石墨烯的制备方法概述
石墨烯薄膜制备方法及应用

石墨烯薄膜制备方法及应用石墨烯是一种由碳原子构成的二维晶格结构材料,它具有独特的物理、化学和电子性质,因此在许多领域都有广泛的应用潜力。
石墨烯薄膜制备方法主要包括机械剥离法、化学气相沉积法和化学氧化剥离法等。
机械剥离法是制备石墨烯最早的方法之一,它通过机械剥离来获得石墨烯。
首先在晶体石墨表面涂上一层粘性的黏土或者导电的聚合物,然后使用胶带将其粘起来,再反复剥离,直到只剩下一个单层的石墨烯。
这种方法制备的石墨烯质量较高,但是效率比较低。
化学气相沉积法是目前制备石墨烯薄膜的主要方法之一。
该方法通过在金属基底上沉积碳源或者烷烃气体,在高温下控制化学反应,使得碳原子在金属基底上形成石墨烯薄膜。
化学气相沉积法具有高效、大面积制备石墨烯的优点,可以用于大规模制备。
但是这种方法所需要的高温、高真空等条件也限制了其在一些应用中的使用。
化学氧化剥离法是一种利用化学氧化将石墨材料氧化成氧化石墨烯,再通过还原将其还原成石墨烯的方法。
这种方法主要分为两步:首先是氧化石墨材料,将其氧化成氧化石墨烯;然后通过化学还原方法,将氧化石墨烯还原成石墨烯。
化学氧化剥离法制备石墨烯的过程相对简单,可以实现大面积制备,但是还原过程中可能会引入杂质,对杂质的去除需要额外的处理。
石墨烯薄膜在许多领域都有广泛的应用。
首先,由于石墨烯具有优异的电子传输性能,被广泛用于柔性电子器件的制备。
其次,石墨烯具有良好的机械性能,可以作为支撑阻挡、增强剂等材料广泛应用于复合材料领域。
此外,石墨烯还具有良好的热传导性能,可以作为导热材料在电子散热以及节能领域中应用。
此外,石墨烯还可以用于传感器、催化剂、储能材料等领域。
总之,石墨烯薄膜制备方法主要包括机械剥离法、化学气相沉积法和化学氧化剥离法等,每种方法都有其独特的优势和适用范围。
石墨烯薄膜在柔性电子器件、复合材料、散热应用、储能材料等领域有广泛的应用前景。
然而,目前石墨烯薄膜的生产技术仍需要进一步完善,同时,石墨烯在实际应用中还面临着价格高昂、生产成本过高等问题,因此在实际应用中还需要进一步研究和改进。
闪蒸焦耳热制备石墨烯机理

闪蒸焦耳热制备石墨烯机理概述石墨烯是一种由单层碳原子组成的二维材料,具有出色的电学、热学和力学性能,因此在许多领域具有广泛的应用前景。
闪蒸焦耳热法是一种常用的石墨烯制备方法,通过高温瞬时加热石墨粉末,使其迅速升温至高温,然后迅速冷却,从而实现石墨烯的制备。
本文将介绍闪蒸焦耳热制备石墨烯的机理及关键步骤。
机理闪蒸焦耳热制备石墨烯的过程主要涉及以下几个关键步骤:1.初始状态开始时,石墨粉末以固体形式存在,其中的碳原子以层状结构排列,并与相邻层之间的范德华力相互吸引。
2.瞬时加热在闪蒸焦耳热法中,石墨粉末受到瞬时高能电流或激光的加热作用,导致其温度迅速升高。
此过程中,石墨粉末的内部能量增加,使得碳原子间范德华力减弱。
3.高温状态当石墨粉末达到足够高的温度时,碳原子开始发生热振动,使层状结构逐渐解离。
碳原子之间的键断裂,形成自由的碳原子。
4.快速冷却在高温状态下,通过快速冷却,瞬间将石墨粉末从高温环境迅速冷却至室温。
这种快速冷却过程有助于防止碳原子重新排列并形成多层石墨结构。
5.石墨烯形成快速冷却后,碳原子保持单层结构的排列方式,并形成石墨烯。
石墨烯以单层平面结构存在,每个碳原子都与三个相邻的碳原子形成共价键。
这种排列方式赋予石墨烯出色的力学和电学性质。
关键因素闪蒸焦耳热制备石墨烯的过程中,以下因素对石墨烯的质量和产率具有重要影响:1.加热功率:瞬时加热过程中的能量输入速率对石墨粉末的温度升高速度和最终石墨烯质量有影响。
2.加热时间:加热时间需要足够短,以防止碳原子重新排列成多层石墨结构。
3.冷却速度:快速冷却是形成单层石墨烯的关键步骤,过慢的冷却速度可能导致多层石墨结构的形成。
4.石墨粉末特性:石墨粉末的尺寸、纯度和形态等特性会影响石墨烯的产率和质量。
应用闪蒸焦耳热法制备的石墨烯在许多领域具有广泛的应用前景,包括但不限于以下方面:1.电子学和光电子学:石墨烯具有优异的电子传输性能,可用于制造超薄晶体管、柔性显示器和高效光电设备等。
石墨烯的制作方法是什么

石墨烯的制作方法是什么石墨烯的制作方法是什么?虽然石墨烯是这两年非常热门的新型高科技材料之一,但由于技术和设备的限制,不高的产量和纯度一直是限制其发展的重要因素。
