初中数学一线三等角

合集下载

2023届初中数学中考复习-一线三垂直与一线三等角

2023届初中数学中考复习-一线三垂直与一线三等角

一线三垂直与一线三等角一、基础知识回顾1) 三角形内角和定理:三角形三个内角和等于180°2)1 平角= 180 度二、模型的概述:1) 一线三垂直模型[模型概述] 只要出现等腰直角三角形,可以过直角点作一条直线,然后过45°顶点作直线的垂线,构造三垂直,所得两个直角三角形全等。

根据全等三角形倒边,得到线段之间的数量关系。

基础构造1构造2一线三垂直模型一:如图A B ⊥BC,AB = BC,CE ⊥DE,AD ⊥DE,则∆ABD ≌∆BCE,DE =AD +EC证明:∵CE ⊥DE,AD ⊥DE,AB ⊥BC∴∠CEB = ∠ADB = ∠ABC = 90°∴∠1 + ∠2 = 90°, ∠2 + ∠3 = 90°∴∠1 = ∠3∠1 = ∠3在∆ABD 和∆BCE 中,〈∠CEB = ∠ADB = 90°AB = BC∴∆ABD ≌∆BCE(AAS)∴AD = BE,EC = BD则DE = BE + BD = AD + EC一线三垂直模型二:如图A B ⊥BC,AB = BC,CE ⊥DE,AD ⊥DE,则∆ABD ≌∆BCE,DE =AD - EC证明:∵CE ⊥DE,AD ⊥DE,AB ⊥BC∴∠CEB = ∠ADB = ∠ABC = 90°∴∠A + ∠ABD = 90°, ∠ABD + ∠CBE = 90°∴∠A = ∠CBE∠A = ∠CBE在∆ABD 和∆BCE 中,〈∠CEB = ∠ADB = 90°AB = BC∴∆ABD ≌∆BCE(AAS)∴AD = BE,EC = BD则DE = BE - BD = AD - EC一线三垂直其它模型1) 图1,已知∠AOC = ∠ADB = ∠CED = 90°, AB = DC,得∆ADB ≌∆DEC2) 图2,延长DE 交AC 于点F,已知∠DBE = ∠ABC = ∠EFC = 90°, AC = DE,得∆ABC ≌∆DBE图1图22) 一线三等角模型[模型概述] 三个等角的顶点在同一条直线,这个角可以是直角,也可以是锐角或钝角。

初二《全等三角形》数学模型之“一线三等角”模型.doc

初二《全等三角形》数学模型之“一线三等角”模型.doc

∴∠BAD+∠CAE=90° ∵∠BAD+∠ABD=90° ∴∠CAE=∠ABD 又∵AB=AC ∴△ADB≌△CEA ∴AE=BD,AD=CE ∴DE=AE+AD=BD+CE; (2)如图,将(1)中的条件改为:在△ABC 中,AB=AC, D、A、E 三点都在直线 m 上,并且有∠BDA=∠AEC=∠ BAC=a,其中 a 为任意锐角或钝角.请问结论 DE=BD+ CE 是否成立?如成立,请你给出证明;若不成立,请说明 理由. 【解析】 (2)∵∠BDA=∠BAC=α ∴∠DBA+∠BAD=∠BAD+∠CAE=180°—α ∴∠DBA=∠CAE ∵∠BDA=∠AEC=α,AB=AC ∴△ADB≌△CEA ∴AE=BD,AD=CE ∴DE=AE+AD=BD+CE; (3)拓展与应用:如图,D、E 是 D、A、E 三点所在直线 m 上的两动点(D、A、E 三点互不重合),点 F 为∠BAC 平
模型性质总结 1、题目中只要满足“一线三等角”的条件,必相似; 2、题目如果两个条件:“一线三等角”和对应边相等的两 个条件,必全等。 模型常见背景: “一线三等角”的背景图形一般为正方形、等边三角形、等 腰三角形等等。 1. 正方形 ABCD,有一个直角的顶点在边 AB 上 2. 等边三角形 ABC,有一个 60°角的顶点在边 AB 上 3. 等腰直角三角形 ABC,有一个 45°角的顶点在边 AB 上 4.一线三直角 ①∠ACB=90°,AD⊥CE,BE⊥CE ②AD⊥AC,EC⊥AC,DC⊥EC 典型例题 (1)如图,已知:在△ABC 中,∠BAC=90°,AB=AC, 直线 m 经过点 A,BD⊥直线 m, CE⊥直线 m,垂足分别为点 D、E.证明:DE=BD+CE. 【解析】 ∵BD⊥直线 m,CE⊥直线 m ∴∠BDA=∠CEA=90° ∵∠BAC=90°

