定律有ym t mkm mg d d d d 2v v v v ==-- 依据初始条件对上式积分,有⎰⎰+-=02d d v v v v k g y y⎪⎪⎭⎫⎝⎛++-=202ln 21v v k g k g k y 物体到达最高处时, v =0,故有⎪⎪⎭⎫ ⎝⎛+==g k g k y h 20maxln 21v (2) 物体下落过程中,有yv mkm mg d d 2v v =+-对上式积分,有⎰⎰--=02d d v v vv k g y y则 2/1201-⎪⎪⎭⎫⎝⎛+=g k v v v2 -19 解 设摩托车沿x 轴正方向运动,在牵引力F 和阻力F r 同时作用下,由牛顿定律有tmk F d d 2vv =- (1) 当加速度a =d v /d t =0 时,摩托车的速率最大,因此可得k =F/v m 2(2)由式(1)和式(2)可得t m F m d d 122vv v =⎪⎪⎭⎫ ⎝⎛- (3) 根据始末条件对式(3)积分,有⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m tF m t v v v v 2101220d 1d则3ln 2Fm t mv =又因式(3)中xm t m d d d d v v v =,再利用始末条件对式(3)积分,有 ⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m xF mx v v v v 2101220d 1d则 Fm F m x mm 22144.034ln 2v v ≈=*2 -20 解 由牛顿第二定律和相关运动学规律有F 0 -fF =ma -μmg =ma ′ (1)v ′ 2=2a ′L (2)联立解(1)(2)两式并代入题给数据,得木箱撞上车厢挡板时的速度为()L g a μ-='2v =1s m 9.2-⋅=第三章 动量守恒定律和能量守恒定律3 -1 分析与解 在质点组中内力总是成对出现的,它们是作用力与反作用力.由于一对内力的冲量恒为零,故内力不会改变质点组的总动量.但由于相互有作用力的两个质点的位移大小以及位移与力的夹角一般不同,故一对内力所作功之和不一定为零,应作具体分析,如一对弹性内力的功的代数和一般为零,一对摩擦内力的功代数和一般不为零,对于保守内力来说,所作功能使质点组动能与势能相互转换,因此保守内力即使有可能改变质点组的动能,但也不可能改变质点组的机械能.综上所述(1)(3)说法是正确的.故选(C). 3 -2 分析与解 对题述系统来说,由题意知并无外力和非保守内力作功,故系统机械能守恒.物体在下滑过程中,一方面通过重力作功将势能转化为动能,另一方面通过物体与斜面之间的弹性内力作功将一部分能量转化为斜面的动能,其大小取决其中一个内力所作功.由于斜面倾角不同,故物体沿不同倾角斜面滑至底端时动能大小不等.动量自然也就不等(动量方向也不同).故(A)(B)(C)三种说法均不正确.至于说法(D)正确,是因为该系统动量虽不守恒(下滑前系统动量为零,下滑后物体与斜面动量的矢量和不可能为零.由此可知,此时向上的地面支持力并不等于物体与斜面向下的重力),但在水平方向上并无外力,故系统在水平方向上分动量守恒.3 -3 分析与解 保守力作正功时,系统内相应势能应该减少.由于保守力作功与路径无关,而只与始末位臵有关,如质点环绕一周过程中,保守力在一段过程中作正功,在另一段过程中必然作负功,两者之和必为零.至于一对作用力与反作用力分别作用于两个质点所作功之和未必为零(详见习题3 -2 分析),由此可见只有说法(2)正确,故选(C).3 -4 分析与解 由题意知,作用在题述系统上的合外力为零,故系统动量守恒,但机械能未必守恒,这取决于在A 、B 弹开过程中C 与A 或D 与B 之间有无相对滑动,如有则必然会因摩擦内力作功,而使一部分机械能转化为热能,故选(D).3 -5 分析与解 子弹-木块系统在子弹射入过程中,作用于系统的合外力为零,故系统动量守恒,但机械能并不守恒.这是因为子弹与木块作用的一对内力所作功的代数和不为零(这是因为子弹对地位移大于木块对地位移所致),子弹动能的减少等于子弹克服阻力所作功,子弹减少的动能中,一部分通过其反作用力对木块作正功而转移为木块的动能,另一部分则转化为热能(大小就等于这一对内力所作功的代数和).综上所述,只有说法(C)的表述是完全正确的.3 -6 解 以飞鸟为研究对象,取飞机运动方向为x 轴正向.由动量定理得Δ-='v m t F式中F '为飞机对鸟的平均冲力,而身长为20cm 的飞鸟与飞机碰撞时间约为Δt =l /v ,以此代入上式可得N 1055.252⨯=='lm F v鸟对飞机的平均冲力为N 1055.25⨯-='-=F F式中负号表示飞机受到的冲力与其飞行方向相反.从计算结果可知,2.25 ×105N 的冲力大致相当于一个22 t 的物体所受的重力,可见,此冲力是相当大的.若飞鸟与发动机叶片相碰,足以使发动机损坏,造成飞行事故. 