今天小编就为大家介绍一种较为流行的石墨烯制作方法。
氧化还原法氧化-还原法制备成本低廉且容易实现,成为制备石墨烯的合适方法,而且可以制备稳定的石墨烯悬浮液,解决了石墨烯不易分散的问题。
氧化-还原法是指把天然石墨与强酸和强氧化性物质反应生成氧化石墨(GO),经过超声分散制备成氧化石墨烯(单层氧化石墨),加入还原剂去除氧化石墨表面的含氧基团,如羧基、环氧基和羟基,得到石墨烯。
氧化-还原法被提出后,以其简单易行的工艺成为实验室制备石墨烯的简便的方法,得到广大石墨烯研究者的青睐。
Ruoff等发现通过加入化学物质例如二甲肼、对苯二酚、硼氢化钠(NaBH4)和液肼等除去氧化石墨烯的含氧基团,就能得到石墨烯。
氧化-还原法可以制备稳定的石墨烯悬浮液,解决了石墨烯难以分散在溶剂中的问题。
氧化-还原法的缺点是宏量制备容易带来废液污染和制备的石墨烯存在一定的缺陷,例如,五元环、七元环等拓扑缺陷或存在-OH基团的结构缺陷,这些会导致石墨烯部分电学性能的损失,使石墨烯的应用受到限制。
先进纳米材料制造商和技术服务商——江苏先丰纳米材料科技有限公司,2009年成立以来一直在科研和工业两个方面为客户提供完善服务。
科研客户超过一万家,工业客户超过两百家。
南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及技术提供商。
2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米材料制造和技术服务中心。
现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。
石墨烯的介绍

-
1 石墨烯的基本性质 2 石墨烯的制备方法 3 石墨烯的应用领域 4 结论与展望
石墨烯的介绍
石墨烯是一种由碳原子组成 的二维材料,它是单层石墨 的片状结构,具有极高的电 导率、热导率和机械强度
下面我们将详细介绍石墨烯 的基本性质、制备方法、应 用领域以及研究现状
CHAPTER 1
石墨烯的应用领域
能源领域
石墨烯的热导率和电导率都非常高,因此它在能源领域也有广泛的应用。例如,石墨烯可 以用于制造高效能电池和超级电容器等能源器件。此外,石墨烯还可以作为催化剂载体用 于燃料电池等领域
石墨烯的应用领域
生物医学领域
石墨烯具有良好的生物相容性和抗氧化性,因此在生物医学领域也有广泛的应用。例如, 石墨烯可以用于制造药物载体、生物传感器和成像试剂等生物医学器件。此外,石墨烯还 可以作为生物材料用于组织工程等领域
CHAPTER 3
石墨烯的应用领域
石墨烯的应用领域
石墨烯的应用领域
由于石墨烯具有优异 的物理和化学性质, 它在许多领域都有广 泛的应用。以下是石 墨烯的主要应用领域
石墨烯的应用领域
电子器件领域
石墨烯具有很高的电 导率,因此它在电子 器件领域具有广泛的 应用。例如,石墨烯 可以用于制造晶体管 、场效应管、太阳能 电池等电子器件。此 外,石墨烯还可以作 为透明导电膜用于显 示器等领域
CVD法
CVD法是一种常用的制备石墨烯的方法,它是通过加热含碳气体(如甲烷、乙炔等)在基底 表面形成石墨烯。这种方法可以制备大面积、高质量的石墨烯,但需要高温条件和复杂的 设备
石墨烯的制备方法
氧化还原法
氧化还原法是一种通过氧化剂将石墨氧化成氧化石墨,再通过还原剂将氧化石墨还原成石 墨烯的方法。这种方法制备的石墨烯质量较高,但需要使用化学试剂和复杂的工艺流程
氧化还原法制备石墨烯的方法概述分析

毕业论文题目:氧化还原法制备石墨烯的方法概述学院:专业:毕业年限:学生姓名:学号:指导教师:目录摘要 (2)关键词 (2)Abstract (2)Key words (2)I前言 (3)Ⅱ氧化还原法制备石墨烯 (3)2.1氧化石墨(GO)的制备 (4)2.1.1Brodie法 (5)2.1.2Staudenmaier法 (6)2.1.3Hummers法 (6)2.2氧化石墨(GO)的还原 (6)2.2.1热还原法 (6)2.2.2溶剂热还原 (7)2.2.3光照还原. (7)2.2.4化学液相还原 (7)Ш展望 (9)参考文献 (10)致谢 (13)氧化还原法制备石墨烯的方法概述摘要:近年来 , 石墨烯以其独特的结构和优异的性能, 在化学、物理和材料学界引起了广泛的研究兴趣。