全等三角形——一线三等角模型

全等三角形——一线三等角模型

全等三角形——一线三等角模型一、一线三等角概念“一线三等角”指的是有三个等角的顶点在同一条直线,这个角可以是直角,也可以是锐角或钝角。

二、一线三等角的类型同侧:锐角 直角 钝角异侧:三、“一线三等角”的性质当∠1=∠2=∠3,且当等角所对的边相等时,则两个三角形全等. 如右图,若 CE=ED ,则△AEC ≌△BDE. 四、“一线三等角”的应用 1.适用于直角的情况例1:在ABC Rt ∆中,︒=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E ,l BF ⊥于点F . (1)当直线l 绕点C 旋转到如图1的位置时,○1图中有几对相等的锐角? ○2求证:AEC ∆≌CFB ∆; ○3试探究AE 、BF 、EF 之间的数量关系,并说明理由; (2)当直线l 绕点C 旋转到如图2的位置时,试探究AE 、BF 、EF 之间的数量关系,并说明理由; (3)当直线l 绕点C 旋转到如图3的位置时,试探究AE 、BF 、EF 之间的数量关系,不必说明理由.图1 图2 图3lFE B ACl FEB AC lFEBAC DCC A BDDC DBADB CAAB2.适用于锐角或钝角的情况例2:如图,在△ABC 中,AB =AC ,BD =CF ,BE =CD , 若∠A =40°,则∠EDF 的度数为( )A. 75°B. 70°C. 65°D. 60°★演练题:(勾股定理)如图,在ABC Rt ∆中,︒=∠90ACB ,BC AC =,点D 为斜边AB 上一点,连接CD ,过点A 作CD AE ⊥于点E .若︒=∠45BED ,4=AE ,则=AB ___________.练习1.如图,ABC ∆是等腰三角形,DE 过直角顶点A ,︒=∠=∠90E D ,则下列结论正确的个数有( ) ○1AE CD =; ○221∠=∠; ○3︒=∠+∠9043; ○4BE AD =; ⑤DE=CD+BE. (A )1个 (B )2个 (C )3个 (D )4个2.(1)已知△ABC 是直角三角形,∠BAC =90°,AB =AC ,直线l 经过点A ,分别从点B 、C 向直线l 作垂线,垂足分别为D 、E .当点B ,C 位于直线l 的同侧时(如图1),易证△ABD ≌△CAE .如图2,若点BC 在直线l 的异侧,其它条件不变,△ABD ≌△CAE 是否依然成立?若成立,请写出证明过程;若不成立,请说明理由.(2)变式一:如图3,△ABC 中,AB =AC ,直线l 经过点A ,点D 、E 分别在直线l 上,点B 、C 位于l 的同一侧,如果∠CEA =∠ADB =∠BAC ,求证:△ABD ≌△CAE .(3)变式二:如图4,△ABC 中,依然有AB =AC ,若点B ,C 位于l 的两侧,如果∠BDA+∠BAC =180°,∠BDA =∠AEC ,求证:BD =CE+DE .4321EB DC AEC DA。

2023年中考数学重难点复习:一线三等角模型(附答案解析)

2023年中考数学重难点复习:一线三等角模型(附答案解析)

