包埋法固定化微生物技术优秀课件
固定化微生物废水处理技术40页PPT

•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•Hale Waihona Puke 7、心急吃不了热汤圆。•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
55、 为 中 华 之 崛起而 读书。 ——周 恩来
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
第十二章 微生物学新技术在环境工程中的应用123PPT课件

13
一、生物表面活性剂和生物乳化剂的开发与应用
表12-1 生物表面活性剂和生物乳化剂的分类
分类 1 糖脂
产物类型 海藻糖脂
鼠李糖
生产菌
节杆菌属、分枝菌属、诺卡氏 菌属、棒杆菌属、红球菌属 假单胞菌属
由于活性污泥中的微生物是混合菌种,活性污泥可能 全有R型细菌组成,还可能全由S型细菌组成。
15Байду номын сангаас
三、微生物絮凝剂和沉淀剂的开发和应用 絮凝剂有三类:①类为有机高分子絮凝剂或是助凝剂;
②类为无机絮凝剂,用量大;③类为微生物絮凝剂,是新开 发、有前途的絮凝剂。
提取微生物细胞外多聚物制絮凝剂的提取方法有:物理 方法的高速离心超声波和均化处理;化学方法的酸水解、热 碱法和有机溶剂洗出。
7
载体结合法 交联法 包埋法
以共价结合、离子结合和物理吸附等方法 将酶固定在非水溶性载体上的方法
载体有葡萄糖、活性炭、胶原、多孔玻璃、 高岭土、硅胶等非水溶性载体。
微生物细胞与带2个以上功能团的非水溶性交联剂 进行交联,
稳定性好 反应激烈,会使细胞活性降低。
将微生物细胞包埋在半透性多聚物膜或凝胶小格中 操作简单、能保持微生物细胞的多酶体系、对活性
诺卡氏菌属、红球菌属 不动杆菌属
14
二、微生物自身絮凝和沉淀作用 根据单一菌种微生物(纯种)细胞表面的解离层(胞外
多聚物)性质不同而划分两种类型,即疏水性的R型(菌落 为粗糙型)和亲水性的S型(菌落为光滑型)。
凡具有R型解离层的微生物表现疏水性而自身发生絮凝、 聚集而沉降,故可将R型细菌应用于废水处理。具有S型解 离层的微生物表现亲水性,均匀分散于水中,不易絮凝,不 易沉降。
包埋法固定化微生物技术中的载体选择及在污水生物处理中的应用

文章编号:1004-3918(2009)05-0554-05包埋法固定化微生物技术中的载体选择及在污水生物处理中的应用刘帅,张培玉,曲洋,郭沙沙(青岛大学环境科学与工程系,山东青岛266071)摘要:较详细介绍了包埋法固定化微生物技术中不同种类包埋载体的特点,比较分析了不同载体的使用对污水生物处理效果的影响,指出了包埋法的应用范围.关键词:固定化微生物技术;污水处理;包埋法;载体中图分类号:Q 819文献标识码:A传统的污水生物处理工艺以微生物悬浮态生长的活性污泥处理法为主.此法虽然有很多优点,并且早已在污水处理领域发挥着重要的作用,但同时也存在着许多很难克服的缺陷,比如反应器中生物量的浓度偏低、泥水分离困难、不耐冲击负荷、会出现污泥上浮膨胀和流失等问题.固定化微生物技术是应用于污水处理的新技术之一.由于固定化微生物技术可固定经筛选出的能降解特定物质的优势菌属,能使污水处理系统专一性、耐受性增强,处理效果稳定,运行管理简单,降解效率明显优于传统方法.因此,近年来固定化微生物技术已成为各国学者研究的热点课题,并且已有部分研究成果由实验室走向实际应用阶段.包埋法是固定化微生物技术中应用最广泛的方法之一,国内对于包埋法固定化微生物技术处理污水的研究很多,但是关于介绍和比较包埋法所用载体的文章较为少见.本文就包埋法固定化微生物技术研究中的载体选择进行了介绍,分析比较了不同载体的使用对污水生物处理效果的影响,指出了包埋法的应用范围,以期为包埋法固定化微生物技术中的载体选择提供有益参考.1包埋法固定化微生物技术在固定化微生物技术处理污水的研究中,包埋法是最为常用、研究最为广泛的固定化方法.目前关于该方法处理污水的研究已有大量报道.包埋法是将微生物细胞截留在水不溶性的多聚体化合物孔隙的网络空间中,通过聚合作用,或通过沉淀作用,或通过离子网络作用,或通过改变溶剂、温度、pH 值使细胞截留.多聚体化合物的网络可以阻止细胞的泄漏,同时能让底物渗入和产物扩散出来.包埋法可分为高分子合成包埋、离子网络包埋和沉淀包埋.该法操作简单,对微生物活性影响小,可将微生物细胞锁定在特定的高分子网络中,因此制作的固定化微生物的强度高,与微生物细胞的结合力强,化学性能稳定.2包埋法固定化微生物技术的载体选择包埋法所使用的载体种类较多,但都要求可以形成具有孔隙网络空间的能力,以便将微生物细胞截留在内.对包埋法微生物载体的普遍要求是:固定化过程简单,易于成型,成本低;对微生物无毒性,固定化后细胞密度大;物理稳定性和化学稳定性好,不易被分解.现有的包埋固定化载体大致可分为天然高分子凝胶载体和有机合成高分子载体两类:1)天然高分子凝胶载体有琼脂、角叉菜胶、海藻酸钠、卡拉胶和海藻酸钙等.