人们已经在石墨烯的制备方面取得了积极的进展, 为石墨烯的基础研究和应用开发提供了原料保障。
本文大量引用近年来最新参考文献 , 综述了用氧化还原法制备石墨烯,并对它的发展前景进行了展望!关键词:氧化石墨,石墨烯 , 氧化还原法The Summarize of oxidation-reduction method for grapheneShaoqing Ma , Zhongai Hu(Northwest normal university, chemical engineering college, lanzhou, 730070)Abstract :In recent years, graphene with its unique structure and the outstanding performance, caused wide interests in the chemical, physical and material fields. People have made positive progress in the preparation of graphene,and have provided raw material guarantee for graphene of basic research and application development. This paper largely applied the latest references in recent years , reviewed the legal system with oxidation-reduction method for graphene and presented the development prospects.Key words : graphite oxide, graphene, oxidation-reduction methodI前言Partoens 等[1]研究发现 , 当石墨层的层数少于 10 层时 , 就会表现出较普通三维石墨不同的电子结构。
石墨烯的制备方法及应用

石墨烯的制备方法及应用无机光电0901 3090707020 黄飞飞摘要:石墨烯具有非凡的物理性质,如高比表面积、高导电性、高机械强度、易于修饰及大规模生产等。
2004年石墨烯的成功剥离,使石墨烯成为形成纳米尺寸晶体管和电路的“后硅时代”的新潜力材料,其产品研发和应用目前正在全球范围内急剧增加,本文通过对石墨烯特性、制备方法、在光电器件方面的应用几方面进行了综述,希望对石墨烯的综合应用进展有所了解。
关键词:石墨烯制备方法应用1 引言人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。
当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。
石墨烯(Graphene)的理论研究已有 60 多年的历史。
石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至 2004 年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因在二维石墨烯材料的开创性实验而共同获得2010年诺贝尔物理学奖。
石墨烯的出现在科学界激起了巨大的波澜,从2006年开始,研究论文急剧增加,作为形成纳米尺寸晶体管和电路的“后硅时代”的新潜力材料,旨在应用石墨烯的研发也在全球范围内急剧增加,美国、韩国,中国等国家的研究尤其活跃。
石墨烯或将成为可实现高速晶体管、高灵敏度传感器、激光器、触摸面板、蓄电池及高效太阳能电池等多种新一代器件的核心材料。
2 石墨烯的基本特性至今为止,已发现石墨烯具有非凡的物理及电学性质,如高比表面积、高导电性、机械强度高、易于修饰及大规模生产等。
石墨烯是零带隙半导体,有着独特的载流子特性,为相对论力学现象的研究提供了一条重要途径;电子在石墨烯中传输的阻力很小,在亚微米距离移动时没有散射,具有很好的电子传输性质;石墨烯韧性好,有实验表明,它们每 100nm 距离上承受的最大压力可达 2.9 N,是迄今为止发现的力学性能最好的材料之一。
石墨烯的化学方程式
石墨烯的化学方程式石墨烯是一种由碳原子组成的二维材料,具有许多独特的性质和应用潜力。
