七年级数学下册期末试卷(含答案)

合集下载

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。

2. 已知一个数的平方等于36,则这个数是______或______。

3. 下列各数中,是无理数的是______、______、______。

4. 一个等边三角形的周长为15,则它的边长是______,面积是______。

5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。

三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。

2. (10分)解方程:2x - 5 = 3x + 1。

3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。

2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)

2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)

20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。

A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。

A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。

A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。

A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。

A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。

A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。

A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。

A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。

A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。

A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。

12. 下列各数中,是无理数的是__________。

13. 下列等式中,正确的是__________。

14. 若一个正方形的边长是a,则它的面积是__________。

15. 下列各数中,是负数的是__________。

16. 若一个数的平方是16,则这个数是__________。

17. 下列各数中,是正整数的是__________。

18. 若一个数的绝对值是7,则这个数是__________。

19. 下列各数中,是偶数的是__________。

20. 若一个数的立方是27,则这个数是__________。

三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。

22. 已知一个数的平方是9,求这个数。

人教版七年级数学下册期末测试题+答案解析(共四套)

人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。

七年级数学下册期末试卷练习(Word版 含答案)

七年级数学下册期末试卷练习(Word版 含答案)

七年级数学下册期末试卷练习(Word 版 含答案)一、选择题1.如图图形中,∠1和∠2不是同位角的是( )A .B .C .D .2.如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的( )A .B .C .D .3.在平面直角坐标系中,点(3,1) P -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )A .3个B .2个C .1个D .0个5.如图,//AB CD ,AC 平分BAD ∠,B CDA ∠=∠,点E 在AD 的延长线上,连接EC ,2B CED ∠=∠,下列结论:①//BC AD ;②CA 平分BCD ∠;③AC EC ⊥;④ECD CED ∠=∠.其中正确的个数为( )A .1个B .2个C .3个D .4个6.下列命题正确的是( )A .若a >b ,b <c ,则a >cB .若a ∥b ,b ∥c ,则a ∥cC .49的平方根是7D .负数没有立方根7.如图,直线//AB CD ,E 为CD 上一点,G 为AB 上一点,BF EG ⊥,垂足为F ,若35B ∠=︒,则DEF ∠的度数为( )A .35︒B .45︒C .55︒D .65︒8.如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依次2,4,6,8,,…顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点2021A 的坐标是( )A .(505,505)-B .(505,505)--C .(506,506)--D .(506,506)-二、填空题9. 6.213,62.13621.3.10.在平面直角坐标系中,点A (2,1)关于x 轴对称的点的坐标是_____.11.三角形ABC 中,∠A=60°,则内角∠B ,∠C 的角平分线相交所成的角为_____.12.如下图,C 岛在A 岛的北偏东65°方向,在B 岛的北偏西35°方向,则ACB =∠______度.13.如图,折叠宽度相等的长方形纸条,若∠1=54°,则∠2=____度.14.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 15.如图,若“马”所在的位置的坐标为()2,2-,“象”所在位置的坐标为()1,4-,则“将"所在位置的坐标为_______.16.如图,点A (0,1),点1A (2,0),点2A (3,2),点3A (5,1)…,按照这样的规律下去,点1000A 的坐标为 _____.三、解答题17.计算(每小题4分)(1)323(3)29()-+--(2)2335+-.(3)20203|2|8(1)-+-+-.(4)4+|﹣2 | + ( -1 )201718.求下列各式中的x 的值:(1)2810x -=;(2)()3164x -=.19.填充证明过程和理由.如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°(已知),∴AB ∥CD ( ).∴∠B = ( ).又∵∠B =∠D (已知),∴∠D =∠ .∴AD ∥BE ( ).∴∠E =∠DFE ( ).20.如图,()3,2A -,()1,2B --,()1,1C -.将 ABC 向右平移 3 个单位长度,然后再向上平移 1 个单位长度,可以得到 111A B C .(1)画出平移后的 111A B C ,111A B C 的顶点 1A 的坐标为 ;顶点 1C 的坐标为 . (2)求 111A B C 的面积.(3)已知点 P 在 x 轴上,以 1A ,1C ,P 为顶点的三角形面积为 32,则 P 点的坐标为 .21.实数A 在数轴上的对应点A 的位置如图所示,|2||3|b a a =-+-.(1)求b 的值;(2)已知2b +的小数部分是m ,8b -的小数部分是n ,求221++m n 的平方根. 二十二、解答题22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m 2的正方形场地改建成300m 2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二十三、解答题23.已知AB //CD .(1)如图1,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED .求证:∠BED =∠B +∠D ;(2)如图,连接AD ,BC ,BF 平分∠ABC ,DF 平分∠ADC ,且BF ,DF 所在的直线交于点F .①如图2,当点B 在点A 的左侧时,若∠ABC =50°,∠ADC =60°,求∠BFD 的度数. ②如图3,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BFD 的度数.(用含有α,β的式子表示)24.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交又照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度.假定主道路是平行的,即//PQ MN ,且:3:2BAM BAN ∠∠=.(1)填空:BAN ∠=_________;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作ACD ∠交PQ 于点D ,且126ACD ∠=︒,则在转动过程中,请探究BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.25.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明;(2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.26.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】一、选择题1.B解析:B【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】解:∵选项B 中∠1和∠2是由四条直线组成,∴∠1和∠2不是同位角.故选:B .【点睛】本题主要考查的是同位角的定义,掌握同位角的定义是解题的关键.2.C【分析】根据平移的特点即可判断.【详解】将图进行平移,得到的图形是故选C .【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义.解析:C【分析】根据平移的特点即可判断.【详解】将图进行平移,得到的图形是故选C.【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义.3.B【分析】根据点的横纵坐标的符号可得所在象限.【详解】解:∵点P的横坐标是负数,纵坐标是正数,∴点P(-3,1)在第二象限,故选:B.【点睛】本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-).4.A【分析】根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案.【详解】平面内,垂直于同一条直线的两直线平行;故①正确,经过直线外一点,有且只有一条直线与这条直线平行,故②正确垂线段最短,故③正确,两直线平行,同旁内角互补,故④错误,∴正确命题有①②③,共3个,故选:A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.D【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.【详解】解:∵AB//CD,∴∠1=∠2,∵AC平分∠BAD,∴∠2=∠3,∴∠1=∠3,∵∠B=∠CDA,∴∠1=∠4,∴∠3=∠4,∴BC//AD,∴①正确;∴CA平分∠BCD,∴②正确;∵∠B=2∠CED,∴∠CDA=2∠CED,∵∠CDA=∠DCE+∠CED,∴∠ECD=∠CED,∴④正确;∵BC//AD,∴∠BCE+∠AEC= 180°,∴∠1+∠4+∠DCE+∠CED= 180°,∴∠1+∠DCE = 90°,∴∠ACE= 90°,∴AC⊥EC,∴③正确故其中正确的有①②③④,4个,故选:D.【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.6.B【解析】【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答.【详解】选项A,由a>b,b>c,则a>c,可得选项A错误;选项B,若a∥b,b∥c,则a∥c,正确;选项C,由49的平方根是±7,可得选项C错误;选项D,由负数有立方根,可得选项D错误;故选B.【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答.7.C【分析】根据FGB 内角和定理可知FGB ∠的度数,再根据平行线的性质即可求得DEF ∠的度数.【详解】∵BF EG ⊥∴90F ∠=︒∵35B ∠=︒∴180180903555FGB F B ∠=︒-∠-∠=︒-︒-︒=︒∵//AB CD∴55FGB DEF ∠=∠=︒.故选:C【点睛】本题主要考查了三角形内角和定理及平行线的性质,熟练掌握相关角度计算方法是解决本题的关键.8.C【分析】根据正方形的性质找出部分An 点的坐标,根据坐标的变化找出变化规律“A4n +1(−n−1,−n−1),A4n +2(−n−1,n +1),A4n +3(n +1,n +1),A4n +4(n +1,−解析:C【分析】根据正方形的性质找出部分A n 点的坐标,根据坐标的变化找出变化规律“A 4n +1(−n −1,−n −1),A 4n +2(−n −1,n +1),A 4n +3(n +1,n +1),A 4n +4(n +1,−n −1)(n 为自然数)”,依此即可得出结论.【详解】解:观察发现:A 1(−1,−1),A 2(−1,1),A 3(1,1),A 4(1,−1),A 5(−2,−2),A 6(−2,2),A 7(2,2),A 8(2,−2),A 9(−3,−3),…,∴A 4n +1(−n −1,−n −1),A 4n +2(−n −1,n +1),A 4n +3(n +1,n +1),A 4n +4(n +1,−n −1)(n 为自然数),∵2021=505×4+1,∴A 2021(−506,−506)故选C .【点睛】本题考查了规律型:点的坐标,解题的关键是找出变化规律“A 4n +1(−n −1,−n −1),A 4n +2(−n −1,n +1),A 4n +3(n +1,n +1),A 4n +4(n +1,−n −1)(n 为自然数)”.