天然高分子凝胶载体一般具有生物无毒、传质性能良好、成形方便且固定化密度高等优点,但强度较低、抗微生物分解能力较差、在厌氧条件收稿日期:2009-02-18基金项目:国家自然科学基金(50678085,50878107);山东省教育科技计划项目(J06I03);山东省研究生教育创新计划资助项目(SDYY07091)作者简介:刘帅(1987-),男,山东潍坊人,从事环境生物学研究通信作者:张培玉(1963-),男,山东青岛人,博士,教授,主要研究方向为环境生物技术.第27卷第5期2009年5月河南科学HENAN SCIENCE Vol.27No.5May 20092009年5月下易被微生物分解.为了克服天然高分子凝胶载体的这些不足,可用交联剂对其进行稳定化处理,通过处理可使天然载体的物理和化学稳定性得到极大的提高,但是载体的传质性能和微生物细胞活力会相应的下降.2)有机合成高分子载体有聚丙烯酰胺、聚乙烯醇、光硬化树脂、聚丙烯酸等.有机合成高分子载体的突出优点是抗微生物分解性能好、机械强度高、化学性能稳定、对细胞无毒且价格低廉,因而具有很高的利用价值,被认为是目前最有效的固定化载体.但有机合成高分子载体聚合物网络的形成条件比较剧烈,对微生物细胞的损害较大.3部分包埋剂在固定化微生物技术中的应用现今对于包埋法的研究非常广泛,从载体的构造到反应的机理和控制条件等各方面在国内外都有较深入的研究,不同载体的使用对污水生物处理会产生不同的效果.3.1海藻酸钙的使用海藻酸钙对微生物的毒性很小,固化成型方便,对微生物细胞的富集程度高,所以是目前天然高分子凝胶载体中研究最多、使用最广的载体之一.但是其稳定性差、机械强度不高等缺陷需要进一步改善.由于海藻酸钙固定化细胞的密度高,传质性能好,故对于重金属离子的吸附性能优良.国外的研究者对海藻酸钙包埋法在去除重金属离子的效率以及最佳去除条件等方面做了大量的试验和研究,证明了海藻酸钙作为载体包埋有关微生物,可以作为重金属的生物吸附剂使用,且处理效果较好.Bala Kiran 等[1]用海藻酸钙包埋蓝藻,在不同的金属初始浓度、不同的pH 值、不同的温度条件下研究了对Cr 6+的吸附效果,结果表明:在金属离子初始质量浓度为50~60mg /L ,pH 为2~3,温度45℃时获得最大吸附率82%.Y .Kacar 等[2]用海藻酸钙固定真菌(Phanerochaetech rysosporium )包括活的和加热灭活的2种形态菌体处理含Cd 2+的废水,最大吸附能力分别为(104.8±2.7)mg 和(123.5±4.3)mg ,0.5h 内镉的生物吸附很快就达到85%.海藻酸钙微生物系统用10mmol /L HCl 处理,回收吸附率可达到原来的97%.同样方法用海藻酸钙包埋另一种真菌(Lentinus sajorcaju )处理含Cd (Ⅱ)废水,实验显示在0.5h 之内,镉的生物吸附很快就达到85%[3],吸附能力与时间的关系符合假二级方程.Gulay Bayramoglu 等[4]用海藻酸钙包埋固定衣藻制得的固定化小球吸附Hg 2+,Cd 2+,Pb 2+,吸附60min 后可达到吸附平衡,并可用Langmuir 和Freundlich 吸附等温线描述;用2mol /L NaCl 溶液可将吸附在衣藻上的Hg 2+,Cd 2+,Pb 2+解吸下来,解吸率可高达95%.Arica M 等[5]将黄孢原毛平革菌(Phanerochaetech rysosporium )固定在海藻酸钙中,先制成活菌小球,再将活菌加入5mmol /L CaCl 2溶液,在90℃高温下加热10min ,制成固定加热灭活菌.将这2种菌用于吸附人工静态模拟废水中30~600mg /L 的Pb 2+和Zn 2+,对其吸附容量做了细致的研究,结果表明,在pH 5.0~6.0、吸附60min 后,加热灭活菌对Pb 2+和Zn 2+的吸附容量为355mg /g 和48mg /g (干质量),大于活菌球的282mg /g 和37mg /g (干质量).以海藻酸钙为载体的包埋技术还用于处理难降解有机物.国内有研究证明,用海藻酸钙包埋固定优势降解菌(Alcaligenes sp )降解2,6-二叔丁基(2,6-2DTBP ),在100.0mg /L 的初始质量浓度下,其降解率在12d 可达到86%.与未固定菌株相比,菌株经固定化包埋后其降解的能力大大提高,且固定化菌株对pH 值和温度的适应范围更宽,对底物具有更高的降解能力[6].除固定化微生物外,也有人研究用海藻酸钙固定化酶,但国内外在这方面的研究也较少,这可能是由于海藻酸钙相比较于其他包埋载体来说,凝胶网络的孔隙尺寸过大,酶容易从包埋网络中泄露,造成海藻酸钙对于酶的固定化的效率不高.3.2聚乙烯醇的使用聚乙烯醇(PVA )在有机合成高分子载体中也是目前研究最多、应用最广的载体之一.聚乙烯醇具有对生物毒性小、物理化学稳定性较高、抗生物分解能力强、价格低廉等优势,但是其传质性能不如海藻酸钙等天然高分子凝胶载体.国内外对于聚乙烯醇固定以硝化菌和反硝化菌的研究较为常见.使用聚乙烯醇包埋微生物的各种制作固定化微生物颗粒的方法中,在低温冷冻条件下包埋高效菌种被证明是一种可以保持高微生物活性的有效方法.