它的化学方程式可以用来描述石墨烯的制备过程,其中最常用的方法是化学气相沉积法。
化学气相沉积法是一种通过化学反应在固体表面上沉积薄膜的方法。
在制备石墨烯时,常用的原料是甲烷,反应的化学方程式可以表示为:CH4(g) → C(s) + 2H2(g)在这个反应中,甲烷气体通过热解反应分解成碳固体和氢气。
这个反应通常在高温下进行,以便碳原子能够重新排列形成石墨烯的二维晶格结构。
除了化学气相沉积法,还有其他一些方法可以制备石墨烯,如机械剥离法和化学剥离法。
机械剥离法是通过用胶带或刮刀等工具将石墨材料剥离成单层的石墨烯。
化学剥离法则是通过在石墨材料表面涂覆化学剥离剂,如氧化剂或还原剂,从而使石墨材料层层剥离成石墨烯层。
无论采用何种方法制备石墨烯,其化学方程式都可以用来描述反应过程。
然而,由于石墨烯的特殊结构和性质,它的化学方程式在描述上可能会有一些变化。
例如,在化学气相沉积法中,石墨烯的形成涉及到碳原子的重新排列和结构转变。
这个过程可以用以下化学方程式来描述:2CH4(g) → 2C(s) + 4H2(g)在这个方程式中,甲烷气体被分解成两个碳固体和四个氢气分子。
然后,碳原子会重新排列成石墨烯的二维结构。
石墨烯在一些化学反应中也可以起到催化剂的作用。
例如,在氧还原反应中,石墨烯可以促进氧气和还原剂之间的电子转移。
这个过程可以用以下化学方程式来表示:O2(g) + 4e- + 4H+(aq) → 2H2O(l)在这个方程式中,氧气被还原成水,而石墨烯起到了催化剂的作用,加速了反应的进行。
石墨烯的化学方程式可以用来描述其制备过程和参与的化学反应。
无论是制备石墨烯还是利用其特殊性质进行化学反应,化学方程式都是描述和理解这些过程的重要工具。
通过研究和探索石墨烯的化学方程式,我们可以更好地理解其结构和性质,并为其在各个领域的应用提供更多的可能性。
石墨烯制备方法
1、化学还原石墨烯氧化物法(推荐)试剂:石墨粉浓硫酸高锰酸钾水合肼 5%双氧水盐酸氢氧化钠仪器:超声仪离心仪实验步骤:氧化石墨制备:将 10 g 石墨 230 mL 98%浓硫酸混合置于冰浴中,搅拌 30 min 使其充分混合。
称取 40 g KMnO4 加入上述混合液继续搅拌 1 h 后移入 40o C温水浴中继续搅拌30 min 用蒸馏水将反应液(控制温度在 100 o C以下)稀释至 800-1 000mL。
后加适量 5% H2O2趁热过滤,用 5% HCl 和蒸馏水充分洗涤至接近中性。
最后过滤、洗涤在 60o C下烘干得到氧化石墨样品。
石墨烯制备:称取上述氧化石墨 0.05 g 加入到100 mL pH=11 的NaOH 溶液中在150 W 下超声90 min 制备氧化石墨烯分散液。
在 4 000 r/ min下离心 3 min 除去极少量未剥离的氧化石墨。
向离心后的氧化石墨烯分散液中加入0.1 mL水合肼,在90o C反应 2 h 得到石墨烯分散液,密封静置数天观察其分散效果。
2、微波法(推荐)试剂:石墨 NH4S2O8 H2O2仪器:超声仪实验步骤:将石墨与NH4S2O8 及H2O2在超声下混合, 然后进行微波反应, 成功制备了石墨烯。
他们指出该过程包括两步反应。
首先,NH4S2O8 在微波下发生了分解产生了氧自由基,在氧自由基的诱导下, 石墨纳米片被切开。
然后H2O2 分解并插入石墨纳米片层间从而导致石墨烯的剥离。
3、化学气相沉积法试剂:二氧化硅/硅镍甲烷氢气氩氨气仪器:马福炉实验步骤:K im等首先在S iO2 /Si基底上沉积一层100- 500nm厚的金属镍薄层, 然后在1 000o C 及高真空下, 以甲烷、氢气及氩气混合气为反应气,在较短的时间内制备了石墨烯。
W ei等采用甲烷和氨气为反应气, 一步法直接合成了氮掺杂的石墨烯。
在该氮掺杂的石墨烯中氮原子采取“石墨化”、“吡咯化”及“吡啶化”这三种掺杂方式。
石墨烯技术的使用教程
石墨烯技术的使用教程石墨烯是一种单层碳原子组成的二维材料,具有出色的导电性、热导性和力学性能。
因为其独特的性质,石墨烯在各个领域都有广泛的应用潜力,包括电子学、能源、传感器等。
本文将为您介绍石墨烯技术的基本概念和常见的使用方法。
1. 石墨烯的制备方法石墨烯可以通过多种方法制备,其中最常见的方法包括机械剥离法和化学气相沉积法。
机械剥离法是通过使用胶带或刮刀将石墨材料逐渐剥离成单层石墨烯。