二、填空题9.93【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则 点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开解析:93【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则24.93点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开方数每缩小100倍,则算术平方根就缩小10倍;对于立方根,当被开方数每扩大1000倍,则算术平方根就扩大10倍,当被开方数每缩小1000倍,则算术平方根就缩小10倍.10.(2,﹣1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标解析:(2,﹣1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标变成相反数.【详解】解:点(2,1)关于x轴对称的点的坐标是(2,﹣1),故答案为(2,﹣1).【点睛】熟练掌握关于坐标轴对称的点的坐标特点是本题的解题关键. 关于x轴的对称点,横坐标不变,纵坐标变成相反数.关于y轴的对称点,纵坐标不变,横坐标变成相反数.11.120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),解析:120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,再代入∠DFE=∠BFC=180°-(∠FBC+∠FCB),即可解答.试题解析:∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,∠DFE=180°-(∠FBC+∠FCB ),=180°-60°,=120°;∠DFE 的邻补角的度数为:180°-120°=60°.考点:角的度量.12.100【分析】根据方位角的概念,过点C 作辅助线,构造两组平行线,利用平行线的性质即可求解.【详解】如图,作CE ∥AD ,则CE ∥BF .∵CE ∥AD ,∴=65°.∵CE ∥BF ,∴=35°.解析:100【分析】根据方位角的概念,过点C 作辅助线,构造两组平行线,利用平行线的性质即可求解.【详解】如图,作CE ∥AD ,则CE ∥BF .∵CE ∥AD ,∴DAC ACE ∠=∠=65°.∵CE ∥BF ,∴B CBF E C =∠∠=35°.∴C C A B A E C B E =+∠∠∠=65°+35°=100°.故答案为:100.【点睛】本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线.两直线平行,内错角相等.13.72【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.【详解】解:如图,长方形的两边平行,,折叠,,.故答案为:.【点睛】本题考查了平行线的性质,折叠的解析:72【分析】根据平行线的性质可得13∠=∠,由折叠的性质可知34∠=∠,由平角的定义即可求得2∠.【详解】解:如图,长方形的两边平行,∴13∠=∠,折叠,∴34∠=∠,218034180545472∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:72.【点睛】本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键.14.8【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b++- =a ,a 最大为8;当a <b 时,a ☆b =2a b a b++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.【分析】结合题意,根据坐标的性质分析,即可得到答案.【详解】∵“马”所在的位置的坐标为,“象”所在位置的坐标为∴棋盘中每一格代表1∴“将"所在位置的坐标为,即故答案为:.【点睛】本解析:()1,4【分析】结合题意,根据坐标的性质分析,即可得到答案.【详解】∵“马”所在的位置的坐标为()2,2-,“象”所在位置的坐标为()1,4-∴棋盘中每一格代表1∴“将"所在位置的坐标为()12,4-+,即()1,4故答案为:()1,4.【点睛】本题考查了坐标的知识;解题的关键是熟练掌握坐标的性质,从而完成求解.16.(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点(2,0),点(5,1),(8,2),…,(3n ﹣1,n ﹣1), 点解析:(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点1A (2,0),点3A (5,1),5A (8,2),…,21n A -(3n ﹣1,n ﹣1),点2A (3,2),4A (6,3),6A (9,4),…,2n A (3n ,n +1),∵1000是偶数,且1000=2n ,∴n=500,∴1000A(1500,501),故答案为:(1500,501).【点睛】本题考查了图形与坐标,分类思想,通过发现特殊点的坐标与序号的关系,运用特殊与一般的思想探索规律是解题的关键.三、解答题17.(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根解析:(1)0;(23)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案;(4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案.【详解】解:(1)原式=-3+4-3=-2(2)原式=(3)原式=2+(-2)+1=1(4)原式=2+2-1=3【点睛】本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则.18.(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x的值;(2)方程利用立方根定义开立方即可求出x的值.【详解】解:(1),或.(2),.【点睛】此题考查了解析:(1)9x =或9x =-;(2)5x =【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1)2810x -=2x =81,9x =或9x =-.(2)()3164x -= 14x -=,5x =.【点睛】此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键.19.同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B =∠DCE ,求出 解析:同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B =∠DCE ,求出∠DCE =∠D ,根据平行线的判定得出AD ∥BE ,根据平行线的性质得出即可.【详解】证明:∵∠B +∠BCD =180°( 已知 ),∴AB ∥CD (同旁内角互补,两直线平行),∴∠B =∠DCE (两直线平行,同位角相等),又∵∠B =∠D (已知 ),∴∠D =∠DCE (等量代换),∴AD ∥BE (内错角相等,两直线平行),∴∠E =∠DFE (两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查平行线的判定和性质,掌握同旁内角互补,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等是解题的关键.20.(1)见解析,,;(2)5;(3) 或【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可; (3)设P 点解析:(1)见解析,()0,3,()4,0;(2)5;(3) ()3,0 或 ()5,0【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据111A B C △的面积等于其所在的矩形减去周围几个三角形的面积求解即可;(3)设P 点得坐标为 (),0t ,因为以 1A ,1C ,P 为顶点得三角形得面积为 32, 所以 133422t ⨯⨯-=∣∣,求解即可. 【详解】解:(1) 如图,111A B C △ 为所作.1A (0,3),1C (4,0);(2) 计算 111A B C △ 的面积 111442421435222=⨯-⨯⨯-⨯⨯-⨯⨯=.(3)设P 点得坐标为(t ,0), 因为以 1A ,1C ,P 为顶点得三角形得面积为 32, 所以 133422t ⨯⨯-=∣∣,解得 3t = 或 5t =, 即 P 点坐标为 (3,0) 或(5,0).【点睛】本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.21.(1);(2)【分析】(1)根据A 点在数轴上的位置,可以知道2<a <3,根据a 的范围去绝对值化简即可;(2)先求出b +2,得到它的整数部分,用b +2减去整数部分就是小数部分,从而求出m ;同理可解析:(1)32)【分析】(1)根据A 点在数轴上的位置,可以知道2<a <3,根据a 的范围去绝对值化简即可; (2)先求出b +2,得到它的整数部分,用b +2减去整数部分就是小数部分,从而求出m ;同理可求出n .然后求出2m +2n +1,再求平方根.【详解】解:(1)由图知:23a <<,0a ∴>,30a ->,33∴=-=b a a(2)2325b +==2b ∴+整数部分是3,(532∴=--=-m88(35-=--=+b 8b ∴-的整数部分是6,(561=-=n ,2212()12(21)13m n m n ∴++=++=⨯-+=,221++m n 的平方根为【点睛】本题主要考查了无理数的估算,考核学生的运算能力,解题时注意一个正数的平方根有两个.二十二、解答题22.(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为解析:(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为5am ,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1)400=20(m ),4×20=80(m ),答:原来正方形场地的周长为80m ;(2)设这个长方形场地宽为3am ,则长为5am .由题意有:3a ×5a =300,解得:a =±20,∵3a 表示长度,∴a >0,∴a =20,∴这个长方形场地的周长为 2(3a +5a )=16a =1620(m ),∵80=16×5=16×25>1620,∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二十三、解答题23.(1)见解析;(2)55°;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;②如图解析:(1)见解析;(2)55°;(3)1118022αβ︒-+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数.【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠; (2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠. 即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠, 1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒, 55BFD FBA FDC ∴∠=∠+∠=︒. 答:BFD ∠的度数为55︒;②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠. 即180BFD FBA FDC ∠=︒-∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=, 1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+.答:BFD∠的度数为11 18022αβ︒-+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.24.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【详解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×25=72°,故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t-180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.25.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H∠+∠=∠,证明见解析;(2)证明见解析;(3)解析:(1)EAF EDG AED80∠=︒.EKD【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;α+5°,再根(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°+α+10°+20°,求得据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI =∠BAI =α,则∠BAE =2α,如图3,∵AB ∥CD ,∴∠CHE =∠BAE =2α,∵∠AED =20°,∠I =30°,∠DKE =∠AKI ,∴∠EDI =α+30°-20°=α+10°,又∵∠EDI :∠CDI =2:1,∴∠CDI =12∠EDK =12α+5°,∵∠CHE 是△DEH 的外角,∴∠CHE =∠EDH +∠DEK , 即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK =70°+10°=80°,∴△DEK 中,∠EKD =180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和. 26.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG )-(∠C'DE+∠C'ED )-(∠A'HL+∠A'LH )=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。

