腐蚀电化学研究方法常用技术
铝合金材料的电化学腐蚀研究

铝合金材料的电化学腐蚀研究一、引言铝合金材料因其重量轻、强度高、导热性好等优良特性,被广泛应用于航空、汽车、建筑等领域。
然而,铝合金材料在特定环境下易发生电化学腐蚀,导致性能下降或失效。
因此,对铝合金材料的电化学腐蚀研究具有重要的科学意义和实际应用价值。
二、铝合金材料的腐蚀类型铝合金材料的腐蚀类型分为普通腐蚀和局部腐蚀两种。
1. 普通腐蚀普通腐蚀是铝合金材料在一般环境条件下的均匀腐蚀。
在大气、水、土壤等环境中,铝合金材料的表面会被氧化膜保护,不会受到腐蚀。
但在一些特殊条件下,如强酸、强碱和高温等环境中,铝合金材料容易发生普通腐蚀,从而影响其性能。
2. 局部腐蚀局部腐蚀是铝合金材料在特定环境下出现的不均匀腐蚀。
铝合金材料表面的某一部分和周围的区域发生化学反应,产生电荷,从而形成电偶,形成阳极和阴极,从而出现铝合金材料局部腐蚀。
三、铝合金材料的腐蚀机理铝合金材料在特定环境下会发生腐蚀,是因为环境中的氧、水、酸、碱等物质与铝合金材料表面反应,从而破坏铝合金材料表面的氧化膜层,使铝合金材料表面的铝原子裸露出来,与环境中的物质继续反应,形成一种新的化合物,同时伴随着对电荷的转移,从而引起铝合金材料的腐蚀。
四、影响铝合金材料腐蚀的因素影响铝合金材料腐蚀因素主要包括温度、湿度、酸碱度、氧浓度、金属纯度等方面。
1. 温度温度是影响铝合金材料腐蚀的主要因素之一。
在一定温度下,铝合金材料的腐蚀速率会随着温度的升高而加速。
2. 湿度湿度是铝合金材料腐蚀的另一个重要因素,湿度高会增加铝合金材料的腐蚀速率。
3. 酸碱度酸碱度是影响铝合金材料腐蚀的重要因素之一,铝合金在碱性环境下腐蚀要比在酸性环境下更快。
4. 氧浓度铝合金材料的腐蚀与氧浓度息息相关,氧浓度越高,铝合金材料腐蚀速度越快。
5. 金属纯度金属纯度对铝合金材料的腐蚀有显著影响,杂质越多腐蚀速率越快。
五、防腐措施防腐措施主要有三个方面:金属涂层、金属合金化和金属表面改性。
电化学腐蚀测试方法的原理和实验操作

电化学腐蚀测试方法的原理和实验操作腐蚀是金属与环境中的其他物质发生化学反应,从而导致金属表面的质量和结构的损坏。
为了研究金属材料的腐蚀性能和评估其在特定环境条件下的耐蚀能力,科学家们开发了各种腐蚀测试方法。
其中,电化学腐蚀测试是一种常用的方法,通过测量金属在电化学条件下的电位和电流变化来研究其腐蚀行为。
电化学腐蚀测试的原理基于电化学反应的基本原理。
金属与环境中的电解质溶液接触时,会发生氧化和还原反应。
在腐蚀过程中,电极表面同时发生阳极和阴极反应。
阳极反应是指金属表面的氧化反应,产生金属离子;而阴极反应是指还原反应,使金属离子还原为金属。
在电化学腐蚀测试中,使用参比电极与被测试金属构成电化学电池,通过测量电极电位和电流来了解腐蚀过程。
在进行电化学腐蚀测试之前,需要设置合适的实验条件。
首先,选择合适的电解质溶液,通常是模拟实际使用环境中的化学物质。
其次,选择合适的工作电极和参比电极。
工作电极是被测试的金属材料,参比电极是一个稳定的电极,用于测量电极电位。
常用的参比电极有饱和甘汞电极、银/氯化银电极等。
此外,还需要一个计数电极用于测量电流。
最后,在实验过程中需要控制电解质溶液的温度、浓度和搅拌等因素。
在电化学腐蚀测试中,有几种常见的实验操作方法。
一种常用的方法是极化曲线测试。
该测试方法通过改变工作电极的电位,绘制出电位与电流之间的关系曲线,从而得到一个极化曲线。