化学气相沉积法则是通过在金属基底上沉积碳原子来制备石墨烯。
2. 石墨烯的电子学应用石墨烯具有极高的电子迁移率,可以作为理想的导电介质。
在电子学领域,石墨烯常用于制备高速、低功耗的电子器件。
例如,利用石墨烯制备的晶体管在高频段具有出色的性能。
此外,石墨烯还可以用于制备柔性电子器件,如可卷曲的显示屏和超薄电池。
3. 石墨烯的能源应用石墨烯在能源领域有许多潜在的应用,特别是在太阳能电池和储能领域。
石墨烯可以作为导电层或载流子传输层用于太阳能电池,提高电池的效率。
此外,石墨烯还可以作为电容器电极材料,具有高能量密度和长循环寿命的优点。
石墨烯在能源存储和转换方面的研究仍在不断发展中,未来有望实现更多的应用。
4. 石墨烯的传感器应用由于石墨烯的高度敏感性和高导电性,它可以作为传感器的理想材料。
例如,石墨烯传感器可用于检测环境中的气体、湿度和温度等。
由于石墨烯的单层结构,可以实现高灵敏度和快速响应的传感器。
此外,石墨烯还可以与其他材料结合使用,提高传感器的性能。
5. 石墨烯的生物医学应用石墨烯也在生物医学领域显示出巨大的潜力。
它可以用于生物传感器、药物递送和组织工程等应用。
例如,石墨烯生物传感器可以检测生物标志物,提供快速和精确的诊断结果。
此外,石墨烯纳米颗粒可以作为药物递送系统,将药物有效地输送到特定的位置,并有助于控制释放速率。
总结起来,石墨烯技术具有广泛的应用前景。
无论是在电子学、能源、传感器还是生物医学领域,石墨烯都显示出了独特的优势。
石墨烯检测报告(一)2024
石墨烯检测报告(一)引言概述:石墨烯作为一种新兴的材料,在科学研究和工业应用领域得到了广泛关注。
本文将就石墨烯的检测方法进行深入探讨,包括石墨烯的制备和表征技术,以及常见的石墨烯探测手段。
正文内容:1. 石墨烯的制备技术- 机械剥离法:通过机械剥离石墨烯原料,如石墨,来获得单层或多层的石墨烯片段。
- 化学气相沉积法:在高温下,通过热解石墨烯前体气体,沉积在衬底上,实现石墨烯的制备。
- 液相剥离法:利用氧化剂或还原剂对石墨进行化学反应,使石墨烯分散在液体中,并通过过滤得到石墨烯材料。
2. 石墨烯的表征技术- 原子力显微镜(AFM):通过扫描样品表面,测量力的变化,获得石墨烯片层的拓扑结构和高度信息。
- 透射电子显微镜(TEM):利用电子束穿透样品,观察和分析石墨烯的晶体结构和缺陷情况。
- X射线光电子能谱(XPS):通过测量材料中的光电子能谱,分析材料的化学成分和电子结构。
- 拉曼光谱:利用激光与样品反射、散射和吸收的变化,分析石墨烯的结构和化学键的振动模式。
- 热重分析(TGA):通过测量材料随温度的质量变化,分析石墨烯的热分解过程和热稳定性。
3. 石墨烯的电学性质检测- 电导率测量:通过测量石墨烯样品的电阻,计算出其电导率,评估石墨烯的导电性能。
- 能带结构分析:利用光电子能谱等技术,研究石墨烯样品的能带结构,探究其导电机制。
- 场效应晶体管测量:利用场效应晶体管(FET)结构,测量石墨烯的电流-电压特性,评估其在电子器件中的应用潜力。
- 导电性显微镜:结合原子力显微镜,对石墨烯样品进行局部电流密度的测量,探究其导电特性的空间分布。
4. 石墨烯的力学性质检测- 纳米压痕测试:利用纳米压痕仪,测量石墨烯的硬度和弹性模量,评估其力学特性。
- 拉伸测试:通过拉伸试验机,对石墨烯进行拉伸破裂实验,获得其拉伸强度和断裂应变。
- 厚度测量:利用原子力显微镜等技术,测量石墨烯的厚度,评估其层间结构和单层特性的存在情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石墨烯的制备方法概述 1 物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得, 操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt 等于2004年用一种极为简单的微机械剥离法成功地从高定向热解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1 mm厚的高定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20 μm—2 mm、5 μm的微槽后,用光刻胶将其粘到玻璃衬底上,再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。 