第 1 页 共 6 页
2023年中考数学重难点复习:《一线三等角模型》
破解策略
在直线AB 上有一点P ,以A ,B ,P 为顶点的∠1,∠2,∠3相等,∠1,∠2的一条边在直线AB 上,另一条边在AB 同侧,∠3两边所在的直线分别交∠1,∠2非公共边所在的直线于点C ,D .
1.当点P 在线段AB 上,且∠3两边在AB 同侧时.
(1)如图,若∠1为直角,则有△ACP ∽△BP D .
321
D
B
P A C
(2)如图,若∠1为锐角,则有△ACP ∽△BP D .
3
C
D
P A
证明:∵∠DPB =180°-∠3-∠CPA ,∠C =180°-∠1-∠CPA ,而∠1=∠3 ∴∠C =∠DPB ,
∵∠1=∠2,∴△ACP ∽△BPD
(3)如图,若∠1为钝角,则有△ACP ∽△BP D .
231
D
B P A C
2.当点P 在AB 或BA 的延长线上,且∠3两边在AB 同侧时.
如图,则有△ACP ∽△BP D .
3
2
1C
P D
B A
证明:∵∠DPB =180°-∠3-∠CPA ,∠C =180°-∠1-∠CPA ,而∠1=∠3 ∴∠C =∠DPB ,
∵∠1=∠2=∠PBD ,∴△ACP ∽△BPD
3.当点P 在AB 或BA 的延长线上,且∠3两边在AB 异侧时.
如图,则有△ACP ∽△BP D .。

初中8大几何模型——一线三等角模型、三垂直模型

初中8大几何模型——一线三等角模型、三垂直模型

初中8大几何模型——一线三等角模型、三垂直模型
初中8大几何模型——一线三等角模型、三垂直模型,九年级同学必须掌握的几何技巧,中考满分秘籍精选内容!
目录
“一线三等角”,一条直线上有三个相等的角,一般就会存在相似三角形,当对应边也相等时,就会有全等三角形,即:“一线三等角,全等相似两边找”。

学会用“一线三等角”基本模型,解决全等三角形、相似三角形中的相关问题。

难点在于“一线三等角”基本模型的提炼、构造和运用。

三垂直模型的构造方法:
一般情况下,碰到斜着放置的直角,要想到在直角顶点所在的直线上构造三垂直模型,可能是全等型,也可能是相似型。

666咨询资料。

八年级数学上册:一线三等角模型及应用

八年级数学上册:一线三等角模型及应用

八年级数学上册:一线三等角模型及应用【知识导航】“一线三等角”在初中几何中出现得比较多,是一种常见的全等或相似模型,指的是有三个等角的顶点在同一条直线上构成全等或相似图形.这三个等角可以是直角也可以是锐角或钝角,可以是在直线的同侧,也可以是在直线的异侧. 一、“一线三等角”的基本构图:321132CEB ADDCBEll二、“一线三等角”的基本性质:1.如果∠1=∠2=∠3,那么∠D =∠CBE ,∠ABD =∠E .2.如果图中△ABD 与△CEB 中有一组对应边相等,则有△ABD ≌△CEB . 三、“一线三等角”的基本应用:本讲主要学习“一线三等角”与全等.对于八年级而言,“一线三等角”主要应用于导角证三角形的全等,最常见的是直角型“一线三等角”,其次是60°角和45°角及一般的角. 【方法技巧】用法:若一线三等角都具备则直接应用;若一线三等角不完全具备,则需要构造出一线三等角.【板块一】 直角型“一线三等角”——“三垂直”【知识导航】直角型“一线三等角”又称“三垂直”或“K ”形图,是“一线三等角”问题中最为常见的一种.认识“三垂直”模型:直线绕直角顶点旋转,由外到内,由一般到特殊.【例1】如图,△ABC 中,AB =AC ,∠BAC =90°,过点A 作直线l ,过B ,C 分别作BD ⊥l 于D ,CE ⊥l 于E .(1)如图1,当直线l 在△ABC 的外部时,求证:DE =BD +CE ; (2)当直线l 在△ABC 的内部如图2所示时,求证:DE =BD -CE ;(3)当直线l 在△ABC 的内部如图3所示时,直接写出DE ,BD ,CE 三者之间的数量关系式为___________.lBBCBC图1 图2 图3【例2】如图,在Rt △ABC 中,∠ACB =90°,AC =BC ,E 为BC 上一点,连接AE ,作AF ⊥AE 且AF =AE ,BF 交AC 于D .(1)如图1,求证:点D 为BF 中点; (2)如图1,求证:BE =2CD ; (3)如图2,若BE CE =23,则ADCD=____. 图2图1E CBAFDEAC F针对练习11.(1)如图1,△ABC 为等腰直角三角形,AC =BC ,AC ⊥BC ,A (0,3),C (1,0),求点B 的坐标. (2)如图2,△ABC 为等腰直角三角形,AC =BC ,AC ⊥BC ,A (-1,0),C (1,3),求点B 的坐标.(3)如图3,△ABC 为等腰直角三角形,AC =BC ,AC ⊥BC ,B (2,2),C (4,-2),求点A 的坐标.图1图2图3【板块二】等边三角形中的“一线三等角”【例3】如图,△ABC为等边三角形,D,E,F分别AB,BC,AC上的点,∠DEF=60°,BD=CE,求证:BE=CFAB DFE C针对练习21.如图,△ABC为等边三角形,D,E分别是BC,AC上的点BE,AD交于F,∠AFE=60°.求证:AD=BEEA B D FC【板块三】等腰直角三角形中的“一线三等角”【例4】如图,在等腰Rt△ABC中,∠ACB=90°,点D,E分别为AB,BC上的点,且CD=DE,∠CDF=45°,求证:BD=BCA B CDE针对练习31.如图,在四边形ABCD中,∠ADC=∠C=90°,BC=7,AD=4,过点A作AE⊥AB,垂足为A,且AE=AB,连接DE,求△ADE的面积。