【3套打包】邵阳市七年级下册数学期末考试试题(含答案)

【3套打包】邵阳市七年级下册数学期末考试试题(含答案)

最新七年级下册数学期末考试试题【答案】一、选择题(每题3分,共10题,共30分)1.气温由-2℃上升3℃后是()A.-5℃B.1℃C.5℃D.3℃2.下列各式运算正确的是()A.2(a-1)=2a-1 B.a2b-ab2=0C.2a3-3a3=a3D.a2+a2=2a23.下列调查中,适宜采用全面调查方式的是()A.对我国中学生体重的调查B.对我国市场上某一品牌食品质量的调查C.了解一批电池的使用寿命D.了解某班学生的身高情况4.点C在线段AB上,下列条件不能确定点C为线段AB中点的是()A.AB=2AC B.AC=2BC C.AC=BC D.BC=12AB5.如图,点A位于点O的()A.南偏东35°方向上B.北偏西65°方向上C.南偏东65°方向上D.南偏西65°方向上6.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字()A .的B .中C .国D .梦7.式子2285,,2,,5n m x xπ+--中,单项式有( ) A .1个B .2个C .3个D .4个8.有理数a 、b 在数轴上对应的位置如图所示,则下列关系正确的是( )A .-a <-bB .a <-bC .b <-aD .-b <a9.代数式m3+n 的值为5,则代数式-m3-n+2的值为( ) A .-3B .3C .-7D .710.下列说法:①两点之间,线段最短;②正数和负数统称为有理数;③多项式3x2-5x2y2-6y4-2是四次四项式;④一个容量为80的样本最大值是123,最小值是50,取组距为10,则可以分成7组;⑤一个锐角的补角与这个角的余角的差是直角,其中正确的有( ) A .2个B .3个C .4个D .5个二、填空题(每题3分,共10题,共30分)11.四川航空一航班在近万米高空遭遇驾驶舱挡风玻璃破裂脱落,随后安全备降成都双流国际机场.航班事发时距离地面32000英尺,请用科学记数法表示32000为 . 12.计算:18°26′+20°46′=13.多项式5x+2y 与多项式6x-3y 的差是14.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频率是15.写出一个x 的值,使|x-1|=-x+1成立,你写出的x 的值是 16.多项式321232m m m -+-的各项系数之积为 17.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则∠AOC+∠DOB=18.如图,以图中的A 、B 、C 、D 为端点的线段共有 条.19.观察下列图形:它们是按一定规律排列的,依照此规律,第n 个图形共有 个点.20.已知点B 、C 为线段AD 上的两点,AB=12BC=13CD ,点E 为线段CD 的中点,点F 为线段AD 的三等分点,若BE=14,则线段EF=三、解答题(共7题,共60分)21.计算: (1)215132824⎛⎫-+-÷ ⎪⎝⎭ (2)2241233⎛⎫-÷⨯- ⎪⎝⎭22.先化简,再求值:22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中x=-1,y=23. 23.按要求解答 (1)①画直线AB ; ②画射线CD③连接AD 、BC 相交于点P④连接BD 并延长至点Q ,使DQ=BD(2)已知一个角的补角比这个角的余角的3倍少50°,求这个角是多少度24.哈市要对2.8万名初中生“学段人数分布情况”进行调查,采取随机抽样的方法从四个学年中抽取了若干名学生,并将调查结果绘制成了如下两幅不完整的条形统计图和扇形统计图,请根据图中提供的信息解答下列问题:(1)在这次随机抽样中,一共调查了多少名学生?(2)请通过计算补全条形统计图,并求出六年级所对应扇形的圆心角的度数;(3)全市共有2.8万名学生,请你估计全市六、七年级的学生一共有多少万人?25.已知,点O是直线AB上一点,OC、OD为从点O引出的两条射线,∠BOD=30°,∠COD=87∠AOC.(1)如图①,求∠AOC的度数;(2)如图②,在∠AOD的内部作∠MON=90°,请直接写出∠AON与∠COM之间的数量关系;(3)在(2)的条件下,若OM为∠BOC的角平分线,试说明∠AON=∠CON.26.在汶川地震十周年纪念日,某教育集团进行了主题捐书活动,同学们热情高涨,仅仅五天就捐赠图书m万册,其中m与514互为倒数.此时教育集团决定把所捐图书分批次运往市区周边的“希望学校”,而捐书活动将再持续一周.下表为活动结束前一周所捐图书存量的增减变化情况(单位:万册):(1)m的值为.(2)求活动结束时,该教育集团所捐图书存量为多少万册;(3)活动结束后,该教育集团决定在6天内把所捐图书全部运往“希望学校”,现有A、B 两个运输公司,B运输公司每天的运输数量是A运输公司的1.5倍,学校首先聘请A运输公司进行运输,工作两天后,由于某些原因,A运输公司每天运输的数量比原来降低了25%,学校决定又聘请B运输公司加入,与A运输公司共同运输,恰好按时完成任务,求A运输公司每天运输多少万册图书?27.如图,O为原点,数轴上两点A、B所对应的数分别为m、n,且m、n满足关于x、y 的整式x41+myn+60与2xy3n之和是单项式,动点P以每秒4个单位长度的速度从点A向终点B运动.(1)求m、n的值;(2)当PB-(PA+PO)=10时,求点P的运动时间t的值;(3)当点P开始运动时,点Q也同时以每秒2个单位长度的速度从点B向终点A运动,若PQ=12AB,求AP的长.2018-2019学年黑龙江省哈尔滨市香坊区七年级(下)期末数学试卷参考答案与解析一、选择题(每题3分,共10题,共30分)1.【分析】根据有理数的加法,即可解答.【解答】解:-2+3=1(℃),故选:B.【点评】本题考查了有理数的加法,解决本题的关键是熟记有理数的加法.2.【分析】直接利用合并同类项法则判断得出答案.【解答】解:A、2(a-1)=2a-2,故此选项错误;B、a2b-ab2,无法合并,故此选项错误;C、2a3-3a3=-a3,故此选项错误;D、a2+a2=2a2,正确.故选:D.【点评】此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.3.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:对我国中学生体重的调查适宜采用抽样调查方式;对我国市场上某一品牌食品质量的调查适宜采用抽样调查方式;了解一批电池的使用寿命适宜采用抽样调查方式;了解某班学生的身高情况适宜采用全面调查方式;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.【解答】解:A:若点C在线段AB上,AB=2AC,则点C为线段AB的中点;B:若点C在线段AB上,AC=2BC,则点C不是线段AB的中点;C:若点C在线段AB上,AC=BC,则点C为线段AB的中点;D:若点C在线段AB上,BC=12AB,则点C为线段AB的中点..故选:B.【点评】本题考查了两点间的距离,掌握线段中点的定义是本题的关键.5.【分析】根据方位角的概念,结合上北下南左西右东的规定进行判断.【解答】解:由图可得,点A位于点O的北偏西65°的方向上.故选:B.【点评】本题主要考查了方向角,结合图形,正确认识方位角是解决此类问题的关键.方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.6.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”字一面的相对面上的字是“梦”.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.【分析】根据单项式定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式可得答案.【解答】解:式子22,2,5nxπ-是单项式,共3个,故选:C.【点评】此题主要考查了单项式,关键是掌握单项式定义.8.【分析】观察数轴,可知:-1<a<0,b>1,进而可得出-b<-1<a,此题得解.【解答】解:观察数轴,可知:-1<a<0,b>1,∴-b<-1<a<0<-a<1<b.故选:D.【点评】本题考查了数轴,观察数轴,找出a、b、-a、-b之间的关系是解题的关键.9.【分析】观察题中的两个代数式m3+m和-m3-m,可以发现,-(m3+m)=-m3-m,因此可整体代入求值.【解答】解:∵代数式m3+n的值为5,∴m3+n=5∴-m3-n+2=-(m3+n)+2=-5+2=-3故选:A.【点评】本题主要考查代数式的求值,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题目中获取代数式m3+m与-m3-m的关系,然后利用“整体代入法”求代数式的值.10.【分析】根据线段的基本事实、有理数的分类、多项式概念、频数分布直方图中组数的确定及补余角的性质逐一判断可得.