1.2取向附生法—晶膜生长 Peter W.Sutter 等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150 °C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80 %后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3 液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000 °C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman 等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP) 中,超 声1h 后单层石墨烯的产率为1%,而长时间的超声(462 h)可使石墨烯浓度高达1.2 mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯的溶剂表面张力范围为40~50mJ/m2。利用气流的冲击作用能够提高剥离石墨片层的效率。Janowska 等以膨胀石墨为原料,微波辐照下发现以氨水做溶剂能提高石墨烯的总产率(~8%)。深入研究证实高温下溶剂分解产生的氨气能渗入石墨片层中,当气压超过一定数值至足以克服石墨片层间的范德华力时就能使石墨剥离。 因以廉价的石墨或膨胀石墨为原料,制备过程不涉及化学变化,液相或气相直接剥离法制备石墨烯具有成本低、操作简单、产品质量高等优点,但也存在单层石墨烯产率不高、片层团聚严重、需进一步脱去稳定剂等缺陷。 2化学法制备石墨烯 目前实验室用石墨烯主要通过化学方法来制备,该法最早以苯环或其它芳香体系为核,通过多步偶联反应使苯环或大芳香环上6个C均被取代,循环往复,使芳香体系变大, 得到一定尺寸的平面结构的石墨烯。在此基础上人们不断加以改进,使得氧化石墨还原法成为最具有潜力和发展前途的合成石墨烯及其材料的方法。除此之外,化学气相沉积法和晶体外延生长法也可用于大规模制备高纯度的石墨烯。 2.1 化学气相沉积法 化学气相沉积法的原理是将一种或多种气态物质导入到一个反应腔内发生化学反应,生成一种新的材料沉积在衬底表面。它是目前应用最广泛的一种大规模工业化制备半导体薄膜材料的技术。 Srivastava等采用微波增强化学气相沉积法在包裹有Ni的Si衬底上生长出来20 nm左右厚度的花瓣状的石墨片,并研究了微波功率大小对石墨片形貌的影响。获得了比之前的制备方法得到的厚度更小的石墨片,研究结果表明:微波功率越大,石墨片越小,但密度更大,此种方法制备的石墨片含有较多的Ni 元素。Kim等在Si衬底上添加一层厚度小于300 nm的Ni,然后在1000 °C的甲烷、氢气和氩气的混合气流中加热这一物质,再将它迅速降至室温。这一过程能够在Ni层的上部沉积出6—10层石墨烯。通过此法制备的石墨烯电导率高、透明性好、电子迁移率高(~3700 cm2 /(V·s)),并且具有室温半整数量子Hall 效应。用制作Ni层图形的方式,能够制备出图形化的石墨烯薄膜,这些薄膜可以在保证质量的同时转移到不同的柔性衬底上。这种转移可通过两种方法实现:一是把Ni用溶剂腐蚀掉以使石墨烯薄膜漂浮在溶液表面,进而把石墨烯转移到任何所需的衬底上;另外一种则是用橡皮图章式的技术转移薄膜。化学气相沉积法可满足规模化制备高质量、大面积石墨烯的要求,但现阶段因其较高的成本、 复杂的工艺以及精确的控制加工条件制约了这种方法制备石墨烯的发展,有待进一步研究。 2.2外延生长法 Clarie Berger等利用此种方法制备出单层和多层石墨烯薄片并研究了其性能。通过加热,在单晶6H-SiC的Si-terminated (00001)面上脱除Si制取石墨烯。将表面经过氧化或H2蚀刻后的样品在高真空下(UHV; base pressure 1.32×10-8Pa)通过电子轰击加热到1000 °C以除掉表面的氧化物(多次去除氧化物以改善表面质量),用俄歇电子能谱确定氧化物被完全去除后,升温至1250-1450 °C,恒温1-20 min。