中考数学专题8:“一线三等角”

中考数学专题8:“一线三等角”

A
特征:∠ABC=∠ACD=∠CED=90°且顶点在同一直线上.
结论:△ABC∽△CED
探究2:如图,若将直角三角形ACD改成任意△ACD,已知∠B=∠ACD=∠E=a,
△ABC与△CDE还相似吗?请说明理由.
A
∵∠B=∠ACD=aD来自∴∠BAC+∠ACB=∠ACB+∠DCE=180°-a
∴∠BAC=∠DCE
A
D
(2)分别过点A、D作直线l的垂线段,垂足分别为点B、E;
从这个图形中你能得到什么结论? 结论:△ABC≌△CED
B
C
E

“一线三直角”全等模型
2.相似型
D
探究1:若将等腰直角△ACD改为任意直角三角形,按上面的步骤(1)(2)作图;
从这个图形中你能得到什么结论?结论:△ABC∽△CED
“一线三直角”基本图形
又∵∠B=∠E=a
B
∴△ABC∽△CED
C
特征:∠B=∠ACD=∠E=a且顶点在同一直线上
“一线三等角”基本图形
结论:△ABC∽△CED
E
B
C
E
“一线三直角”相似模型
B
3
3√10/5
找角:根据图形中存在的“一线二
等角”,找可能的另一“等角”


“一线三等角”
模型
定线:将相等角所在顶点的直线看
“一线三等角”模型的探究与应用
模型提炼:“一线三等角”基本图形
K型相似
一.三个等角可以是锐角、直角或钝角
D
同侧型
A
A
D
D
A
C
B
B
E
C
B
二.点C还可以在线段BE或EB的延长线上

相似三角形中的 “一线三等角”模型-2023年新九年级数学核心知识点与常见题型(沪教版)(解析版)

相似三角形中的 “一线三等角”模型-2023年新九年级数学核心知识点与常见题型(沪教版)(解析版)

重难点专项突破:相似三角形中的“一线三等角”模型【知识梳理】一线三等角指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。