3 -7 解1 物体从出发到达最高点所需的时间为gαt sin Δ01v =则物体落回地面的时间为gt t αsin Δ2Δ0122v ==于是,在相应的过程中重力的冲量分别为j j F I αsin Δd 011Δ1v m t mg t t -=-==⎰j j F I αsin 2Δd 022Δ2v m t mg t t -=-==⎰解2 根据动量定理,物体由发射点O 运动到点A 、B 的过程中,重力的冲量分别为j j j I αm y m mv Ay sin 001v v -=-= j j j I αm y m mv By sin 2002v v -=-=3 -8 解 (1) 由分析知()s N 68230d 43020220⋅=+=+=⎰t t t t I(2) 由I =300 =30t +2t 2,解此方程可得t =6.86 s(另一解不合题意已舍去)(3) 由动量定理,有I =m v 2- m v 1由(2)可知t =6.86 s 时I =300 N ·s ,将I 、m 及v 1代入可得112s m 40-⋅=+=mm I v v3 -9 解1 以人为研究对象,按分析中的两个阶段进行讨论.在自由落体运动过程中,人跌落至2 m 处时的速度为gh 21=v (1)在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有()12Δv v m m t -=+P F (2)由式(1)、(2)可得安全带对人的平均冲力大小为()N 1014.1Δ2ΔΔ3⨯=+=+=tgh mg t m Δmg F v解2 从整个过程来讨论.根据动量定理有N 1014.1/2Δ3⨯=+=mg g h tmg F3 -10 解 力F 的冲量为ωωωkAt t kA t kx t F I t t t t -=-=-==⎰⎰⎰2/π02121d cos d d即()ωkA m -=v Δ 3 -11 分析 第(1)问可对垒球运用动量定理,既可根据动量定理的矢量式,用几何法求解,如图(b )所示;也可建立如图(a )所示的坐标系,用动量定量的分量式求解,对打击、碰撞一类作用时间很短的过程来说,物体的重力一般可略去不计.解 (1) 解 1 由分析知,有12mv mv t F -=∆其矢量关系如图(b )所示,则)60180cos())((2)()()(2122212 --+=∆mv mv mv mv t F解之得 N 9.197=F解 2 由图(a )有x x x mv mv t F 12-=∆02-=∆y y mv t F将,则和代入解得及y x y x x F F v v v v v v 60sin 60cos ,22221=-==N 9.19722=+=y x F F F(2) 由质点动能定理,得J 7.4721212122=-=mv mv W3 -12 解 在Δt 时间内,从管一端流入(或流出) 水的质量为Δm =ρυS Δt ,弯曲部分AB 的水的动量的增量则为 Δp =Δm (v B -v A ) =ρυS Δt (v B -v A )依据动量定理I =Δp ,得到管壁对这部分水的平均冲力()A B t S ρtv v v -==ΔΔIF 从而可得水流对管壁作用力的大小为N 105.2232⨯-=-=-='v S ρF F作用力的方向则沿直角平分线指向弯管外侧.3 -13 解 设A 、B 两船原有的速度分别以v A 、v B 表示,传递重物后船的速度分别以v A ′ 、v B ′ 表示,被搬运重物的质量以m 表示.分别对上述系统Ⅰ、Ⅱ应用动量守恒定律,则有()A A B A A m m m m v v v '=+- (1)()''=+-B B A B B m m m m v v v (2)由题意知v A ′ =0, v B ′ =3.4 m ·s -1代入数据后,可解得()()12s m 40.0-⋅-=---'-=mm m m m m m A B BB A v v ()()()12s m 6.3-⋅=---'-=mm m m m m m m B A B B A B v v 也可以选择不同的系统,例如,把A 、B 两船(包括传递的物体在内)视为系统,同样能满足动量守恒,也可列出相对应的方程求解. 3 -14解 取如图所示坐标.把人与物视为一系统,当人跳跃到最高点处,在向左抛物的过程中,满足动量守恒,故有()()u m m αm m -+'='+v v v cos 0式中v 为人抛物后相对地面的水平速率, v -u 为抛出物对地面的水平速率.得u m m mα'++=cos 00v v人的水平速率的增量为u mm mα'+=-=cos Δ0v v v 而人从最高点到地面的运动时间为g αt sin 0v =所以,人跳跃后增加的距离()gm m αm t x '+==sin ΔΔ0v v3 -15 解 由运动学方程x =ct 3,可得物体的速度23d d ct tx==v 按题意及上述关系,物体所受阻力的大小为3/43/242299x kc t kc k F ===v则阻力的功为⎰⋅=x F W d 3/73/23/403/20727d 9d 180cos d l kc x x kc x W ll -=-==⋅=⎰⎰⎰x F 3 -16解 水桶在匀速上提过程中,a =0,拉力与水桶重力平衡,有F +P =0在图示所取坐标下,水桶重力随位臵的变化关系为P =mg -αgy其中α=0.2 kg/m,人对水桶的拉力的功为()J 882d d 100100=-=⋅=⎰⎰y agy mg W y F3 -17解 (1) 如图所示,重力对小球所作的功只与始末位臵有关,即()J 53.0cos 1Δ=-==θmgl h P W P在小球摆动过程中,张力F T 的方向总是与运动方向垂直,所以,张力的功s F d T T ⋅=⎰W(2) 根据动能定理,小球摆动过程中,其动能的增量是由于重力对它作功的结果.