【解答】解:①两点之间,线段最短,此结论正确;②正有理数、负有理数和0统称为有理数,此结论错误;③多项式3x2-5x2y2-6y4-2是四次四项式,此结论正确;④一个容量为80的样本最大值是123,最小值是50,取组距为10,则可以分成8组,此结论错误;⑤一个锐角的补角与这个角的余角的差是直角,此结论正确;故选:B.【点评】本题主要考查频数(率)分布表,解题的关键是掌握线段的基本事实、有理数的分类、多项式概念、频数分布直方图中组数的确定及补余角的性质.二、填空题(每题3分,共10题,共30分)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示32000为3.2×104.故答案为:3.2×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度.【解答】解:18°26′+20°46′=38°72′=39°12′.故答案为:39°12′.【点评】此类题考查了度、分、秒的加法计算,相对比较简单,注意以60为进制即可.13.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:(5x+2y)-(6x-3y)=5x+2y-6x+3y=-x+5y,故答案为:-x+5y【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.14.【分析】首先计算出第四项组的频数,然后再利用频数除以总数可得第四组的频率.【解答】解:第四组的频数为:50-2-8-15-5=20,第四组的频率是:2050=0.4,故答案为:0.4.【点评】此题主要考查了频数与频率,关键是掌握频率=频数总数.15.【分析】根据绝对值的非负性,求出x的范围,即可得出结论.【解答】解:∵|x-1|=-x+1且|x-1|≥0,∴-x+1≥0,∴x≤1,故答案为:0(答案不唯一)【点评】此题主要考查了绝对值的非负性,掌握绝对值的非负性,求出x≤1是解本题的关键.16.【分析】根据多项式各项系数的定义求解.多项式的各项系数是单项式中各项的系数,由此即可求解.【解答】解:多项式-2m3+3m2-12m的各项系数之积为:-2×3×(-12)=3.故答案为:3.【点评】此题主要考查了多项式的相关定义,解题的关键是熟练掌握多项式的各项系数和次数的定义即可求解.17【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°-a,所以∠AOC+∠BOD=90°+a+90°-a=180°.故答案为:180°.【点评】本题考查了角度的计算问题,在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.18.【分析】设AB=x,则BC=2x,CD=3x,CE=DE=12CD=32x,由BE=14可求出x的值,由点F为线段AD的三等分点,可得出AF=2x或DF=2x,分AF=2x、DF=2x两种情况找出EF 的长度,此题得解.【解答】解:设AB=x ,则BC=2x ,CD=3x ,CE=DE=12CD=32x ,∵BE=BC+CE=2x+32x=14, ∴x=4.∵点F 为线段AD 的三等分点, ∴AF=13AD=2x 或DF=13AD=2x . 当AF=2x 时,如图1所示,EF=AB+BC+CE-AF=52x=10; 当DF=2x 时,如图2所示,EF=DF-DE=2x=2. 综上,线段EF 的长为2或10. 故答案为:2或10.【点评】本题考查了两点间的距离,分AF=2x 、DF=2x 两种情况找出EF 的长度是解题的关键.19. 【分析】由已知图形中点的个数知点的个数是2的序数倍与6的和,据此可得. 【解答】解:∵第1个图形中点的个数8=2×1+6, 第2个图形中点的个数10=2×2+6, 第3个图形中点的个数12=2×3+6, 第4个图形中点的个数14=2×4+6, ……∴第n 个图形中点的个数为2n+6, 故答案为:2n+6.【点评】此题考查了图形的变化类,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.20. 【分析】按顺序分别写出各线段即可得出答案. 【解答】解:图中的线段有:线段AB ,线段AC ,线段AD ,线段BC ,线段BD ,线段CD ,共6条. 故答案为:6.【点评】本题考查了直线上点与线段的数量关系,线段是直线的一部分,用一个小写字母表示,如线段a ;用两个表示端点的字母表示,如:线段AB (或线段BA ).三、解答题(共7题,共60分)21. 【分析】(1)原式利用除法法则变形,再利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算即可求出值.【解答】解:(1)原式=215328⎛⎫-+- ⎪⎝⎭×24=-16+12-15=-19; (2)原式=3114493-⨯⨯=-. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 【分析】根据整式的运算法则即可求出答案.【解答】解:原式22123122323x x y x y =-+-+ =-3x+y 2 当x=-1,y=23时, 原式=-3×(-1)+49=319 【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23. 【分析】(1)①画直线AB ;②画射线CD ;③连接线段AD 、BC 相交于点P ;④连接BD 并延长至点Q ,使DQ=BD .(2)设这个角是x 度,依据一个角的补角比这个角的余角的3倍少50°,即可得到方程180-x=3(90-x )-50,进而得出结论.【解答】解:(1)如图所示:(2)设这个角是x 度,则180-x=3(90-x )-50,解得:x=20.答:这个角是20度.【点评】本题主要考查了直线,线段和射线以及余角、补角,决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.24.【分析】(1)由九年级学生人数及其所占百分比可得被调查的学生人数;(2)总人数乘以八年级对应百分比求得其人数,根据各年级人数之和等于总人数求得六年级人数,据此补全条形图,再用360°乘以六年级人数所占百分比可得;(3)总人数乘以样本中六、七年级人数对应的比例可得.【解答】解:(1)本次调查的学生人数为25÷25%=100(名);(2)八年级的人数为100×20%=20人,则六年级的人数为100-(25+20+25)=30,补全图形如下:六年级所对应扇形的圆心角的度数为360°×30100=108°;(3)估计全市六、七年级的学生一共有2.8×30+25100=1.54(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.【分析】(1)由题意可知:∠AOD=∠AOC+∠COD,即∠AOC+87∠AOC=150°,即可求解;(2)由图可见:∠AON+20°=∠COM;(3)OM是∠BOC的角平分线,可以求出∠CON=∠MON-∠COM=35°,而∠AON=∠AOC-∠CON=35°,∴∠AON=∠CON.【解答】解:(1)由题意可知:∠AOB=180°,∠BOD=30°,∠AOD=∠AOB-∠BOD=150°,∵∠AOD=∠AOC+∠COD,∠COD=87∠AOC,∴∠AOC+87∠AOC=150°,∴∠AOC=70°;(2)由图可见:∠AON+20°=∠COM,故:答案为:∠AON+20°=∠COM;(3)证明:∵∠AOC=70°,∠AOB=180°,∴∠BOC=∠AOB-∠AOC=110°,∵OM是∠BOC的角平分线∴∠COM=12∠BOC=55°,∵∠MON=90°,∴∠CON=∠MON-∠COM=35°,∵∠AOC=70°,∴∠AON=∠AOC-∠CON=35°,∴∠AON=∠CON.【点评】本题主要考查的是角的计算,角平分线的定义,根据OD的位置进行分类讨论是解题的关键.26.【分析】(1)根据倒数的定义可求出m的值;(2)由(1)的结论结合所捐图书存量的增减变化情况统计表,即可求出活动结束时该教育集团所捐图书的存量;(3)设A运输公司每天运输x万册图书,则B运输公司每天运输1.5x万册图书,根据6天内要运输完成3.3万册图书,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)∵m与514互为倒数,∴m=145=2.8.故答案为:2.8;(2)2.8+0.2+0.1-0.1-0.4+0.3+0.5-0.1=3.3(万册).答:活动结束时,该教育集团所捐图书存量为3.3万册;(3)设A运输公司每天运输x万册图书,则B运输公司每天运输1.5最新人教版七年级(下)期末模拟数学试卷【答案】一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算中,正确的是( )A 、x •x 2=x2 B 、(x +y )2=x 2+y 2 C .(x 2)3=x 6 D 、x 2+x 2=x 4 答案:C考点:整式的运算。