或叫“K字模型”。

三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。

一般类型:基本类型:同侧“一线三等角”异侧“一线三等角”【考点剖析】例1.如图,直角梯形ABCD 中,AB // CD ,90ABC ∠=︒,点E 在边BC 上,且34AB BE EC CD ==, AD = 10,求AED ∆的面积.【答案】24.【解析】90ABC ∠=,//AB CD , ∴90DCB ABC ∠=∠=.又34AB BE EC CD ==, ABE ECD ∴∆∆∽.∴AEB EDC ∠=∠. ∴34AE AB ED EC ==.90EDC DEC ∠+∠=,∴90AEB DEC ∠+∠=. ∴90AED ∠=.在Rt AED ∆中,10AD =,68AE ED ∴==,. 24AED S ∆∴=.【总结】本题考查一线三等角模型的相似问题,还有外角知识、平行的判定等.例2.已知:如图,△ABC 是等边三角形,点D 、E 分别在边BC 、AC 上,∠ADE =60°.(1)求证:△ABD ∽△DCE ;(2)如果AB =3,EC =,求DC 的长.【分析】(1)△ABC 是等边三角形,得到∠B =∠C =60°,AB =AC ,推出∠BAD =∠CDE ,得到△ABD∽△A B C DEDCE ;(2)由△ABD ∽△DCE ,得到=,然后代入数值求得结果.【解答】(1)证明:∵△ABC 是等边三角形,∴∠B =∠C =60°,AB =AC ,∵∠B+∠BAD =∠ADE+∠CDE ,∠B =∠ADE =60°,∴∠BAD =∠CDE∴△ABD ∽△DCE ;(2)解:由(1)证得△ABD ∽△DCE ,∴=,设CD =x ,则BD =3﹣x ,∴=,∴x =1或x =2,∴DC =1或DC =2.【点评】本题考查了等边三角形的性质,相似三角形的判定和性质,注意数形结合和方程思想的应用. 例3.已知,在等腰ABC ∆中,AB = AC = 10,以BC 的中点D 为顶点作EDF B ∠=∠, 分别交AB 、AC 于点E 、F ,AE = 6,AF = 4,求底边BC 的长.【答案】46.【解析】EDC B BED ∠=∠+∠,而EDC EDF FDC ∠=∠+∠,∴B BED EDF FDC ∠+∠=∠+∠. 又EDF B ∠=∠,∴BED FDC ∠=∠.AB C D EFAB AC=,∴B C∠=∠.EDB DCF∴∆∆∽.BE BDDC CF∴=.106104BDDC−∴=−,24DC BD∴=.又12CD DB BC==,BC∴=【总结】本题是对“一线三等角”模型的考查.例4.已知:如图,AB⊥BC,AD // BC, AB = 3,AD = 2.点P在线段AB上,联结PD,过点D作PD的垂线,与BC相交于点C.设线段AP的长为x.(1)当AP = AD时,求线段PC的长;(2)设△PDC的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)当△APD∽△DPC时,求线段BC的长.满分解答:(1)过点C作CE⊥AD,交AD的延长线于点E.∵AB⊥BC,CE⊥AD,PD⊥CD,AD // BC,∴∠ABC =∠AEC =∠PDC = 90°,CE = AB = 3.∵AD // BC,∴∠A +∠ABC = 180°.即得∠A = 90°.又∵∠ADC =∠DCE +∠DEC,∠ADC =∠ADP +∠PDC,∴∠ADP =∠DCE.又由∠A =∠DEC = 90°,得△APD∽△DCE.∴AD APCE DE=.于是,由AP = AD = 2,得DE = CE = 3.…………………………(2分)在Rt△APD和Rt△DCE中,得PD=,CD=1分)AB CDPAB CD(备用图)于是,在Rt △PDC 中,得 PC = (1分)(2)在Rt △APD 中,由 AD = 2,AP = x ,得 PD 1分)∵ △APD ∽△DCE ,∴AD PD CE CD =.∴ 32CD PD ==1分)在Rt △PCD 中,22113332224PCD S PD CD x ∆=⋅⋅=⨯=+.∴ 所求函数解析式为2334y x =+.…………………………………(2分) 函数的定义域为 0 < x ≤ 3.…………………………………………(1分)(3)当△APD ∽△DPC 时,即得 △APD ∽△DPC ∽△DCE .…………(1分)根据题意,当△APD ∽△DPC 时,有下列两种情况:(ⅰ)当点P 与点B 不重合时,可知 ∠APD =∠DPC .由 △APD ∽△DCE ,得 AP PD DE DC =.即得AP DE PD CD =. 由 △APD ∽△DPC ,得AP AD PD DC =. ∴AD DE CD CD =.即得 DE = AD = 2. ∴ AE = 4.易证得四边形ABCE 是矩形,∴ BC = AE = 4.…………………(2分)(ⅱ)当点P 与点B 重合时,可知 ∠ABD =∠DBC .在Rt △ABD 中,由 AD = 2,AB = 3,得 BD =.由 △ABD ∽△DBC ,得AD BD BD BC =.即得 =. 解得 132BC =.………………………………………………………(2分)∴ △APD ∽△DPC 时,线段BC 的长分别为4或132.方法总结本题重点在于:过点C 作CE ⊥AD ,交AD 的延长线于点E .(构造一线三角,出现相似三角形,进行求解) 例5.在梯形ABCD 中,AD ∥BC ,︒=∠===90,2,1A BC AB AD .(如图1)(1)试求C ∠的度数;(2)若E 、F 分别为边AD 、CD 上的两个动点(不与端点A 、D 、C 重合),且始终保持︒=∠45EBF ,BD 与EF交于点P .(如图2)①求证:BDE ∆∽BCF ∆;②试判断BEF ∆的形状(从边、角两个方面考虑),并加以说明;③设y DP x AE ==,,试求y 关于x 的函数解析式,并写出定义域.答案:(1)作BC DH ⊥,垂足为H ,在四边形ABHD 中,AD ∥BC ,︒=∠==90,1A AB AD ,则四边形ABHD 为正方形又在CDH ∆中,1,1,90=−====∠︒BH BC CH AB DH DHC , ∴︒︒=∠−=∠452180DHC C .(2)①∵四边形ABHD 为正方形,∴︒=∠45CBD ,︒=∠45ADB ,又∵︒=∠45EBF ,∴CBF DBE ∠=∠又∵︒=∠=∠45C BDE ,∴BDE ∆∽BCF ∆.②BEF ∆是等腰直角三角形,∵BDE ∆∽BCF ∆, ∴CB FB BD BE =,又∵︒=∠=∠45DBC EBF ,∴EBF ∆∽DBC ∆,又在DBC ∆中,︒=∠=∠45C DBC ,为等腰直角三角形,∴BEF ∆是等腰直角三角形. ③x x x x x x y +−=+−⨯=1221222,(0<x <1).方法总结 第三问方法提示:过点P 作AD 的垂线于点H ,构造一线三直角相似,进行求解,很简单。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学一线三等角
一线三等角概念
“一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。