初始时动能为零,因而,在最低位臵时的动能为J 53.0k ==P W E小球在最低位臵的速率为1PK s m 30.222-⋅===mW m E v(3) 当小球在最低位臵时,由牛顿定律可得l m P F 2T v =-N 49.22T =+=lm mg F v3 -18 解 (1) 摩擦力作功为20202k0k 832121v v v m m m E E W -=-=-= (1) (2) 由于摩擦力是一恒力,且F f =μmg ,故有mg r s F W μπ2180cos o f -== (2)由式(1)、(2)可得动摩擦因数为rgπμ1632v =(3) 由于一周中损失的动能为2083v m ,则在静止前可运行的圈数为 34k0==W E n 圈3 -19解 选取如图(b)所示坐标,取原点O 处为重力势能和弹性势能零点.作各状态下物体的受力图.对A 板而言,当施以外力F 时,根据受力平衡有F 1 =P 1 +F (1)当外力撤除后,按分析中所选的系统,由机械能守恒定律可得2221212121mgy ky mgy ky +=- 式中y 1 、y 2 为M 、N 两点对原点O 的位移.因为F 1 =ky 1 ,F 2 =ky 2 及P 1 =m 1g ,上式可写为F 1 -F 2 =2P 1 (2)由式(1)、(2)可得F =P 1 +F 2 (3)当A 板跳到N 点时,B 板刚被提起,此时弹性力F ′2 =P 2 ,且F 2 =F ′2 .由式(3)可得F =P 1 +P 2 =(m 1 +m 2 )g应注意,势能的零点位臵是可以任意选取的.为计算方便起见,通常取弹簧原长时的弹性势能为零点,也同时为重力势能的零点. 3 -20 解 (1)子弹-木块系统满足动量守恒,有v m m mv )2/(2/0+=解得共同速度031v v =对木块 2022k 181021mv mv E =-=∆ 对子弹 202022k 92)2(21)2(21mv v m v m E -=-=∆ (2) 对木块和子弹分别运用质点动能定理,则对木块201k 1181mv E W =∆= 对子弹 202k 292mv E W -=∆= (3) 设摩擦阻力大小为fF ,在两者取得共同速度时,木块对地位移为s ,则子弹对地位移为L +s ,有对木块 s F W f1=对子弹 )(f2s L F W +-=得 L F W W W f21-=+=式中L 即为子弹对木块的相对位移,“-”号表示这一对摩擦阻力(非保守力)所作功必定会使系统机械能减少.(4) 对木块 2f 121mv s F W ==对子弹 202f2)2(21)2(21)(v m v m s L F W -=+-= 两式相加,得202221)2(21])2(2121[v m v m mv W W -+=+ 即 20f 183mv L F -=- 两式相加后实为子弹-木块系统作为质点系的动能定理表达式,左边为一对内力所作功,右边为系统动能的变化量.3 -21 解 因阻力与深度成正比,则有F =kx (k 为阻力系数).现令x 0=1.00 ×10 -2m,第二次钉入的深度为Δx ,由于钉子两次所作功相等,可得⎰⎰+=xx x x x kx x kx Δ000d dΔx =0.41 ×10 -2m3 -22 解 (1) 卫星与地球之间的万有引力提供卫星作圆周运动的向心力,由牛顿定律可得()E 22E E 33R m R m m G v = 则EE 2k 621R m m G m E ==v(2) 取卫星与地球相距无限远(r →∞)时的势能为零,则处在轨道上的卫星所具有的势能为EE P 3R mm GE -=(3) 卫星的机械能为EE E E E E P k 636R mm G R m m G R m m GE E E -=-=+=3 -23解 由系统的机械能守恒,有θmgR m mgR cos 212+=v (1) 根据牛顿定律,冰块沿径向的动力学方程为Rm F θmgR 2N cos v =- (2)冰块脱离球面时,支持力F N =0,由式(1)、(2)可得冰块的角位臵o θ2.4832arccos== 冰块此时的速率为32cos RgθgR ==v v 的方向与重力P 方向的夹角为α=90° - θ =41.8°3 -24 解 小球要刚好通过最高点C 时,轨道对小球支持力F N =0,因此,有rm m g c2v =(1)取小球开始时所在位臵A 为重力势能的零点,由系统的机械能守恒定律,有()()22213Δ21c m r mg l k v += (2) 由式(1)、(2)可得()12m N 366Δ7-⋅==l mgrk 3 -25 解 设弹簧的最大压缩量为x 0 .小球与靶共同运动的速度为v 1 .