七年级数学下册期末考试卷(带答案解析)

七年级数学下册期末考试卷(带答案解析)

七年级数学下册期末考试卷(带答案解析)一、选择题(本大题共10小题,每小题3分,共30分.)1.下列各组图形中,一个图形经过平移能得到另一个图形的是()A.B.C. D.2.下列各数中是无理数的是()A.B.πC.6.25 D.3.下列运算正确的是()A.=±5 B.|﹣3|=3 C.=3 D.=﹣4 4.下列事件中,最适合采用普查的是()A.对我校七年级一班学生出生日期的调查B.对全国中学生节水意识的调查C.对山东省初中学生每天阅读时间的调查D.对某批次灯泡使用寿命的调查5.不等式4x<3x+1的解集在数轴上表示正确的是()A.B.C.D.6.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.7.如图,a⊥c,b⊥c,若∠1=70°,则∠2等于()A.70°B.90°C.110°D.80°8.如图,下列条件:①∠1=∠5;②∠2=∠6;③∠3=∠7;④∠4=∠8.其中能判定AB∥CD的是()A.①②B.②③C.①④D.②④9.小亮的妈妈用28元钱买了甲乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果多买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.10.已知且0<y﹣x<1,则k的取值范围是()A.﹣1B.0C.0<k<1 D.<k<1二、填空题(本大题共6小题,每小题3分,共18分.)11.的平方根为.12.若+(a﹣1)2=0,则a+b的值为.13.已知点A(0,a)在y轴的负半轴上,则点B(a,a﹣1)在第象限.14.某校对七年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级,根据收集的评价结果绘制了如图所示的统计图,已知图中从左到右的五个长方形的高之比为2:3:3:1:1,评价结果为“A”的学生有68名,则该校七年级学生共有.15.如图,已知AB∥CD,∠BAC与∠ACD的平分线相交于点E,若∠ACE=31°,则∠BAE的度数是.16.关于x的不等式组无整数解,则a的取值范围为.三.解答题(共72分)17.计算:.18.如图,直线AB,CD相交于点O,∠BOC=130°,OE⊥AB于点O,求∠EOD的度数.19.解方程组:(1);(2).20.解不等式组,并把它的解集在数轴上表示出来.21.已知线段AB两端点的坐标为A(2,0),B(0,4),将线段AB平移后得到线段A'B',AB上任意一点P(x,y)平移后的对应点为P'(x+2,y+2).(1)在平面直角坐标系中画出线段AB和A'B';(2)连接OA',OB',求三角形OA'B'的面积.22.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.23.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.24.“地摊经济”已成为社会关注的热门话题,小明从市场得知如下信息:甲商品每件售价为90元,乙商品每件售价为10元,销售1件甲商品和4件乙商品可获得利润45元,销售2件甲商品和3件乙商品可获得利润65元.(1)求甲、乙商品的进货价格;(2)小明计划用不超过3500元的资金购进甲、乙商品共100件进行销售,设小明购进甲商品a件,求a的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于1450元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大,最大利润是多少?25.同学们,我们已学习了角平分线的概念和性质,那么你会用它们解决有关问题吗?(1)如图(1),已知∠AOB,请你画出它的角平分线OC,并填空:因为OC是∠AOB的平分线(已知)所以∠=∠=∠AOB(2)如图(2),已知∠AOC,若将∠AOC沿着射线OC翻折,射线OA落在OB处,请你画出射线OB,射线OC一定平分∠AOB.理由如下:因为∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,所以∠BOC=∠所以射线是∠的角平分线.拓展应用(3)如图(3),将长方形纸片的一角折叠,使顶点A落在C处,折痕为OE,再将它的另一个角也折叠,顶点B落在D处并且使OD过点C,折痕为OF.直接利用(2)的结论;①若∠AOE=60°,求∠EOF的度数.②若∠AOE=m°,求∠EOF的度数,从计算中你发现了∠EOF的度数有什么规律?③∠DOF的补角为;∠DOF的余角为.参考答案与解析一.选择题(共10小题)1.解:各组图形中,选项D中的图形是一个图形经过平移能得到另一个图形,故选:D.2.解:A.5.34是分数,属于有理数,故这个选项不符合题意;B.是无理数,故这个选项符合题意;C.6.25是分数,属于有理数,故这个选项不符合题意;D.是分数,属于有理数,故这个选项不符合题意;故选:B.3.解:A、=5,故本选项错误;B、|﹣3|=3,故本选项正确;C、∵=3,∴≠3,故本选项错误;D、=4,故本选项错误;故选:B.4.解:A、对我校七年级一班学生出生日期的调查适合采用普查;B、对全国中学生节水意识的调查适合采用抽样调查;C、对山东省初中学生每天阅读时间的调查适合采用抽样调查;D、对某批次灯泡使用寿命的调查适合采用抽样调查;故选:A.5.解:4x<3x+1,移项得:4x﹣3x<1,合并同类项得:x<1,在数轴上表示为:故选:C.6.解:线段AD的长表示点A到直线BC距离的是图D,故选:D.7.解:∵a⊥c,b⊥c,∴a∥b,∴∠3=∠1=70°,∴∠2=∠3=70°.故选:A.8.解:①∵∠1=∠5,∴AB∥CD,能判定AB∥CD;②∵∠2=∠6,∴AD∥BC,不能判定AB∥CD;③∵∠3=∠7;∴AD∥BC,不能判定AB∥CD;④∵∠4=∠8,∴AB∥CD,能判定AB∥CD.故选:C.9.解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,根据题意得:,故选:C.10.解:将两个方程相减得到y﹣x=2k﹣1,∵0<y﹣x<1,∴0<2k﹣1<1,解得<k<1.故选:D.二.填空题(共6小题)11.【答案】±【分析】根据平方根的定义求解.【解答】解:的平方根为±=±.故答案为:±.12.【答案】﹣1【分析】直接利用非负数的性质得出b,a的值,即可得出答案.【解答】解:∵+(a﹣1)2=0,∴3b+6=0,a﹣1=0,解得:b=﹣2,a=1,∴a+b=﹣2+1=﹣1.故答案为:﹣1.13.【答案】三【分析】根据点A(0,a)在y轴的负半轴上可得到a<0,再根据各象限内点的坐标特征解答.【解答】解:∵点A(0,a)在y轴的负半轴上,∴a<0,∴a﹣1<0,∴点B(a,a﹣1)在第三象限.故答案为:三.14.【答案】340名【分析】用A等级人数除以其对应权重,再乘以权重之和即可得出答案.【解答】解:该校七年级学生共有68÷2×(2+3+3+1+1)=340(名),故答案为:340名.15.【答案】59°【分析】根据平行线的性质得到∠BAC+∠ACD=180°,再根据角平分线的定义得到∠CAE+∠ACE=90°,根据题意即可得解.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC与∠ACD的平分线相交于点E,∴∠BAE=∠CAE=∠BAC,∠ACE=∠ACD,∴∠CAE+∠ACE=×(∠BAC+∠ACD)=90°,∵∠ACE=31°,∴∠CAE=90°﹣∠ACE=59°,∴∠BAE=59°,故答案为:59°.16.【答案】a≥2【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据“无整数解”这个条件分析答案;另外需考虑不等式组无解的情况.