极化曲线可以提供有关腐蚀速率、腐蚀类型和腐蚀机理的信息。
另一种常用的方法是交流阻抗谱测试。
该测试方法通过施加不同频率和幅度的交流电信号,测量电极的阻抗谱。
阻抗谱可以提供有关电解质溶液和电极界面的腐蚀信息。
除了以上两种常见的电化学腐蚀测试方法,还有一些其他的测试方法,例如线性极化测试和动电位极化测试。
线性极化测试是通过在电极上施加一个小幅度的电压变化,测量电流的变化,从而得到一个线性极化曲线。
线性极化曲线可以提供关于阳极和阴极反应速率的信息。
动电位极化测试是通过在电极上施加不同速率的电势变化,并测量电流的响应,从而确定腐蚀速率。
腐蚀电化学研究方法常用技术讲义

一个实验电解池。
2、极化曲线
方法分类 装置和测量技术:一般用三电极体系 体系构成两个回路:一个是极化回路(电流测量回路)
一个是电位测量回路
极化电源
A
电位测量
二、Tafel直线外推法
极化曲线外延法测定腐蚀速度
对于活化极化控制体系,外加极化较大时,E与lgi间成线性关系,
1、线性极化方程
①活化极化控制的腐蚀体系,在自腐蚀电位附近,也
就是△E很小时(通常在±10mv左右),极化曲线是
线性关系,直线的斜率称极化电阻,Rp= d,E
icorr=
ba bc 2.303(ba bc )
1,线性极化方程式,SterdnI-Geary方
Rp
程式。
两电极系统:两个电极同等程度的极化,但方向相反, 所以两电极的极化值为2△E(V读数),则每个电极 极化值为△E,给定△E后测△I。
在弱极化区选三个适当的极化电位值△E,2△E和-2△E,测量出的相应的极化 电流密度,与极化电位值的关系分别为:
i(△E)=
icorr[exp(
2.3E ba
)-exp(
2b.3c E)]
i(2△E)=
icorr[exp(
4.6E ba
)-exp(
4b.6c E)]
i(-2△E)=
icorr[exp(
1、极化方法与方程式
方法:对腐蚀体系施加恒定电流(其数值应使极化电位不超过10mv),从自腐电 位开始极化,记录其极化电位—时间曲线,由充电曲线方程式计算出稳态时的极化 电位之IRp I已知,求出 Rp
a. 恒电流小极化时可得恒电流充电曲线方程式:
腐蚀电化学研究方法

腐蚀电化学研究方法
腐蚀电化学研究方法是通过电化学技术来研究材料的腐蚀行为和腐蚀机制的方法。
常见的腐蚀电化学研究方法包括:
1. 极化曲线法:利用电化学极化曲线来研究材料在不同电位下的腐蚀行为和电化学反应过程。
通过测量材料的极化曲线,可以确定腐蚀电流密度、腐蚀电位、极化电阻等参数。
2. 交流阻抗法:通过应用一个交流电信号,测量材料的交流阻抗谱来研究材料的腐蚀行为。
通过分析交流阻抗谱,可以得到材料的电荷传递电阻、双电层电容、液体电导率等参数。
3. 电化学噪声方法:通过测量材料在电化学过程中产生的电位和电流的微小波动,来研究材料的腐蚀行为。
电化学噪声方法具有高灵敏度和快速响应的特点,可以实时监测腐蚀行为。
4. 时间电流法:通过记录材料在一段时间内的电流变化情况来研究材料的腐蚀行为。
时间电流法可以用于测量材料的腐蚀速率和腐蚀动力学参数。
5. 电化学阻抗谱法:通过测量材料的电化学阻抗谱来研究材料的腐蚀行为。
电化学阻抗谱法可以得到材料的电导率、电荷传递电阻、界面电容等参数,对材料腐蚀机制的研究有较高的分辨率。
这些方法可以单独或者结合使用,来揭示材料的腐蚀机理、评估材料的耐腐蚀性能,并为腐蚀控制和材料防护提供科学依据。