国外有研究[7]表明,用PVA 冷冻法把硝化污泥固定在3~5mm 聚乙烯醇小球里用来处理养猪废水,采用批量试验和连续试验进行好氧处理.结果当HRT 为4h 时,NH 3-N 的硝化率为567mg /d ,硝化污泥小球不受养猪废水高BOD 浓度的影响,适用于快速和有效地去除厌氧养猪废水塘中的NH 4+.还有研究者[8]以PVA 刘帅等:包埋法固定化微生物技术中的载体选择及在污水生物处理中的应用555--第27卷第5期河南科学为载体,采用冷冻法混合固定硝化菌和反硝化菌,研究了好氧条件下同时硝化和反硝化的可行性及其脱氮特性.结果表明,硝化菌和反硝化菌混合固定时,由于载体内部形成了适合硝化和反硝化的环境,可以在好氧条件下同时进行硝化和反硝化,实现单级生物脱氮.混合固定时的氨氧化速度约为硝化菌单独固定时的14倍,约为PBS 脱氮速度的2.6倍.硝化菌和反硝化菌混合固定后对温度的敏感性减小,并且在较宽的溶解氧范围(2~6mg /L)保持稳定的脱氮速度.国内关于聚乙烯醇固定硝化菌反硝化菌处理氨氮废水的研究也有一定进展,许多实验都有很高的氨氮去除率.谭佑铭[9]等研究固定化PVA 反硝化菌对富营养化水体中硝酸盐氮的还原能力,以及对水体中有机物的降解情况.结果,经过40d 的处理后,原水中的亚硝化菌和硝化菌能将水样中的氨氮转化成硝酸盐氮,转化率约为57.5%,但原水中的反硝化细菌作用较微弱,对照水样中总无机氮的去除率约为6.7%.耿振香等[10]采用聚乙烯醇包埋固定从活性污泥中筛选的硝化菌和反硝化菌,对生活污水进行硝化反硝化工艺处理,废水中氨氮为45mg /L ,pH 值为7.5,DO 为2.0mg /L ,水力停留时间为18h ,氨氮去除率可达96%.张爽等[11]采用聚乙烯醇-硼酸包埋法固定经常温富集培养的含耐冷菌的硝化污泥,用于处理常温和低温生活污水,进行了比较研究.结果表明,该固定化硝化菌群在常温下经过1个月的活性恢复和增殖后,转入低温环境,在短期内表现出一定的适应性,作用6h 后对NH 4-N 的去除率为80%左右.在常温下,该固定化菌更表现出高效的氨氮去除能力,作用3h 后,去除率达90%以上.赵兴利[12]等利用PVA 包埋粉末活性炭驯化硝化菌,以流化床为生物反应器,采用SBR 运行方式,固定化硝化菌寿命长达7个月以上,NH 4-N 去除率维持在90%以上.以上大量的研究表明,聚乙烯醇是固定硝化菌和反硝化菌处理氨氮废水的优良包埋载体,其包埋效果较好,对氨氮的去除效率较高.这主要是由两个方面的因素造成:一方面,聚乙烯醇可以利用自身内部空间对氧扩散情况的影响,自然形成由里而外的好氧区、缺氧区和厌氧区,从而使硝化菌和反硝化菌各自在适合于自身相对独立的环境下生长代谢,实现好氧条件下同时硝化反硝化;另一方面,聚乙烯醇的物理化学稳定性较强,机械性能好,所以对于硝化菌这种需要较长生长代谢时间的菌种的固定化效果好.因此,聚乙烯醇作为包埋材料处理氨氮废水具有很好的应用前景.聚乙烯醇作为包埋材料也可以用于重金属离子的废水处理,如用PVA 固定氧化亚铁硫杆菌(A cidithiobacillus ferrooxidans ),在稀释率0.4时,Fe 2+的最大氧化速率达到3.1g /(L ·h ),并且固定颗粒稳定性好,可连续运行2个月以上[13].采用液-液相分离的方法制备聚乙烯醇共包埋活性炭和纳米TiO 2的微球,对废水中的Cr 6+也有较好的处理效果.当微球加入量为140g /L ,微球中活性炭、纳米TiO 2包埋量分别为6%和4%,pH 值为3,作用时间为3h 时,Cr 6+的去除率可达90%以上,且微球使用方便,不会造成二次污染[14].聚乙烯醇与活性炭或其他吸附载体复合包埋微生物在处理难降解有机毒物方面也有不错的效果.采用PVA 和活性炭的复合载体制作固定化污泥颗粒处理含酚废水,结果表明,在污泥与载体体积比为1∶1、平均粒径2~4mm 的条件下,PVA 和活性炭的固定化污泥颗粒可以在水里停留6h ,泥水体积比为1∶4、进水酚达250mg /L 时,取得99.8%的酚去除率[15],废水可达到国家排放标准.国内还有研究者[16]采用PVA 与聚丙烯无纺布(多孔结构)的复合载体来降解含有喹啉、异喹啉、吡啶的高浓度氨氮焦化废水,3种难降解有机物经处理8h 后降解率均在90%以上.现对聚乙烯醇作为包埋载体在污水除磷方面也有一定的研究.使用PVA 作为包埋材料固定假单胞菌为优势微生物的活性污泥,采用硼酸进行交联,制成的固定化微生物系统可以保持较高的微生物细胞活性,该系统具有明显的除磷能力和较好的抗酸、碱冲击能力;在起始质量浓度为87.5mg /L 时,6h 可去除49.5%的磷;在酸性条件下,24h 除磷率为88.2%;在好氧条件下,固定化污泥还具有明显的脱氮能力[17].这为采用固定化细胞法同时进行污水的脱氮、除磷处理提供了可能.聚乙烯醇在包埋法处理废水中具有自身的特点与优势:①生物相容性强,对微生物细胞无毒,成本较低;②有极好的流变学性能(不易碎),可作为大多数反应器的固定化载体;③有超常的热稳定性(相比于热可逆性凝胶);④对生物降解耐受性很高,对培养介质成分无不良反应;⑤聚乙烯醇有很高的大小孔隙率,可提供最佳的菌体代谢物转运途径[18].