【解答】解:不等式组整理得:不等式组的解集是:a<x<,或a≥时,不等式组无解,∵不等式组无整数解,∴a≥2故答案为:a≥2.三.解答题17.计算:.【分析】首先计算开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:=2﹣﹣3+(﹣4)=﹣2﹣4.18.如图,直线AB,CD相交于点O,∠BOC=130°,OE⊥AB于点O,求∠EOD的度数.【答案】40°.【分析】利用对顶角的性质可得∠AOD=130°,再利用垂直定义计算即可.【解答】解:∵∠BOC=130°,∠AOD与∠BOC是对顶角,∴∠AOD=130°,∵OE⊥AB,∴∠AOE=90°,∴∠EOD=130°﹣90°=40°,即∠EOD的度数是40°.19.解方程组:(1);(2).【答案】(1);(2).【分析】(1)应用代入消元法,求出方程组的解即可.(2)应用加减消元法,求出方程组的解即可.【解答】解:(1),②代入①,可得:y﹣1+2y=8,解得y=3,把y=3代入②,解得x=2,∴原方程组的解是.(2),由②,可得:5x+5y=1③,①×5+③,可得20x=26,解得x=1.3,把x=1.3代入①,解得y=﹣1.1,∴原方程组的解是.20.解不等式组,并把它的解集在数轴上表示出来.【答案】x>2,解集在数轴上的表示见解答.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x+2≥3x,得:x≥﹣1,解不等式2﹣<x,得:x>2,则不等式组的解集为x>2,将不等式组的解集表示在数轴上如下:21.已知线段AB两端点的坐标为A(2,0),B(0,4),将线段AB平移后得到线段A'B',AB上任意一点P(x,y)平移后的对应点为P'(x+2,y+2).(1)在平面直角坐标系中画出线段AB和A'B';(2)连接OA',OB',求三角形OA'B'的面积.【答案】(1)见解答;(2)10.【分析】(1)先利用P点和P′点的坐标特征确定平移的方向与距离,再利用此平移规律写出A′、B′的坐标,然后描点得到线段AB和A'B';(2)用一个矩形的面积分别减去三个直角三角形的面积去计算三角形OA'B'的面积.【解答】解:(1)如图,线段AB和A'B'为所作;(2)三角形OA'B'的面积=4×6﹣×4×2﹣×2×4﹣×6×2=10.22.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.【答案】见试题解答内容【分析】(1)根据第二组频数为21,所占百分比为21%,求出数据总数,再用数据总数减去其余各组频数得到第四组频数,进而补全频数分布直方图;(2)用第三组频数除以数据总数,再乘以100,得到m的值;先求出“E”组所占百分比,再乘以360°即可求出对应的圆心角度数;(3)用3000乘以每周课外阅读时间不小于6小时的学生所占百分比即可.【解答】解:(1)数据总数为:21÷21%=100,第四组频数为:100﹣10﹣21﹣40﹣4=25,频数分布直方图补充如下:(2)m=40÷100×100=40;“E”组对应的圆心角度数为:360°×=14.4°;(3)3000×(25%+)=870(人).即估计该校3000名学生中每周的课外阅读时间不小于6小时的人数是870人.23.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.【答案】见试题解答内容【分析】(1)根据平行线的性质得出∠DAE=∠2,求出∠BAC=∠1,根据平行线的判定得出即可;(2)根据角平分线的定义得出∠BAE=∠CAE,根据∠DAE=∠BEA求出∠BAE=∠EAC=∠DAC,根据平行线的性质得出∠C=∠DAC,求出∠C=∠BAE=∠DAC=35°,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DAE=∠2,∵∠1=∠2,∴∠DAE=∠1,∵∠DAE=∠BAC,∴∠BAC=∠1,∴AB∥DE;(2)解:∵∠DAE=∠BEA,∴∠BAE=∠EAC=∠DAC,∵AD∥BC,∴∠C=∠DAC,∴∠C=∠BAE=∠DAC=35°,∵AE平分∠BAC,∴∠BAC=2∠BAE=70°,∴∠BAD=∠BAC+∠CAD=105°.24.“地摊经济”已成为社会关注的热门话题,小明从市场得知如下信息:甲商品每件售价为90元,乙商品每件售价为10元,销售1件甲商品和4件乙商品可获得利润45元,销售2件甲商品和3件乙商品可获得利润65元.(1)求甲、乙商品的进货价格;(2)小明计划用不超过3500元的资金购进甲、乙商品共100件进行销售,设小明购进甲商品a件,求a的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于1450元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大,最大利润是多少?【答案】(1)甲商品的进货价格为65元,乙商品的进货价格为5元;(2)a的取值范围是0≤a≤50;(3)进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;甲商品进50件,乙商品进50件利润最大,最大利润是1500元.【分析】(1)设甲、乙商品的进货价格分别是x元,y元,根据题意列方程组即可得到结论;(2)设小明购进甲商品a件,由题意列出不等式,即可求解;(3)由获得的利润不少于1450元,列出不等式可求a的范围,可求出答案.【解答】解:(1)设甲、乙商品的进货价格分别是x元,y元,由题意列方程组得:,解得,答:甲商品的进货价格为65元,乙商品的进货价格为5元;(2)设小明购进甲商品a件,由题意得,65a+5(100﹣a)≤3500,解得a≤50,∴a的取值范围是0≤a≤50;(3)由题意可得:(90﹣65)a+(10﹣5)(100﹣a)≥1450,解得:a≥47.5,∴47.5≤a≤50,又∵a为整数,∴a=48,49,50,∴进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;若甲商品进48件,乙商品进52件,利润为(90﹣65)×48+(10﹣5)×52=1460(元),若甲商品进49件,乙商品进51件,利润为(90﹣65)×49+(10﹣5)×51=1480(元),若甲商品进50件,乙商品进50件,利润为(90﹣65)×50+(10﹣5)×50=1500(元),∴当甲商品进50件,乙商品进50件,利润有最大值.利润最大值为1500(元).答:进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;甲商品进50件,乙商品进50件利润最大,最大利润是1500元.25.解:(1)如图1所示:∵OC是∠AOB的平分线,∴∠AOC=∠BOC=∠AOB,故答案为:AOC,BOC,;(2)如图2所示:∵∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,∴∠BOC=∠AOC,∴射线OC是∠AOB的角平分线,故答案为:BOC,OC,AOB;(3))①∵△COE由△AOE翻折而成,△DOF由△BOF翻折而成,∠AOE=60°,∴∠AOE=∠EOC=60°,∠BOF=∠DOF=(180°﹣∠AOE﹣∠EOC)=×60°=30°,∴∠EOF=∠EOC+∠DOF=60°+30°=90°;②∵△COE由△AOE翻折而成,△DOF由△BOF翻折而成,∠AOE=m°∴∠AOE=∠EOC=m°,∠BOF=∠DOF=[180°﹣(∠AOE+∠EOC)]=×[18°﹣2m°]=90°﹣m°,∴∠EOF=∠EOC+∠DOF=m°+90°﹣m°=90°,发现∠EOF始终为90°;③∵由②知,∠DOF=∠BOF,∠BOF+∠AOF=180°,∴∠DOF的补角是∠AOF;∵∠DOF+∠EOC=90°,∴∠DOF的余角是∠EOC和∠AOE,故答案为:∠AOF,∠EOC和∠AOE.。