由动量守恒定律,有()1v v m m m '+= (1)又由机械能守恒定律,有()20212212121kx m m m +'+=v v (2) 由式(1)、(2)可得()v m m k m m x '+'=3 -26 解 由水平方向的动量守恒定律,有v vv ''+=m mm 2(1) 为使摆锤恰好能在垂直平面内作圆周运动,在最高点时,摆线中的张力F T=0,则lm g m h2v ''=' (2)式中v ′h 为摆锤在圆周最高点的运动速率.又摆锤在垂直平面内作圆周运动的过程中,满足机械能守恒定律,故有221221h m gl m m v v ''+'='' (3) 解上述三个方程,可得弹丸所需速率的最小值为glm m 52'=v3 -27 解 (1)由动能守恒得mv i v mj mv i mv +-=+-200 碰撞后另一物体速度为j v i v v 002+-= 通过上式,读者还可求得速度大小和方向.(2) 碰撞后另一物体速度大小为0202025)2(v v v v =+-= 则 20202020241)2121(])2(2121[mv mv mv v m mv E -=+-+=∆“-”号表示碰撞后系统机械能减少了. 3 -28解 取如图所示的坐标,由于粒子系统属于斜碰,在碰撞平面内根据系统动量守恒定律可取两个分量式,有αm βmm A B A cos cos 221v v v '+= (1) αm βmA B sin sin 20v v '-= (2)又由机械能守恒定律,有222212m 2121A B A m v v v '+⎪⎭⎫ ⎝⎛= (3) 解式(1)、(2)、(3)可得碰撞后B 粒子的速率为()1722s m 1069.42-⋅⨯='-=A A B v v v各粒子相对原粒子方向的偏角分别为022243arccos o 22'=''+=AA AA αv v v v65443arccos o '==ABβv v3 -29 解 在子弹与物块的撞击过程中,在沿斜面的方向上,根据动量守恒有()10cos v m m αmv '+= (1)在物块上滑的过程中,若令物块刚滑出斜面顶端时的速度为v 2 ,并取A 点的重力势能为零.由系统的功能原理可得()αh αg m m μsin cos '+-()()()21222121v v m m gh m m m m '+-'++'+=(2) 由式(1)、(2)可得()1cot 2cos 202+-⎪⎭⎫⎝⎛'+=αμgh αm m m v v3 -30 题 3 解 根据水平方向动量守恒定律以及小球在下滑过程中机械能守恒定律可分别得0='-'m m m m v v (1)mgR m m m ='+'222121v v v (2) 式中v m 、v m ′分别表示小球、容器相对桌面的速度.由式(1)、(2)可得小球到达容器底部时小球、容器的速度大小分别为m m gR m m '+'=2vm m gR m m m m '+''='2v由于小球相对地面运动的轨迹比较复杂,为此,可改为以容器为参考系(非惯性系).在容器底部时,小球相对容器的运动速度为()gR m m m m m m m m 2⎪⎭⎫⎝⎛''+=+=--='''v v v v v (3)在容器底部,小球所受惯性力为零,其法向运动方程为Rm mg F mN 2v '=- (4)由式(3)、(4)可得小球此时所受到的支持力为第四章 刚体的转动4-1 分析与解 力对轴之力矩通常有三种情况:其中两种情况下力矩为零:一是力的作用线通过转轴,二是力平行于转轴(例如门的重力并不能使门转).不满足上述情况下的作用力(含题述作用力垂直于转轴的情况)对轴之矩不为零,但同时有两个力作用时,只要满足两力矩大小相等,方向相反,两力矩对同一轴的合外力矩也可以为零,由以上规则可知(1)(2)说法是正确.对于(3)(4)两种说法,如作用于刚体上的两个力为共点力,当合力为零时,它们对同一轴的合外力矩也一定为零,反之亦然.但如这两个力为非共点力,则以上结论不成立,故(3)(4)说法不完全正确.综上所述,应选(B).4-2 分析与解 刚体中相邻质元之间的一对内力属于作用力与反作用力,且作用点相同,故对同一轴的力矩之和必为零,因此可推知刚体中所有内力矩之和为零,因而不会影响刚体的角加速度或角动量等,故(1)(2)说法正确.对说法(3)来说,题述情况中两个刚体对同一轴的转动惯量因形状、大小不同有可能不同,因而在相同力矩作用下,产生的角加速度不一定相同,因而运动状态未必相同,由此可见应选(B).4-3 分析与解 如图所示,在棒下落过程中,重力对轴之矩是变化的,其大小与棒和水平面的夹角有关.当棒处于水平位臵,重力矩最大,当棒处于竖直位臵时,重力矩为零.因此在棒在下落过程中重力矩由大到小,由转动定律知,棒的角加速亦由大到小,而棒的角速度却由小到大(由机械能守恒亦可判断角速度变化情况),应选(C).4-4 分析与解 对于圆盘一子弹系统来说,并无外力矩作用,故系统对轴O 的角动量守恒,故L 不变,此时应有下式成立,即ωJ ωJ d m d m =+-00v v式中mvd 为子弹对点O 的角动量0ω为圆盘初始角速度,J 为子弹留在盘中后系统对轴O 的转动惯量,J 0为子弹射入前盘对轴O 的转动惯量.由于J >J 0,则ω<0ω.故选(C).。