电化学腐蚀实验探索金属的腐蚀现象

电化学腐蚀实验探索金属的腐蚀现象金属腐蚀一直是制约金属材料使用寿命和性能的主要问题。
为了深入理解金属腐蚀现象,电化学腐蚀实验成为一种重要的研究手段。
本文将探讨电化学腐蚀实验在揭示金属腐蚀本质方面的作用。
首先,我们需要了解电化学腐蚀的基本原理。
金属在电解质溶液中存在两种反应,即氧化反应和还原反应。
当金属表面存在缺陷引发了阳极反应时,金属就会发生腐蚀。
而电化学腐蚀实验通过模拟实际工况中的环境,制造特定的电化学条件,从而深入研究金属腐蚀机理。
在电化学腐蚀实验中,最常用的方法是极化曲线测量。
通过施加恒定电流或电压,观察电流或电压随时间的变化,可以获得极化曲线。
极化曲线是描述金属腐蚀行为的重要指标,包括阳极极化曲线和阴极极化曲线。
阳极极化曲线反映了金属的功率损失,而阴极极化曲线则反映了金属的保护性能。
除了极化曲线测量,电化学腐蚀实验还可以通过测量腐蚀电流密度、腐蚀速率和阻抗等参数来了解金属腐蚀的特征。
腐蚀电流密度是描述金属腐蚀速率的指标,一般通过电化学极化法测量得到。
腐蚀速率可以直接通过重量损失或体积损失来计算。
而阻抗则是评估金属膜层保护性能的重要参数,可通过交流阻抗谱法测量得到。
电化学腐蚀实验常常结合其他表征手段,如扫描电子显微镜(SEM)和能谱仪(EDS),来观察和分析金属腐蚀表面的微观结构和组成。
这些分析手段能够提供更详细的信息,揭示腐蚀过程中的细节变化。
通过电化学腐蚀实验,我们可以深入了解金属腐蚀的机制。
首先,我们可以研究金属腐蚀速率与环境条件的关系。
实验结果表明,环境中的温度、溶液酸碱度和氧浓度等都会对金属腐蚀速率产生影响。
此外,电化学实验还可以研究金属在不同金属耦合条件下的腐蚀行为。
例如,金属在不同电位下的腐蚀行为可以通过测量其极化曲线来研究。
这些实验结果为我们预测和控制金属腐蚀提供了重要的依据。
除了了解腐蚀机制,电化学腐蚀实验还可以通过设计和优化防腐蚀措施,从而减缓金属腐蚀过程。
例如,在电化学腐蚀实验中,我们可以通过添加抑制剂或电化学方法来提高金属的耐腐蚀性能。
电化学方法研究金属材料的腐蚀机制

电化学方法研究金属材料的腐蚀机制腐蚀是金属材料在特定环境中受到化学或电化学作用而逐渐失去其原有性能的过程。
腐蚀不仅会导致金属材料的损失,还会对工业生产和日常生活造成严重影响。
因此,研究金属材料的腐蚀机制对于预防和控制腐蚀具有重要意义。
电化学方法是研究金属材料腐蚀机制的重要手段之一。
它基于电化学原理,通过测量金属材料与电解质溶液之间的电流和电势变化,来揭示腐蚀过程中的电化学反应。
电化学方法主要包括极化曲线、交流阻抗谱和电化学噪声等技术。
极化曲线是最常用的电化学方法之一,它通过测量金属材料在不同电位下的电流变化,来研究腐蚀过程中的电化学反应。
在极化曲线中,通常包括阳极极化曲线和阴极极化曲线。
阳极极化曲线反映了阳极区域的电化学反应,阴极极化曲线反映了阴极区域的电化学反应。
通过分析极化曲线的形状和斜率,可以推断出金属材料的腐蚀类型和腐蚀速率。
交流阻抗谱是一种用于研究金属材料腐蚀机制的频率域电化学方法。
它通过在金属材料上施加交流电信号,并测量金属材料与电解质溶液之间的交流电阻,来分析腐蚀过程中的电化学反应。
交流阻抗谱可以提供金属材料的电化学等效电路模型,通过拟合等效电路模型的参数,可以了解金属材料的电化学反应动力学和界面特性。
电化学噪声是一种基于噪声分析原理的电化学方法。