华师大版 七年级下册期末数学试卷(含答案)

七年级下册期末数学试卷一、选择题(每小题4分,共40分)1.下列方程中,属于一元一次方程的是()A.x+2y=5B.3x+2=0C.2x>3D.4x2=12.下列方程的根是x=1的是()A.B.C.﹣5x=5D.2(x+1)=03.若a>b,则下列不等式中,错误的是()A.a﹣3>b﹣3B.a+3>b+3C.﹣3a>﹣3b D.>4.已知,则a﹣b等于()A.8B.C.2D.15.有些汉字的字形结构具有和谐稳定、均衡对称的美感.下列不属于轴对称图形的是()A.磊B.品C.晶D.畾6.下列正多边形的地板瓷砖中,单独使用一种不能铺满地面的是()A.正三角形B.正方形C.正六边形D.正八边形7.人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等8.解方程时,去分母正确的是()A.18x+2(2x﹣1)=18﹣3(x+1)B.3x+2(2x﹣1)=3﹣3(x+1)C.9x+(2x﹣1)=6﹣(x+1)D.3x+(2x﹣1)=3﹣(x+1)9.△ABC的三条边分别为5、x、7,则x的取值范围为()A.5<x<7B.2<x<12C.5≤x≤7D.2≤x≤1210.如图,∠CAB=25°,CA、CB是等腰△ABC的两腰,将△ABC绕点A顺时针进行旋转,得到△ADE.当点B恰好在DE的延长线时,则∠EAB的度数为()A.155°B.130°C.105°D.75°二、填空题(每题4分,共24分)11.方程2x=﹣6的解是.12.将方程5x+y=2写成用含x的代数式表示y,则y=.13.“x的2倍与3的和大于35”用不等式表示.14.已知△ABC≌△DEF,∠B=120°,∠F=35°.则∠D=度.15.四边形的外角和是°.16.如图,将△ABC沿着AB方向,向右平移得到△DEF.若AE=8,DB=2.则CF=.三、解答题(共86分)17.(8分)解方程:2+5x=8+3x18.(8分)解不等式5x<2(x﹣8)+10,并将解集在数轴上表示出来.19.(8分)已知n边形的内角和等于900°,试求出n边形的边数.20.(8分)我国古代数学著作《九章算术》有如下问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是:今有3人坐一辆车,有2辆车是空的;2人坐一辆车,有9个人需要步行.问人与车各多少?试用列方程(组)解应用题的方法求出问题的解.21.(8分)如图,在正方形网格中,△ABC的三个顶点分别在正方形网格的格点上,△A′B′C′和△ABC关于直线l成轴对称,其中A′点的对应为A点.(1)请画出△A′B′C′,并标出相应的字母;(2)若网格中最小正方形的边长为1,求△A′B′C′的面积.22.(10分)如图,为了美化校园,在长为60米,宽为32米的长方形空地中,沿着平行于长方形各边的方向,分割出三个全等的正方形和两个全等的长方形作为花圃.设小正方形的边长为a米,小长方形的长和宽分别为b米、c米.(1)请用含有a、b、c的代数式表示AB、AD长度;(2)若小正方形的边长恰好是小长方形的宽的2倍,试求出花圃的总面积S.23.(10分)把长方形ABCD沿着EF对折,EF为折痕.对折后,P、C、F三点恰好在同一条直线上,∠DCF=22°.(1)请运用符号“≌”写出图中全等的多边形;(2)试求出∠OEC的度数.24.(13分)已知关于x、y的方程组.(1)当m=2时,请解关于x、y的方程组;(2)若关于x、y的方程组中,x为非负数、y为负数,①试求m的取值范围;②当m取何整数时,不等式3mx+2x>3m+2的解为x<1.25.(13分)如图,将一副三角板的直角顶点重叠在C点.(1)如图①,ED、AB相交于点P,试求∠EPA、∠APD的度数;(2)如图②,Rt△ABC保持不动,将Rt△ECD绕着点C顺时针进行旋转旋转过程中,直线ED 与直线AB的交点设为点P.①设旋转角为x(0<x<90°),试求∠APD的度数(请用含有x的式子表示);②当Rt△ABC与Rt△ECD有一组边互相平行(不含AB∥ED)时,求∠APD的度数.参考答案一、选择题1.B.2.A.3.C.4.C.5.A.6.D.7.C.8.A.9.B.10.C.二、填空题11.x=﹣3.12.2﹣5x.13.2x+3>35.14.25.15.360.16.3三、解答题17.解:2+5x=8+3x,5x﹣3x=8﹣2,2x=6,x=3.18.解:5x<2x﹣16+105x﹣2x<﹣16+103x<﹣6x<﹣2,解集在数轴上表示为:19.解:由题意得(n﹣2)•180°=900°,解得n=7.答:n边形的边数是7.20.解:设车有x辆,则人有3(x﹣2)人,依题意,得:3(x﹣2)=2x+9,解得:x=15,∴3(x﹣2)=39.答:有39人,15辆车.21.解:(1)如图所示:△A′B′C′,即为所求;(2)△A′B′C′的面积为:×2×4=4.22.解:(1)根据题意得:AB=3a+2c,AD=3a+2b.(2)根据题意得:,解得:,∴S=3a2+2bc=3×82+2×18×4=336.答:花圃的总面积S为336平方米.23.解:(1)由翻折可知:四边形ABEF≌四边形POEF.(2)∵四边形ABCD是矩形,∴∠DCB=90°,∵∠DCF=22°,∴∠FCE=68°.∵OE∥CF,∴∠OEC=∠FCE=68°.24.解:(1)把m=2代入方程组中得:,①+②得:2x=10,x=5,①﹣②得:﹣2y=8,y=﹣4,∴方程组的解为:;(2)①,①+②得:2x=18﹣4m,x=9﹣2m,①﹣②得:﹣2y=4+2m,y=﹣2﹣m,∵x为非负数、y为负数,∴,解得:﹣2<m≤;②3mx+2x>3m+2,(3m+2)x>3m+2,∵不等式3mx+2x>3m+2的解为x<1,∴3m+2<0,∴m<﹣,由①得:﹣2<m≤,∴﹣2<m<﹣,∵m整数,∴m=﹣1;即当m=﹣1时,不等式3mx+2x>3m+2的解为x<1.25.解:(1)∵∠BAC=60°,∠E=45°,∴∠EPA=∠BAC﹣∠E=60°﹣45°=15°∴∠APD=180°﹣∠EPA=180°﹣15°=165°;(2)①如图②,在四边形PACD中,∵∠A=60°,∠ACE=x,∠ECD=90°,∠D=45°∴∠APD=360°﹣90°﹣60°﹣45°﹣x=165°﹣x;②分6种情况:1,当AB∥CD时,如图③,∴∠APD+∠D=180°,∵∠D=45°,∴∠APD=135°,2,当ED∥AC时,如图④,∴∠APD+∠A=180°∵∠A=60°∴∠APD=120°3,当AB∥EC时,如图,∴∠APD=∠CED=45°4,当AB∥CD时,如图⑤∴∠APD=∠CDE=45°5,当AC∥DE时,如图⑥∴∠APD=∠BAC=606,当AB∥CE时,如图⑦,此时P与A重合,∠APD=0°综上所述,当Rt△ABC与Rt△ECD有一组边互相平行(不含AB∥ED)时,∠APD的度数为135°或120°或45°或60°或0°.。

人教版七年级数学下册期末统考试题及参考答案(WL县2023)