正是由于聚乙烯醇作为有机合成高分子包埋载体所具有的巨大优势,所以它将会在固定化技术中得到更广泛的应用.3.3海藻酸钠的使用海藻酸钠作为固定化包埋载体材料,具有制备容易,价格低廉,传质性能良好的优点,应用范围也比较广泛.556--2009年5月在处理重金属方面,海藻酸钠作为固定化包埋载体材料对金属离子的吸附率较高,与国外学者采用海藻酸钙固定菌种处理重金属离子相对照,国内学者[19]采用海藻酸钠包埋小球藻和叉鞭金藻,制得含藻细胞的固定化胶球,用其对Ni 2+进行生物吸附,研究了固定化小球藻和固定化叉鞭金藻对污水中Ni 2+的吸附率.结果表明,对于同一种固定化微藻,处于对数生长中期时对Ni 2+吸附效果较好,且吸附过程主要在前4h 完成,Ni 2+浓度越大,吸附率越高.固定化微藻比悬浮态微藻吸附率高,固定化小球藻比固定化叉鞭金藻吸附率高.海藻酸钠作为固定化包埋载体材料对于高浓度有机废水和难降解污染物质的处理效果也非常显著.将海藻酸钠固定化活性污泥制成颗粒小球,以流化床反应器对甲醇废水进行处理,在溶解氧为6.6~6.9mg /L 的条件下,固定化小球与废水的体积比为30∶1000,最佳的工况条件是温度为30~40℃,pH 值为5.0~9.0;当进水COD<722.2mg /L ,进水甲醇<307.4mg /L 时,对COD 的去除率>85%,对甲醇的去除率可达到90%左右[20].以海藻酸钠为载体、戊二醛为交联剂净化有机废水,处理效率稳定在75%,而且耐水质水量变化的冲击力强,有机负荷承受能力增强,进水的COD CR 可高达2500mg /L [21].以海藻酸钠为固定化载体材料,以氯化钙作为交联剂将高效降解油脂菌—解脂耶氏酵母(Y arrowia lipolytica )包埋制备成固定化微生物小球处理油脂废水,结果表明与悬浮状态相比,固定化微生物温度适应范围增大、热适应性增强、pH 值往酸性方向偏移[22].用普通系统和高效菌种的悬浮投加型强化系统作比较,用海藻酸钠包埋某高效微生物菌种用于强化聚酯废水的生物处理,悬浮投加高效菌种可使出水COD 降低100mg /L ,处理率提高8%,而用海藻酸钠-氯化钙法包埋固定化之后投加则可使出水COD 降低了200mg /L ,处理率提高14%,使最终出水COD 达到100mg /L 以下[23],达到出水的排放要求,且减少了废水中对人类和环境有较大危害的1,4-二氧杂环己烷的含量.以上实验说明,海藻酸钠作为包埋材料不仅对金属离子的吸附率较高,而且对于高浓度有机废水和难降解有机污染物质的处理效果也较理想.3.4琼脂的使用琼脂作为固定化载体的特点是包埋微生物活性高、制作容易,主要用于重金属元素的去除.如Viktoriya V.Konovalova 等[25]的实验证明,在用游离假单胞菌做吸附试验时,当Cr 6+质量浓度达到30mg /mL ,吸附率明显下降;而将假单胞菌包埋在琼脂中再吸附Cr 6+,则Cr 6+质量浓度达到20mg /L 时仍然保持稳定的吸附效率.因此要保持较高的Cr 6+的吸附效率,就要避免菌体铬中毒现象的发生,而包埋后的菌体由于琼脂凝胶网格结构的保护减轻了菌体铬中毒性状.但是琼脂在去除重金属元素时也有一定的缺陷,比如氧和底物及产物的扩散受到限制,琼脂凝胶的机械强度不高,且成球受温度影响较大.4包埋法的应用范围随着对包埋法研究的不断深入和扩展,其在污水处理领域的应用也越来越广,但仍有一定局限性,例如由于微生物细胞处于包埋载体的内部,所以使其难以与大分子的污染物接触而发挥降解功能,如厌氧工艺处理含纤维素、蛋白质及脂类的废水.所以包埋法不适于处理大分子有机污染物.根据包埋法处理废水的特点以及实际研究中的应用情况,将其应用范围总结如下:①因为包埋法处理污水的运行管理简单,几乎不需污泥回流,所以适用于占地受限制、要求产泥量少、污泥处理可以简化或省略及运行管理方便的家庭、小区污水处理系统,比如中水道系统.②包埋法可以将微生物细胞稳定的固定在载体之上,使得微生物细胞在系统中的存留生存时间大大延长,所以适合高效菌种竞争力较弱、世代存活时间较长、自然条件下菌种优势难以维持的环境,比如硝化细菌或甲烷菌的培养与生长.③由于包埋法对于优势菌种有较强的选择能力,对于目标污染物的降解优势较为明显,所以适用于处理单一的或对其处理方式限制性很强的污染物.④由于载体阻隔的作用使得微生物经固定化后氧与底物的传质速率受到阻碍,所以在好氧系统中,受此因素的影响,限制了高密度微生物活性的发挥.但是在厌氧情况下,由于整个微生物系统不受氧传质速率的影响,废水中的有机物浓度可以大大高于好氧的条件,固定化微生物的处理能力得到充分的体现,同时由于微生物细胞的高度密集,所以包埋法适用于厌氧条件下的高浓度有机废水处理.⑤当包埋法处理的生物系统与有毒有害物质进行接触时,由于微生物细胞高度密集的强抵抗能力或载体的阻挡作用,削弱了有毒有害物对微生物的冲击作用.所以包埋法较适合于有毒有害物质的生物降解.