a热学《大学物理》课本习题解答(张三慧)

a热学《大学物理》课本习题解答(张三慧)

1 .•• E:���*W.����T,-� •• ��.ftm�.�������� ���,��������±���m*Tf���m$Q����f���*T��rp �z;b�.ljL� 02.�§:����ft�X��T¥����*������o�����.ljL��Il��f�o3. �:h���J:EW: PD*�i;t A ;fI:l�i;t B *Jl�mJ:j�.C �[IiI-��9tT�f1Jj, Jl� � � A ;fD B mJIDkB-T, 'EfrJi.i1&\��T�3f�, it -�1$�1JII J:li!tilia.lllt, �_:tljffi\�'F, �ii: Jl/!ltii:ilia.ll ��1illI04. 11UB�tt;:;.gtF: �Jt:lf�m tID � ;fU�jJ �ia;t'F-f{, lZ:#m;t'F�tfL:l1:��D T :It ��f:tj * I-lJ � , JJll;m.9, i* �p V * {g..R � ii. J.t ff *. � JJt 5E)/...�;tIl 9, 1* iKi t'F T(K)iY!:Tee p V�5Ex-ii.J.t��--*�=m�;.g��T a = 273.16 KT=�T3P a VaAtfl ,Pa ,V3 �-JEJ9t:it9,i*::t£-*-� =�i;\iffi J.t T�ffiJifD{;$:m ;P.V ��9,{;$:::t£��iIia J.t T (f] ffiJii! ;fI:l1* m Q:ff:fJl!m 9,1*m;t'Fff��Wil'fil � ,'E ;fI:lfljJ Jjj(ilia.t'F7t�-f{ Q第2篇热学摄氏温标与热力学温标的关系tCC)=T-273.15(K)S.熟力学第三定幸事:费力学骂季度是不能达到的G6.理盟气体棋盎方程:描述在平衡态的理想气体的宏现量有下述关系:T 'E n-­P TR m -M一T R UW, 一­v ay式中R为普适气排常量,R =8圄31J/(mol • K)是为藏耳兹曼常量,是:录=1. 38 X 10-23 JI区式中,η为分子散密度,M为气体摩尔质量,.m 为气体的质量。