在Si表面的石墨薄片生长缓慢并且在达到高温后很快终止生长,而在C表面的石墨薄片并不受限,其厚度可达5到100层。形成的石墨烯薄片厚度由 加热温度决定。这种方法可以得到两种石墨烯:一种是生长在Si 层上的石墨烯, 由于接触Si 层,这种石墨烯的导电性能受到较大影响;另一种是生长在C 层上的石墨烯,具有优良的导电能力。两者均受SiC 衬底的影响很大。 这种方法条件苛刻(高温、高真空)、且制得的石墨烯不易从衬底上分离出来,不能用于大量制造石墨烯。 2.3 氧化石墨还原法 氧化石墨还原法制备石墨烯是将石墨片分散在强氧化性混合酸中,例如浓硝酸和浓硫酸,然后加入高锰酸钾或氯酸钾强等氧化剂氧化得到氧化石墨(GO)水溶胶,再经过超声处理得到氧化石墨烯,最后通过还原得到石墨烯。这是目前最常用的制备石墨烯的方法。石墨本身是一种憎水性的物质,然而氧化过程导致形成了大量的结构缺陷,这些缺陷即使经1100 °C退火也不能完全消除,因此GO表面和边缘存在大量的羟基、羧基、环氧等基团,是一种亲水性物质。由于这些官能团的存在,GO容易与其它试剂发生反应,得到改性的氧化石墨烯。同时GO层间距(0.7~1.2nm)也较原始石墨的层间距(0.335nm)大,有利于其它物质分子的插层。制备GO 的办法一般有3 种:Standenmaier 法、Brodie 法和Hummers 法。制备的基本原理均为先用强质子酸处理石墨,形成石墨层间化合物,然后加入强氧化剂对其进行氧化。GO 还原的方法包括化学液相还原、热还原、等离子体法还原、氢电弧放电剥离、超临界水还原、光照还原、溶剂热还原、微波还原等。Stankovich等首次将鳞片石墨氧化并分散于水中,然后再用水合肼将其还原,在还原过程中使用高分子量的聚苯乙烯磺酸钠(PSS)对氧化石墨层表面进行吸附包裹,避免团聚。由于PSS 与石墨烯之间有较强的非共价键作用( π−π 堆积力),阻止了石墨烯片层的聚集,使该复合物在水中具有较好的溶解性(1 mg/mL),从而制备出了PSS包裹的改性氧化石墨单片。在此基础上,Stankovich等制备出了具有低的渗滤值(约0.1 %体积分数)和优良的导电性能(0.1 S/m)的改性单层石墨烯/聚苯乙烯复合材料。 这种方法环保、高效,成本较低,并且能大规模工业化生产。其缺陷在于强氧化剂会严重破坏石墨烯的电子结构以及晶体的完整性,影响电子性质,因而在一定程度上限制了其在精密的微电子领域的应用。 参考文献: [1]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang,Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science, 2004, 306, 666−669 [2]Sutter, P. W.; Flege, J. -I.; Sutter, E. A. Nature Materials, 2008, 5, 406−411 [3]Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N.Nature Nanotechnology, 2008, 7, 563−568 [4]Janowska, I.; Chizari, K.; Ersen, O.; Zafeiratos, S.; Soubane, D.; Costa, V. D.; Speisser, V.; Boeglin, C.; Houllé, M.; Bégin, D.; Plee, D.; Ledoux M. -J.; Pham-Huu, C. Nano Res., 2010, 3, 126−137 [5]Srivastava, S. K.; Shukla, A. K.; Vankar, V. D.; Kumar, V. Thin Solid Films, 2005, 492, 124−130 [6]Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong. B. H. Nature, 2009,457, 706−710 [7]Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; Heer, W. A. Journal Physical Chemistry B, 2004, 108, 19912−19916