刘帅等:包埋法固定化微生物技术中的载体选择及在污水生物处理中的应用557--第27卷第5期河南科学参考文献:[1]Kiran B ,Kaushik A ,Kaushik C P.Response surface methodological approach for optimizing removal of Cr (VI )from aqueoussolution using immobilized cyanobacterium [J ].Chemical Engineering Journal ,2006,23(6):1-7.[2]Kacar Y ,Arpa C ,Tan S ,et al.Biosorption of Hg (Ⅱ)and Cd (Ⅱ)fromaqueous solutions :comparison of biosorption capacity ofalginate andimmobilized live and heat inactivated Phanerochaetechrysosporium[J ].Process Biochemistry ,2002,37(6):201-210.[3]Bayramoglu G ,Dehizh A ,Bektass ,et al.Entrapment of lentinus sajor caju into Ca-alginate gelbeads for removaI of Cd (Ⅱ)ionsfrom aqueous solution :preparation and biosorption kinetics andysi [J ].Microchemical Journal ,2002,72(1):63-76.[4]Bayramoglu G ,Tuzun I ,Celik G ,et al.Biosorption ofmercury (Ⅱ),cadmium (Ⅱ)and lead (Ⅱ)from aqueous system by microalgaeChlamydomonas immobilized in alginate beads [J ].Int J Miner Process ,2006,81(6):35-43.[5]Arica M Y ,Arpa C ,Ergene A ,et al.Ca-alginate as asupport for Pb (II )and Zn (II )biosorption with immobilized Phanerochaetechrysosporium [J ].Carbohyd Poly ,2003,52:167-174.[6]张志刚,徐德强,李光明,等.固定化优势菌种降解2,6-二叔丁基酚[J ].中国环境科学,2005,25(1):57-60.[7]Vanotti M B ,Hunt P G.Nitrification treatment of swine wastewater with acclimated nitrifying sludge immobilized in polymerpellets [J ].Tansactions of the Asae ,2000,43(2):405-414.[8]Cao Guomin ,Zhao Qingxiang ,Sun Xianbo ,et al.Characterization of nitrifying and denitrigying bacteria coimmobilized in PVAand kinetics model of biological nitrogen removal by coimmobilized cells [J ].Enzyme and Microbial Technology ,2002,30:49-55.[9]谭佑铭,罗启芳,王琳,等.固定化反硝化菌对富营养化水体脱氮的试验研究[J ].中国卫生工程学,2003,2(2):65-68.[10]耿振香,邱新发.固定化微生物法处理含氨氮废水[J ].应用化工,2007,36(9):933-935.[11]张爽,姜蔚,徐桂芹,等.固定化硝化菌在不同温度下对氨氮的去除效能研究[J ].环境科学与管理,2008,33(5):91-95.[12]赵兴利,兰淑澄.固定化硝化菌去除废水中氨氮工艺的研究[J ].环境科学,1999,20(1):39-42.[13]Long Zhonger ,Huang Yunhong ,Cai Zhaoling ,et al.Biooxidation of ferrous iron by immobilized Acidithiobacillus ferrooxidansin poly (vinyl alcohol )cryogel carriers [J ].Biotechnology Letters ,2003,25(3):245-249.[14]黄毅,薛晚侠,汪池金,等.聚乙烯醇包埋活性炭/纳米TiO 2微球处理含铬废水的研究[J ].工业用水与废水,2008,39(2):46-48.[15]魏远隆.固定化微生物法处理含酚废水的研究[J ].