它通过测量金属材料与电解质溶液之间的微弱电流和电势变化,来研究腐蚀过程中的电化学反应。
电化学噪声可以提供金属材料的功率谱密度,通过分析功率谱密度的特征频率和幅度,可以了解金属材料的腐蚀类型和腐蚀速率。
电化学方法研究金属材料的腐蚀机制具有许多优势。
首先,电化学方法可以在实际工作条件下进行研究,更加接近实际腐蚀环境。
其次,电化学方法可以提供详细的腐蚀动力学信息,包括腐蚀速率、电化学反应速度和界面特性等。
此外,电化学方法还可以用于评估和比较不同防腐蚀措施的效果,为腐蚀预防和控制提供科学依据。
然而,电化学方法也存在一些限制。
首先,电化学方法对实验条件要求较高,包括电解质溶液的配制、电极的制备和测量设备的精度等。
化学实验中的电化学腐蚀

化学实验中的电化学腐蚀化学实验中的电化学腐蚀是指金属在电解液中发生氧化还原反应而导致金属表面损坏的过程。
电化学腐蚀是一个复杂的过程,涉及到物质的传输与转化、电极反应以及化学平衡等多个方面。
本文将从电化学腐蚀的定义、机理以及预防等方面加以阐述。
1. 电化学腐蚀的定义与机理电化学腐蚀是指金属在特定环境中与电解液发生化学反应,导致金属表面损坏的过程。
主要包括阳极和阴极两个区域,其中阳极区是金属发生氧化反应的地方,阴极区则是金属重新得到电子的地方。
腐蚀反应可以分为两个半反应:氧化半反应和还原半反应。
在阳极区,金属发生氧化反应,失去电子成为离子;在阴极区,离子获得电子还原为金属。
这两个半反应必须同时进行,维持电荷平衡。
导致电化学腐蚀的主要原因是金属与电解液中的离子产生反应,形成氧化物或氢氧化物等产物,使金属表面发生溶解,产生腐蚀现象。
此外,温度、电位、流体速度等因素也会对电化学腐蚀的过程产生影响。
2. 电化学腐蚀的实验方法与技术为了研究电化学腐蚀的过程,科学家们开发了一系列的实验方法和技术。
2.1 极化曲线法极化曲线法是一种通过改变电位观察腐蚀过程的方法。
该方法利用电位扫描仪测量不同电位下的电流变化,从而得到电极电流与电极电位的关系曲线,进而分析腐蚀过程中的各种参数。
2.2 交流阻抗法交流阻抗法是一种通过施加交流电进行测试的方法。
利用交流阻抗仪测量电极的阻抗值,从而得到电化学腐蚀的相关信息,如腐蚀速率、电极界面性质等。
2.3 循环伏安法循环伏安法是一种通过改变电极电位来研究腐蚀反应的方法。
通过改变电位的范围和速率,观察电极电流的变化情况,可以得到电极表面的反应动力学参数。
以上是一些常见的电化学腐蚀实验方法和技术,科学家们利用这些方法和技术可以深入研究电化学腐蚀的机理和特性。
3. 电化学腐蚀的预防措施针对电化学腐蚀的特点和机理,制定相应的预防措施是必要的。
以下介绍几个常用的预防措施。
3.1 阳极保护阳极保护是一种通过在金属表面施加电流,使其成为电化学反应中的阴极而达到保护的方法。
电化学法研究金属防腐蚀新进展

电化学法研究金属防腐蚀新进展电化学法是一种研究金属防腐蚀的重要方法,通过使用电化学技术来改善金属材料的防腐蚀性能。
近年来,人们在电化学法研究金属防腐蚀方面取得了许多新进展。
本文将着重介绍几种主要的新兴电化学方法。
首先,阳极保护法是一种常用的电化学防腐蚀方法。
它通过在金属表面形成一个保护性的氧化层,从而阻止金属与环境介质接触,达到防腐蚀的目的。
然而,传统的阳极保护方法存在一些问题,比如其效果受到介质pH值的限制。
近年来,研究人员发展了基于光催化材料的阳极保护方法,通过光照激发材料表面的光催化活性,提高阳极保护效果。