大学物理B(80学时)

《大学物理(80学时)》教学大纲一、课程基本信息课程名称:大学物理课程类别:大理必修课程学分/学时:5/80适用对象:土木、应化,化工等专业开课单位/教研室:材化学院/光源与照明教研室二、课程设置目的与教学目标1、物理学是研究物质的基本结构,相互作用和物质最基本、最普遍的运动形式及其相互转化规律的科学。

它是自然科学的许多领域和工程技术的基础。

以物理学的基础知识为内容的《大学物理》课程,它所包括的经典物理、近代物理及它们在科学技术上应用的初步知识等都是一个工程技术人员和中小学教育工作者所必备的。

因此,《大学物理》课程是我校各专业学生的一门重要必修基础课。

《大学物理》课程的学习,一方面在于为学生较系统地打好必要的物理基础,另一方面,使学生初步学习科学的思想方法和研究问题的方法。

这些都起着开阔思路、激发探求和创新精神、增强适应能力、提高人才素质的重要作用。

由于本课程是在低年级开设的,因而它在使学生树立正确的学习态度,掌握科学的学习方法,培养独立获取知识的能力,以尽快适应大学阶段的学习规律等方面也起着重要的作用。

此外,学习物理知识、物理思想和物理学的研究方法,有助于培养学生建立辩证唯物主义世界观。

2、教学目标:(1)使学生获得系统的物理学基础知识。

通过本课程的教学,应使学生对物理学所研究的各种运动形式以及它们之间联系,有比较全面和系统的认识;对本课程中的基本理论、基本知识和基本技能能够正确地理解,并具有初步应用的能力。