南京理工大学学报,2005,29(3):326-329.[16]黄霞,陈钱.固定化优势菌种处理焦化废水中几种难降解有机物的试验研究[J ].中国环境科学,1995,15(1):1-4.[17]席淑琪.固定化污泥除磷的初步研究[J ].污染防治技术,1999,12(4):233-248.[18]L ozinsky V I ,P lieva F M.Poly (vinyl alcoho1)cryogelsemployed as matrices for cell immobilization Overview of recent researchand developments [J ].Enzyme and Microbial Technology ,1998,23(3-4):227-242.[19]张欣华,杨海波.固定化海洋微藻对污水中Ni 2+的吸附[J ].生物技术,2003,13(5):25-27.[20]黄川,王里奥,崔志强,等.采用海藻酸钠固定化微生物技术处理甲醇废水[J ].中国给水排水,2008,24(7):78-81.[21]彭云华.对固定化微生物技术靴有机废水最佳方法的探讨[J ].城市给排水,2005,19(3):21-24.[22]吴兰,万金保.固定化解脂耶氏酵母(Ya rrowi a lipolytica )处理油脂废水的性能研究[J ].环境工程学报,2008,2(4):482-486.[23]赵美云,雷中方.海藻酸钠包埋高效菌种强化处理聚酯废水的试验研究[J ].工业水处理,2006,26(3):20-23.[24]张志刚,徐德强,李光明,等.固定化优势菌种降解2,6-二叔丁基酚[J ].中国环境科学,2005,25(1):57-60.[25]Konovalova V V ,Dmytrenko G M ,Nigmatullin R R ,et al.Chromium (VI )reduction in a membrane bioreactor withimmobilized Pseudomonas cells [J ].Enzyme and Microbial Technology ,2003,33(6):899-907.The Choice of Carriers Used in Entrapping Method of ImmobilizedMicroorganisms Technology and Its Application in Sewage DisposalLiu Shuai ,Z hang Peiyu ,Q u Yang ,G uo Shasha(Department of Environmental Science and Engineering ,Qingdao University ,Qingdao 266071,Shandong China )Abstract:In this paper ,the characters of different carriers used in entrapping method are introduced in detail ,the different effects of such carriers applied in sewage disposal are compared and analyzed ,finally the spectrum of application of entrapping method is summarized.Key words:immobilized microorganisms technology ;sewage disposal ;entrapping method ;carriers 558--。
《酶的固定化》课件

02
03
酶的固定化步骤:
实验 木瓜蛋白酶的固定化
取出尼龙布,用0.1mol/L 磷酸缓冲液(pH值7.8)反复洗涤,洗去多余的戊二醛,吸干之后,立即用酶液(0.5~1mg/mL)在4℃下固定3.5h(酶液用量每块尼龙布不宜超过0.8mL)。
从酶液中取出尼龙布(保留残余酶液作测定用),用0.5mol/L NaCl溶液(用0.1mol/L磷酸缓冲液(pH值7.2)配制),洗去多余的酶蛋白,即为尼龙固定化酶。
热处理法只适用于热稳定性较好的酶的固定化,在热处理时,要严格控制好加热温度和时间,以免引起酶的变性失活。
(4)热处理法
步骤step
总体积Volume(ml)
总活力Total activity(u)
总蛋白Total protein(mg)
比活力Specific activity(u/mg)
纯化倍数Purification(fold)
缺点
(2)固定化(增殖)细胞的优点和缺点
(3)固定化细胞的制备(P169-178)
一般说,对于一步和两步反应的转化过程,用固定化酶较合适;对多步转化,采用整体细胞有利。
合成聚合物(聚酯、聚胺、尼龙等)
ⅰ.优点:酶与载体结合牢固,一般不会因底物浓度高或存在盐类等原因而轻易脱落。 ⅱ.缺点:反应条件苛刻,操作条件复杂; 酶蛋白高级结构变化,破坏活性中心,活力降低。