这种方法可以扩大阳极保护的适用范围,提高防腐蚀效果。
其次,电解封闭法是一种有效的电化学防腐蚀方法。
它通过在金属表面形成一个密封的保护性层,阻止氧、水等腐蚀介质的侵蚀。
传统的电解封闭方法主要使用高浓度的硅酸铝溶液,但是其操作过程复杂,有一定的环境污染风险。
近年来,研究人员开发了新的电解封闭技术,使用环境友好的有机溶剂作为电解液,并且通过控制电解参数和添加适量的添加剂来提高封闭层的性能。
这些新技术使电解封闭法更加安全可靠,可以广泛应用于金属防腐蚀领域。
此外,电沉积法也是一种常用的电化学防腐蚀方法。
它通过在金属表面沉积一层保护性的金属或合金层,增加金属的耐腐蚀性。
传统的电沉积方法主要使用直流电源,但是其效率较低,容易导致沉积物质的不均匀。
近年来,研究人员发展了脉冲电沉积技术,通过在沉积过程中改变电流的脉冲形式和大小,可以得到更加均匀、致密的沉积层。
这种新技术具有高效、高质量的特点,可以提高金属的防腐蚀性能。
综上所述,电化学法在金属防腐蚀研究领域取得了不少新进展。
新兴电化学方法不仅扩大了防腐蚀技术的适用范围,提高了防腐蚀效果,同时也更加安全可靠、环境友好。
然而,还有许多问题需要进一步研究和解决,例如新方法的实际应用效果、经济性和可持续性等方面的问题。
希望通过继续深入研究,能够进一步提高电化学法在金属防腐蚀领域的应用和发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 RT nF
阳极极化:ba=
aa=
2.3RT lgi0 nF
2.3 RT 0 lgi nF
阴极极化:bc=
ac= -
α、β称为传递系数,分别表示过电位对阴极和阳极反应活化能的影响 程度,α+β=1,对于一般金属通常取α≈β=0.5,对于组成腐蚀金属电极的局 部阳阴极反应,上式中β和α应用βa和αc表示,且αc+βa≠1。n是电极反应速度 控制步骤的得失电子数,局部阴、阳极反应的n不一定相等,
icorr =
ia1 ic1 ia 2 ic 2 4ia1 ic1
五、充电曲线法—暂态测试方法
对于低腐蚀速度的体系,体系的极化阻 力很大,时间常数RC也就大,需要达到稳态 的时间很大,在这样长的测试周期内,自腐 电位的漂移和表面状态的变化均可引起显著 误差,这就不宜用稳态电化学测量方法,充 电曲线法就可克服这些缺点,从暂态测试数 据可推算稳态极化阻力值。
第三章 腐蚀电化学研究方法常用技术
一、极化曲线测量基本方法
1、电极电位测量
测量腐蚀体系无外加电流作用时的自然腐蚀电位 及其随时间变化Ecorr~t 一般有两类 测量金属在外加电流作用下的极化电位随时间的变化, 极化电位~i 装置:一个参比电极(关键):选择一个稳定可靠的合适参比电极是准确 测量电位的条件。 一个电位测量仪器:直流数字电压表,高阻电压表,直流电位差计, pH计等。 一个实验电解池。
三、线性极化测量技术
1、线性极化方程
①活化极化控制的腐蚀体系,在自腐蚀电位附近,也 就是△ E 很小时(通常在±10mv 左右),极化曲线是 线性关系,直线的斜率称极化电阻,Rp= dE ,
dI ba bc 1 ,线性极化方程式,Stern-Geary方 icorr= 2.303(ba bc ) R p
1、两点法
适用条件:腐蚀电极上的两个局部反应,一个受活化
极化控制,另一个反应受扩散控制,而且自腐电位相距 两个局部反应的平衡电位甚远。
局部阴极反应为扩散控制时腐蚀金属的阳极极化曲线(bc→∞) 2.3 a I= icorr[exp -1]…(A) ba 选择(较小的)对称极化的两点△E和-△E:
程式。
两电极系统:两个电极同等程度的极化,但方向相反, 所以两电极的极化值为 2△E ( V 读数),则每个电极 极化值为△E,给定△E后测△I。
②Rp的测量方法
a. 直流线性极化法:测量腐蚀体系在Ecorr附近的极化曲线△E~i, 找出Ecorr附近的直线段,即线性极化区,求出该直线段的斜率, 即为极化电阻Rp。
Ecorr下:ia=ic= icorr
所以将Tafel 直线外推相交于自腐蚀电位 Ecorr 处,可求出腐蚀速度 icorr ,或 分别由一条阴极极化曲线或阳极极化曲线与Ecorr相交,得到icorr。
条件:外加极化△E较大(通常为>mv),即强 极化区或称Tafel区,测定强极化区的方法常被 用来测定局部阳、阴极过程的Tafel常数ba和bc (斜率)。强极化区测试方法是最经典的腐蚀 速度电化学测试方法,较为简单方便,但测试 时间长,且对腐蚀体系表面状态影响大,测试 精度较差。
i(△E)= icorr[exp(
(6)
(7)
(8)
所以i(△E)= icorr(u-v) i(2△E)= icorr(u2-v2) i(2△E)= icorr(v-2-u-2)
(9) (10) (11)
上述三个所测极化电流密度可做二个比值:
设γ1=
i(
2 E)
i(
γ2=
i(
(
2 E)
u 2 - v2 2 2 = v -2 - 2= u · v u
考虑溶液欧姆电压降问题 为了减小Ecorr漂移的影响,测量前将电极在溶液中浸泡 一定的时间。待Ecorr稳定后再测。
ba bc 令B= 2.303(ba bc )
B 则icorr= Rp
腐蚀速度与极化电阻Rp成反比,不同的腐蚀体系可以通过比 较Rp定性地判断其耐腐蚀性能。
2、线性极化测量技术
Ecorr
腐蚀电极体系:阳极极化时:E-Ecorr= -balgicorr+ balgia 或ia=icorr exp 阴极极化时:E-Ecorr= -bclgicorr+ baaclgic
2.303( E Ecorr ) 或ic=icorr exp bc
lgicorr lgi
2.303( E Ecorr ) ba
— —
Rpdt,
0
根据失重数据,求出腐蚀率,由Faradary定律换算成相应的icorr数值
Rp ,求出B。 由线性极化方程式 B=icorr·
t
四、弱极化区测量方法
前述的线性极化技术是一种快速灵敏的、可以 连续测量瞬时腐蚀速度的电化学方法,但这种极 化技术,也有固有的局限性和缺点,如有的腐蚀 体系在Ecorr附近线性度不好,另外使用线性极化 技术必须已知 Tafel 常数或总常数 B 。下面要讲的 弱极化测量方法则不受腐蚀体系线性度限制,也 无须已知Tafel常数即可直接求得腐蚀电流。 Barnartt于1970年提出了两点法和三点法,可同 时测量腐蚀体系的icorr和Tafel常数。
2 r2 r2 4 r1
(15)
v=
(16)
将u、v代入(6)式:
icorr=
i ( E ) r2 2 4 r1
E lg(r2 r2 2 4 r1 ) lg 2 E lg(r2 r2 2 4 r1 ) lg 2
1、极化方法与方程式
方法:对腐蚀体系施加恒定电流(其数值应使极化电位不超过10mv),从自腐电 位开始极化,记录其极化电位—时间曲线,由充电曲线方程式计算出稳态时的极化 已知,求出 电位之IRp I Rp