一线三垂直就是特殊的一线三等角,“K形图”,“三垂直”,“弦图”等,不同学校对此有不同的称呼。

一线三等角起源
三垂直全等模型是初中几何证明及计算中的一种重要模型,三垂直模型与弦图是紧密相关的,首先我们需要了解清楚两个弦图:外弦图及内弦图。

演变为:三垂直+“一组边相等”三角形全等(利用垂直以及两角互余)
一线三等角的分类
全等篇:
相似篇:
一线三等角的变式
其中第4个图,延长DC会更好理解,相当于两侧型的。

不管怎么变,都是由三等角确定相似三角形来解题。

一线三等角的应用
1.“一线三等角”应用的三种情况:
①图形中已存在“一线三等角”,直接应用模型解题;
②图形中已存在“一线二等角”,构造一个等角,应用模型解题;
③图形中只在直线上存在一个角,构造二个等角,应用模型解题(该情况较多,尤其是压轴题,经常会有一个特殊角或知道角三角函
数值时,经常构造“一线三等角”来解题)。

2.构造一线三等角的步骤:①找角;②定线;③构造相似
3.“一线三等角”在几何中的应用
【例1】如图,四边形ABCD中,∠ABC=∠BAD=90°,∠ACD=45°,AB=3,AD=5,求BC的长。

相关文档
最新文档