1
2
3
4
5
6
1
重氮法
2
叠氮法
3
烷基化反应法
4
溴化氰法
⑤载体活化方法
A.重氮法
反应示意式
NH2
NaNO2/HCl
.缩短发酵周期,提高生产能力(产率);
第五章固定化酶及固定化技术 ppt课件

载体与酶的相互作用:
载体与酶的直接作用可能表现为活力丧失、破坏酶结 构、封闭酶活性部位等。
改变之一:构象改变、立体屏蔽
构象改变: 酶分子构象发生某种扭曲,导致
酶与底物结合能力或催化能力下降
4.包埋法
是指将酶或含酶微生物包裹在多孔的载体中。 网格型; 微囊型。
网格法
——将酶分子或微生物包埋在凝胶格子里。 天然凝胶:琼脂凝胶、海藻酸钙凝胶、角叉菜胶、明胶等 合成材料:聚丙烯酰胺、聚乙烯醇和光敏树脂等。
网格型包埋法是固定化微生物中用得最多、最有效的方法。
微囊型
半透膜包埋法(微囊化法): 将酶包埋在有各种高分子聚合物制成的小囊中,
固定化酶的过程中还存在几个亟待解决解决的难题 :
酶的活性中心发生物理化学变化导致酶活力降低 酶固定化后多了空间屏障,增加了传质阻力 酶和载体结合不牢固,容易脱落,酶活力损失大 固定化颗粒成型困难
固定化技术的改进
定点固定化技术 抗体偶联、生物素-亲和素亲和、氨基酸置换(Cys)
质量转移效应:
分配效应(催化剂颗粒内外不同的溶质浓度),外部或内部(微孔)扩散效应;这些给 出了游离酶在合适反应条件下的效率。
稳定性:
操作稳定性(表示为工作条件下的活性降低),贮藏稳定性
效能:
生产力(产品量/单位活性或酶量),酶的消耗(酶单位数/公斤产品)
包括:
酶本身的变化:
主要由于活性中心的氨基酸残基、高级结构和电荷状 态等发生变化;
但是载体和酶的结合力比较弱,容易受缓冲液种 类或pH的影响,在离子强度高的条件下进行反应 时,酶往往会从载体上脱落。
共价结合法
第十二章+微生物学新技术在环境工程中的应ppt课件

微生物制剂可用于: ①生物膜挂膜; 废水活性污泥法处置过程的添加剂,初沉池、曝气池均可 投加,可提高废水处置效率; ③有机固体废弃物堆肥的菌种和添加剂; ④家庭便池、公厕的除臭剂; ⑤禽畜粪便处置的菌种; ⑥污染严重的河道进展生物修复,疏浚河道底泥; ⑦降解和去除海面浮油和炼油厂的废弃物; ⑧土地生物修复。
生物制剂的用法:
①液体活菌剂Biblioteka 接运用;②干的活菌制剂需用 30℃左右的温水浸泡假设干小时,使软化成浆状, 加水调成含菌量为107~10个/mL的菌液再投加。
第十二章 微生物学新技术在 环境工程中的运用
微生物学新技术包括:遗传诱变育种、 基因工程、发酵工程、酶工程、微生 物制剂、生物外表活性剂等。
§12-1 固定化酶和固定化微生物在环 境工程中的运用
一、酶制剂剂型
1、枯燥粗酶制剂 将用麸曲或深层发酵的培育液除菌(或不除菌)后,与淀粉 等惰性填料混合、枯燥制成粗酶。
挑选步骤:首先采集样品,尔后用稀释平板法分别 出单个菌落,进展数次平板划线纯化,再将纯化的 菌种接入斜面保管;进展菌种性能测定。取性能良 好的菌种接入斜面,于4℃冰箱保管。或真空冷冻枯 燥保管;最后按废水、废物和废气的化学组分与需 求量,合理搭配多种菌种。经扩展培育后用板框压 滤,枯燥,制成干活菌制剂。
②对胞内酶那么要破碎细胞壁和质膜,制成无细胞提取液 再提纯。
细胞破碎方法有:枯燥法(空气枯燥、真空冷冻枯燥、溶剂 脱水枯燥)、机械法(研磨法、机械捣碎)、超声波破碎、反 复冷冻法、自溶法、溶菌酶法。
2、酶的提取
(1) 水溶液提取法:用稀的盐溶液、缓冲液或水提 取。
(2) 外表活性剂提取法
外表活性剂有:天然的胆酸盐、磷脂,合成的十二烷 基硫(磺)酸钠(SDS,阴离子型)、二乙氨基十六烷基溴 ( 阳 离 子 型 ) 、 非 离 子 型 的 有 吐 温 (Tween) 及 三 通 - X(triton-X)。
固定化细胞技术ppt课件

固定化细胞技术(简称IMC),也称固定化微生物技术,是指通过 化学或物理手段,将微生物细胞固定在载体上使之成为不悬浮于水但仍保 留其固有的生物催化活性,在适宜条件下能被重复连续使用的生物工程技 术。最初主要用于工业微生物发酵中。70年代后期,由于水污染问题日 益严重,迫切需要开发高效废水处理技术。于是人们开始考虑将固定化细 胞技术引入废水处理领域。该技术可将筛选出的优势菌种或微生物加以固 定,从而构成一个高效的废水处理系统。
2、包埋法 包埋法的原理是将微生物细胞截留在水不溶性的凝胶聚合物孔隙的
网络空间中或埋于半透膜聚合物的超滤膜内,通过聚合作用、离子网络形 成、沉淀作用,以及通过改变溶剂、温度、pH 值来阻止细胞的泄漏,同 时能让底物渗入和产物扩散出来。
目前应用最为广泛的是凝胶包埋法固定大肠杆菌细胞。与液体发酵 相比,包埋的大肠杆菌生产周期短、产物分离方便、能耗低、设备投资少 且大大改善操作条件。包埋法仍存在一些不足,如包埋材料对细胞的毒性 作用、材料本身阻碍大分子底物和氧的扩散、使用过程中的杂菌污染等, 这些还需要进行更深入的研究。
各种细胞固定化方法的特征比较:
四、固定化细胞的反应特性