(2)使学生了解并学习使用物理学的科学研究方法,培养学生逻辑思维能力和应用数学知识解决物理问题的能力(3)在大学物理的教学过程中,应逐步培养学生现代科学的自然观、辩证唯物主义世界观,培养学生严谨求实的科学态度和品格.提高他们的科学素质.四、教学基本要求先修课程:高等数学。

本课程教学采用课堂讲授与学生自学、理论讲授与习题讨论、理论讲授与演示实验相结合的教学方法教学。

(1)本课程以经典物理学的基础知识为主,适当选取近代物理学的知识.力求结合各专业特点组织教材和进行教学.(2)在教学过程中,要加强教学方法和手段的研究.激发学生的求知欲,提高学生学习的主动性和积极性.(3)习题与考核——习题与考核是引导学生学习、检查教学效果的重要环节,也是体现本课程要求的标志。

大学物理教材课后习题参考答案

大学物理教材课后习题参考答案1.7 一质点的运动学方程为x t2,y (t 1)2,x 和y均以为m单位,t以s为单位,试求:(1)质点的轨迹方程;(2)在t=2s 时,质点的速度v和加速度a。

解:(1)由运动学方程消去时间t可得质点的轨迹方程,将ty 1)2 或1(2)对运动学方程微分求速度及加速度,即vx dxdy 2t vy 2(t 1) v 2ti 2(t 1)j dtdtay dvydtdv ax x 2dt 2 a 2i 2j当t=2s时,速度和加速度分别是2 v 4i 2j m/s a 2i 2j m/s21.8 已知一质点的运动学方程为r 2ti (2 t)j,其中, r,t分别以m和s为单位,试求:(1)从t=1s到t=2s质点的位移;(2) t=2s时质点的速度和加速度;(3) 质点的轨迹方程;(4)在Oxy平面x = 2t (1)y = 2 t(2) 2(1) 将t=1s,t=2s代入,有r(1)= 2i j,r(2) 4i 2j故质点的位移为 r r(2) r(1) 2i 3j(2) 通过对运动学方程求导可得dx dy d2x d2y i j 2i 2tj a 2i 2j 2j v dtdtdtdt2 当t=2s时,速度,加速度为v 2i 4j m/s a 2jm/s(3) 由(1)(2)两式消去时间t可得质点的轨迹方程y 2x2/4(4)图略。

1.11 一质点沿半径R=1m的圆周运动。

t=0时,质点位于A点,如图。

然后沿顺时针方向运动,运动学方程s t t,其中s的单位为m,t的单位为s,试求:(1)质点绕行一周所经历的路程,位移,平均速度和平均速率;(2)质点在第1秒末的速度和加速度的大小。

解:(1) 质点绕行一周所经历的路程为圆周周的周长,即 s 2 R 6.28m,由位移和平均速度的定义,可知此时的位移为零,平均速度也为零,即 2,v 0 tr r 0。

可得质点绕行一周所需时间 t 1s 平均速率为令 s s(t) s(0) t2 t 2 Rv s2 R 6.28m/s t t由以上结果可以看出路程和位移,速度和速率是不相同的。

《大学物理学》第二版下册习题解答

大学物理学第二版下册习题解答第一章:力学1.1 力学基本概念1.1.1 力的概念问题:什么是力?力的种类有哪些?解答:力是物体之间相互作用导致的物体运动或形变的原因。