a. 恒电流小极化时可得恒电流充电曲线方程式:
t E1=IRp[1-exp( )] RpCd
2.3E 2.3E i(-△E)= icorr[exp( )-exp( )] bc ba
i(-2△E)= icorr[exp( 令 r3=
(21)
i( E )
4 . 6 E 4 .6 E )-exp( )] ba bc
(23) r4=
(22)
i( E ) i( E ) i( E )
2、极化曲线
方法分类 装置和测量技术:一般用三电极体系 体系构成两个回路:一个是极化回路(电流测量回路) 一个是电位测量回路
极化电源
A
电位测量
二、Tafel直线外推法
极化曲线外延法测定腐蚀速度
对于活化极化控制体系,外加极化较大时,E与lgi间成线性关系, ηa=aa+balgiA 单电极反应的电化学极化方程 ηc=ac+bclgiC
=
(12)
2 E) E)
i
u 2 - v2 = u+v uv
(13) u2-r2uv2-r2v+
由(12)式得 r1 =uv代入(13)式可推导出:
r1 =0
(14)
r1 =0
由u、v的定义可知u>1,v<1, 所以分别解上述u、v的一元二次方程得: u=
1 2 r2ቤተ መጻሕፍቲ ባይዱ r2 4 r1 2 1 2
2.303RT 2.303RT bc= a Za F c Zc F 2.3 RT 0 2.3 RT 阴极极化时:a= lgi b= F F
分别用Za和Zc表示。所以ba=
+E
所以a= - blgi0, 同理,阳极极化时:a= 所以a= - blgi0,
2.3RT 2.3RT 0 lgi b= , F F
在弱极化区选三个适当的极化电位值△E,2△E和-2△E,测量出的相应的极化 电流密度,与极化电位值的关系分别为:
2.3E 2.3E )-exp( )] bc ba 4.6E 4 .6 E i(2△E)= icorr[exp( )-exp( )] bc ba 4 . 6 E 4 .6 E i(-2△E)= icorr[exp( )-exp( )] ba bc 2.3E 2.3E 令u=exp( )>1 v=exp( )<1 bc ba
(17)
把u、v结果(15)(16)代入其定义可得Tafel常数:
ba=
(18)
bc=
(19)
适用条件Ⅱ:腐蚀体系的两个局部反应一个受活化极化控制,另一个受 扩散控制,且自负电位接近两个局部反应的平衡电位之一。
设阳极-活化极化控制,阴极-扩散控制,且Ecorr接近阳极反应的平衡电位Ea0。 选取三个电位进行极化测量:△E、-△E,-2△E 2.3E 2.3E i(△E)= icorr[exp( )-exp( )] ba bc (20)
3、四点法
我国杨璋等人1978年提出了测定腐蚀速度的四点法。 适用条件:活化极化控制体系,且腐蚀电位距两个局部反应的平 衡电位很远。
选4 个点,阳极弱极化区△E,2△E及阴极弱极化区 -△E,-2△E, 测出相应的电流密度:ia1,ia2及ic1 ,ic2。
在满足 导出:
ia1 ia 2 的条件下较精确,由活化极化动力学公式可推 ic1 ic 2
i( 2 E ) i( E )
(24)
可推导出:icorr =i(-△E)
(25)
E ba= (26) lg(r4 r4 2 4 r3 ) lg 2
自 己 证 明 , 另 外 还 有 不 同 的 选 法 如 -△E/-2△E/-3△E ; △ E/2△E/-2△E ; △E/2△E/3△E等。