微生物经固定化后,许多反应特性都发生了变化,其中主要包括微生 物活性的变化,微生物稳定性的变化,氧和底物传质速率的变化。
微生物从本质上讲也是一种含有多种官能团的蛋白质结构,经固定化 后,其官能团与载体之间发生了共价键或范德华力等形式的作用,使主链 结构得到加固,因此从总体上讲,经固定化后的微生物不易流失。而对微 生物自身而言,加固后的主链结构性质较稳定,不易被破坏,能耐pH值 变化,有机物浓度变化、生物毒性物质等的冲击,不易失活,从而也就增 加了固定化微生物的稳定性。另一方面,微生物固定化后,因其官能团稳 定性的增加,也使其生物活性有所减弱,不过由于采用固定化技术后使得 微生物在一定空间区域内具有很高的密度,因此单个微生物活性降低的缺 点还是可以弥补的。
细胞固定化PPT

复合载体材料
高分子载体和无机载体各有优缺点,为 了得到更好的固定化载体,满足工业生 产的需要,常将其二者结合互补可形成复 合载体。它具备了有机高分子良好的生 物相容性和无机材料较高的稳定性和机 械强度等优点。
宋慧一等采用2种不同的方法针对海藻酸 钙凝胶在多价阴离子或高浓度电解质容 易不稳定,钙离子易脱落,凝胶变软等 进行改性。
(2)人工合成有机高分子载体材料
合成高分子载体,常见的有聚乙烯亚胺( PEI),聚乙烯醇(PVA)、聚丙烯酰胺等 ,这些材料机械强度高,但不易成型、传 质性能不好,在包埋细胞的过程中会降低 细胞的活性。
吴东亮[19]等以Span-60和Tween-20为复 合分散剂,N,N’-亚甲基双丙烯酰胺为 交联剂,甲基丙烯酸缩水甘油酯和烯丙 基缩水甘油醚为功能性单体,采用反相 悬浮聚合技术成功制备了含环氧基团的 聚合物载体,大大减少了载体后处理过 程中所需的时间和溶剂用量。
利用植物细胞固定化培养进行生物转化
载体
应用
研究 进展
载体
有机高分子载体 材料
无机载体
天然高分子载体 材料
人工合成有机高 分子载体材料
机高分子载体材料具有以下优点: 一般对生物无毒性,传质性能较好,具有 生物相容性,能够大量分离提纯,其结构 、物理、化学和免疫原性已经研究地比较 深入,可被制备成各种各样的形式,特别 在微球制备方面,能够进行药物控制释放 和定位靶向给药。 常见的天然有机高分子载体材料有琼脂、 明胶、角叉莱胶、海藻酸钠、海藻酸钙、 壳聚糖等
黄鹏 王超群 刘百川 陈立嘉
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Page 10
上一页
下一页
Hale Waihona Puke 聚乙烯醇的使用国内外对于聚乙烯醇固定以硝化菌和反硝化菌的研究较为 常见。硝化菌和反硝化菌混合固定时,由于载体内部形成 了适合硝化和反硝化的环境,可以在好氧条件下同时进行 硝化和反硝化,实现单级生物脱氮。混合固定时的氨氧化 速度约为硝化菌单独固定时的14倍,硝化菌和反硝化菌混 合固定后对温度的敏感性减小,并且在较宽的溶解氧范围 (2-6mg/L)保持稳定的脱氮速率
下一页
Page 5
上一页
下一页
性能
吸附法
固化成本 低 稳定性能 低 结合能力 弱 活性保留 高 适用性能 适中 存活能力 高
包埋法
低 高 适中 适中 大 高
交联法
适中 高 适中 低 小 低
Page 6
介质截留 法
适中 高 高 高 适中 高
上一页
下一页
包埋法的定义
包埋法是将微生物细胞截留在水不溶性的多聚体化合物孔 隙的网络空间中,通过聚合作用,或通过沉淀作用, 或通过离 子网络作用,或通过改变溶剂、温度、pH值使细胞截留
Page 11
返回目录 上一页 下一页
Page 7
上一页
下一页
载体选择标准
固定化过程简单,易于成型,成本低 对微生物无毒性,固定化后细胞密度大 理稳定性和化学稳定性好,不易被分解
Page 8
上一页
下一页
性质
琼脂
耐曝气强度 差
海藻 酸钙
一般
角叉 菜胶
一般
ACA M
好
PVA
好
耐分解性 差
较差
较差
好
好
对生物毒性 无
无
无
较强
一般
固定难易 易
Page 3
返回目录 上一页 下一页
固定化定义
固定化微生物技术是指用物理或化学方法将 游离微生物细胞、动植物细胞、细胞器或酶限制 或定位在某一特定空间范围内,保留其固有的 催化活性,并能被重复和连续使用技术
固定化方法分类
1、吸附法 2、包埋法 3、交联法
4、介质截留法 5、复合固定法
Page 4
上一页
易
易
难
较易
Page 9
返回目录 上一页 下一页
海藻酸钙的使用
由于海藻酸钙固定化细胞的密度高,传质性能好,故对于 重金属离子的吸附性能优良Bala Kiran等用海藻酸钙包埋 蓝藻,获得六价铬的最大吸附率82%。Kacar Y用海藻酸
钙固定真菌(Phanerochaetech rysosporium),0.5h
包埋法固定化微生物技术优秀课件
一、固定化方法简介 二、包埋法的定义和载体选择
三、包埋法中的载体使用 四、展望
Page 2
上一页
下一页
固定化方法的产生背景
活性污泥法的缺点
出现污泥上浮和流失 不耐冲击负荷 泥水分离困难 生物量浓度偏低
固定化的优点
产泥量少 易于控制 易于泥水分离 提高生物量浓度