力可以分为以下几种:•接触力:当两个物体接触时产生的力,如弹簧力、摩擦力等。

•引力:天体之间由于引力而产生的力,如地球引力、行星引力等。

•重力:地球上物体受到的引力,是一种特殊的引力。

•弹力:当物体被弹性体拉伸或压缩时,物体回复原状所产生的力。

•阻力:物体在流体中运动时受到的阻碍力,如空气阻力、水阻力等。

1.1.2 力的合成与分解问题:什么是力的合成与分解?如何进行力的合成与分解?解答:力的合成是指将多个力按照一定的规律合成为一个力的过程。

力的分解是指将一个力按照一定的规律分解为多个力的过程。

力的合成可以使用力的三角法进行。

假设有两个力F₁、F₂,其方向分别为α₁、α₂,大小分别为|F₁|、|F₂|,则合力F的大小可以通过以下公式计算:F = √(F₁² + F₂² + 2F₁F₂cos(α₁-α₂))合力F的方向则可以通过以下公式计算:tan(θ) = (F₂sin(α₁-α₂))/(F₁+F₂cos(α₁-α₂))力的分解可以使用力的正弦法和余弦法进行。

假设有一个力F,其大小为|F|,方向为α,要将该力分解为水平方向的力F x和竖直方向的力F x,可以通过以下公式计算:Fₓ = |F|cosα, Fᵧ = |F|sinα1.2 牛顿定律与惯性1.2.1 牛顿第一定律问题:什么是牛顿第一定律?牛顿第一定律适用于哪些情况?解答:牛顿第一定律,也称为惯性定律,指的是:物体在没有受到外力或受到的合外力为零时,物体保持静止或匀速直线运动的状态。

牛顿第一定律适用于只有一个物体或多个物体之间相互独立运动的情况。

当物体受到外力时,按照该定律,物体会发生运动或停止运动。

1.2.2 牛顿第二定律问题:什么是牛顿第二定律?如何计算物体所受合外力和加速度的关系?解答:牛顿第二定律指的是:物体所受合外力等于物体的质量乘以加速度。

大学物理学(上)(第二版)习题答案


解 : u = 0. 6 c
由洛仑兹变换

5 γ = = 2 4 u 1− 2 c
1
u x′ = γ ( x − ut ), t ′ = γ t − 2 x c 得 u ′ ′ t2 − t1 = γ t2 − t1 − 2 ( x2 − x1 ) = 2.25 × 10−7 s c
练习45
1.一静止长度为 l0的火箭以速度 v相对地面运动,从火箭前端发出一个光 . 相对地面运动, 信号,对火箭和地面上的观察者来说,光信号从前端到尾端各用多少时间? 信号,对火箭和地面上的观察者来说,光信号从前端到尾端各用多 方法一:
∆ t′ =
l0 ∆x′ = − c c
′ ′ x2 − x1 = γ [x2 − x1 − u(t2 − t1 )] = −72.5 m
在某地发生两个事件,静止位于该地的甲测得时间间隔为4 2.在某地发生两个事件,静止位于该地的甲测得时间间隔为4s,若相 对甲作匀速直线运动的乙测得时间间隔为5 求乙相对于甲的运动速度。 对甲作匀速直线运动的乙测得时间间隔为5s,求乙相对于甲的运动速度。
≈ −0.946 c ≈ −2.84 × 108 m/s
所以宇航员看到彗星以速率0.946c 向他们飞来。 向他们飞来。 所以宇航员看到彗星以速率
2.地球上某一天文台发现,一只以速率0.60c向东航行的宇宙飞船将在 秒钟 .地球上某一天文台发现,一只以速率 向东航行的宇宙飞船将在5秒钟 向东航行的宇宙飞船将在 后同一个以0.80c速率向西飞行的慧星相撞,试问: 速率向西飞行的慧星相撞, 后同一个以 速率向西飞行的慧星相撞 试问: 避免碰撞。 (2)按飞船上的时钟计,还有多少时间允许他们离开原来航线 避免碰撞。 )按飞船上的时钟计,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档