人教版七年级数学下册期末统考试题及参考答案(WL 县2023学业水平监测)一、选择题:本大题共12个小题;每小题3分,满分36分.1.在−32,−√4,0.23,π3中,无理数为( )A.−32B.−√4C.0.23D.π32.已知a>b,下列变形一定正确的是( )A.5a<5bB.2-a>2-bC.1+2a>1+2bD.ac2>bc23.下列说法中,错误的是( )A.4的算术平方根是2B.8的立方根是±2C.√81的平方根是±3D.立方根等于-1的实数是-14.某中学为了了解学校520名学生的睡眠情况,抽查了其中100名学生的睡眠时间进行统计,下列叙述正确的是( )A.以上调查属于全面调查B.100名学生是总体的一个样本C.520是样本容量D.每名学生的睡眠时间是一个个体5.已知点P 位于y 轴左侧,距y 轴3个单位长度,位于x 轴上方,距离x 轴4个单位长度,则点P 坐标是( )A.(-3,4)B.(3,4)C.(-4,3)D.(4,3)6.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,若∠1=25º,则∠2的度数是( )A.25°B.30°C.35°D.60°7.如图,小明想到A 站乘公交车,发现他与公交车的距离为720m,假设公交车的速度是小明速度的5倍.若要保证小明不会过这辆公交车,则小明到A 站之间的距离最大为( )A.100mB.120mC.180mD.144m8.小华和爸爸一起玩“掷飞镖”游戏.游戏规则:站在5米开外朝飞盘扔飞镖,若小华投中1次得5分,爸爸投中1次得3分.结果两人一共投中了20次,经过计算发现爸爸的得分比小华的得分多4分.设小华投中的次数为x,爸爸投中的次数为y,根据题意列出的方程组正确的是( )A.{x +y =203x +4=5yB.{x +y =203x =5y +4C.{x +y =205x =3y +4 C.{x +y =205x +4=3y9.将一副三角板按如图所示方式放置.结论I:若∠1=45°,则有BC ∥AE;结论Ⅱ:若∠1=30°,则有DE ∥AB;下列判断正确的是( )A.I 和Ⅱ都对B.1和Ⅱ都不对C.I 不对Ⅱ对D.I 对Ⅱ不对10.若不等式组 x<1 x>m-1 恰有两个整数解,则m 的取值范围是( )A.-1≤m<0B.-1<m ≤0C.-1≤m ≤0D.-1<m<011.关于实数a,b,定义一种关于“※”的运算:a ※b=2a+b 3,例如:2※l=2×2+13=413.依据运算定义,若a ※3b=a+1,且12(a+1)※(b-1)=0,则2a+b 的值为( )A.1B.1C.−12D.1212.如图,将7张相同的长方形纸片不重叠的放在长方形ABCD 内,已知小长方形纸片的长为a,宽为b,且a>b,若未被覆盖的两个长方形周长相等,则( )A.a =52bB.a =3bC.a =72bD.a =4b二、填空题:本大题共4个小题,每小题4分,共16分.13.如下图所示,每个小正方形的边长为1,先把中间的正方形剪下来,再将得到的两个长方形沿图中虚线剪开得到4个直角三角形,将剪下的小正方形和4个直角三角形无缝拼接在一起可以得到一个大正方形,大正方形的边长是_______.14.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需325元钱,购甲1件、乙2件、丙3件共需295元钱,那么购甲、乙、丙三种商品各一件共需_______元.15.如图,直角△ABC,沿着点B 到C 点的方向平移到△DEF 的位置,AB=10,DH=3,若阴影部分的面积是42.5,则平移距离为_______.(15题) (16题)16.如图,AB ∥CD,E 为AB 上一点,且EF ⊥CD 垂足为F,∠CED=90°,CE 平分∠AEG 且∠CGE=α,则下列结论:①∠AEC=90°-12α②DE 平分∠GEB ③∠CEF=∠GED ④∠FED+∠BEC=180°;其中正确的有_______.(请填写序号)三、解答题:本大题共6小题:共68分.17.计算(本题共3小题,每小题5分,满分15分)(1)解方程组{5x+y=11 2x−y=1(2)计算:−12023+|√3−2|−√−273+√(−3)2(3)解不等式组:{3x−2≤x+622(x+1)<5x+11并把它的解集在数轴上表示.18.(本题满分9分)如图,在平面直坐标系xOy中,△ABC的三个顶点坐标分別是A(-2,0),B(0,3),C(3,0).(1)请在图中画出这个平面直角坐标系;(2)点A经过平移后的对应点为D(3,-3),将△ABC作同样的平移得到△DEF,使点B的对应点为点E,点C的对应点为点F,请写出点E,点F的坐标并在图中画出平移后的△DEF.(3)在(2)的条件下,点M在直线CD上,若DM=2CM,直接写出点M的坐标.19.(本题满分10分)已知:如图,∠ADC=∠ABC,BE,DF分别平分∠ABC,∠ADC,且∠1=∠2.求证:∠A=∠C20.(本题满分10分)某校开展课后服务,同学们积极参加各种社团活动.小明在全校随机抽取了一部分同学就“我最喜爱的社团项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图(A—象棋社团,B—国画社团,C—气排球社团,D—创意动漫社团,E—其它社团).请你根据图中提供的信息,解答下列问题:(1)小明共抽取了_____名学生;(2)补全条形统计图;(3)在扇形统计图中,“象棋社团”部分对应的圆心角的度数是_____;(4)若全校共有1500名学生,请你估算该校“其它社团”部分的学生人数.21.(本题满分12分)某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B 种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.(1)求A、B两种纪念品的进价分别为多少?(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出后总获利不低于216元,有哪几种进货方案?(3)通过计算说明:在(2)问的前提下应该怎样进货,才能使总获利最大?22.(本燃满分12分)【阅读理解】我们经常过某个点作已知直线的平行线,以便利用平行线的性质来解决问题. 例如:如图1,AB∥CD,点E、F分别在直线AB、CD上,点P在直线AB、CD之间,设∠AEP=∠a,∠CFP=∠β,求证:∠P=∠α+∠B.证明:如图2,过点P 作PQ ∥AB∴∠EPQ=∠AEP=∠α∵PQ ∥AB AB ∥CD∴PQ ∥CD∴∠FPQ=∠CFP=∠β∴∠EPF=∠EPQ+∠FPQ=∠α+∠β即∠P=∠a+∠B可以运用以上结论解答下列问题【类比应用】(1)如图3,已知AB ∥CD,∠D=40°,∠GAB=60°,求∠P 的度数;(2)如图4,已知AB ∥CD,点E 在直线CD 上,点P 在直线AB 上方,连接PA 、PE.设∠A=∠α、∠CEP=∠β,则∠α、∠β、∠P 之间有何数量关系?诸说明理由.【拓展应用】(3)如图5,已知AB ∥CD,点E 在直线CD 上,点P 在直线AB 上方,连接PA 、PE,∠PED 的角平分线与∠PAB 的角平分线所在直线交于点Q,求,∠P+∠Q 的度数.参考答案一、选择题DCBDA CBDDA CC二、填空题13.√514.15515. 516.①②③④三、解答题17.计算(1)127177x y ⎧=⎪⎪⎨⎪=⎪⎩(2)7-√3(3)32x -<≤18(本题满分9分)(1)建立如图1所示坐标系.(2)E (5,0),F (8,-3);如图1,△DEF 为所作.(3)设M (3,t )△DM =2CM△|t +3|=2|t | 即t +3=2t 或t +3=-2t△t =3或t =-1△M 点的坐标为(3,3)或(3,-1)19.(本题满分10分)证明:△BE ,DF 分别平分ABC ∠,ADC ∠△112ABC ∠=∠,132ADC ∠=∠ △ABC ADC ∠=∠(已知)△1122ABC ADC ∠=∠ △13∠=∠△12∠=∠△23∠∠=△AB CD△180A ADC ∠+∠=︒,180C ABC ∠+∠=︒△A C ∠=∠20.(本题满分10分)(1)根据题意得:调查的人数为3015%200÷=(名)(2)创意动漫社团学生数:20020%40⨯=(名)国画社团学生数:20010%20⨯=(名)象棋社团学生数:2002030405060----=(名)补全的图如下:60AB CD=︒40+∠APQ DPQAB CD CEPβ=∠-∠QPE APQβ-︒180。

七年级下学期期末数学试卷(含答案)

七年级下学期期末数学试卷(时间:120分钟 满分:120分)亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 请认真审题,看清要求,仔细答题,要相信我能行。

一、认真填一填:(每题3分,共30分)1、剧院里5排2号可以用(5,2)表示,则(7,4)表示 。

2、不等式-4x ≥-12的正整数解为 .3、要使4 x 有意义,则x 的取值范围是_______________。

4、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_______________________.5、如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。

6、等腰三角形一边等于5,另一边等于8,则周长是_________ .7、如图所示,请你添加一个条件....使得AD ∥BC , 。

8、若一个数的立方根就是它本身,则这个数是 。

9、点P (-2,1)向上平移2个单位后的点的坐标为 。

10、某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%。

问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为 。

二、细心选一选:(每题3分,共30分) 11、下列说法正确的是( )A 、同位角相等;B 、在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c 。

C 、相等的角是对顶角;D 、在同一平面内,如果a ∥b,b ∥c ,则a ∥c 。

12、观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )12.长为9,6,5,3的四根木条,选其中三根组成三角形,共有( )种选法.A .4B .3C .2D .113、有下列说法:(1) A B C DE C DBA C BA(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页
2019年七年级数学下册期末试卷(含答案)
距离期末考试还有不到一个月的时间了,在这段时间内
突击做一些试题是非常有帮助的,下文整理了七年级数学下
册期末试卷,希望对大家有所帮助!查字典数学网预祝大家
取得好成绩!
一、选择题(每小题3分,共24分)
1、下列等式成立的是【 】
A、-|-3|=3 B、-(-3)3=(-3)3 C、-{-[-(-3)]}=|-3| D、
-32=(-3)2
2、若有理数a满足|a|=-a,则a的取值范围是【 】
A、a=-1 B、a C、a=0 D、a0
3、如图,已知几何体由5个相同的小正方体组成,那么它
的左视图是【 】.
4、如图,C,D是线段AB上两点,若CB=4 cm,DB=7 cm,
且D是AC的中点,则AC的长等于【 】.
A、3 cm B、6 cm C、11 cm D、14 cm
5、若A=2019,B=201930,C=20.25,则【 】.
A、 B、C
C、 D、B
如图,已知l1∥l2,且1=120,则2=【 】.
A、40 B、50 C、60 D、70
7、如图,将一张长方形纸片如图所示折叠后,再展开,如
第 2 页

果1=56,
那么2等于【 】
A、56 B、68 C、62 D、66
8、如图,一条公路修到湖边时,需拐弯绕道而过,如果第
一次拐的角A=120,第二次拐的角B是150,第三次拐的角
是C,这时的道路恰好和第一次拐弯之前的道路平行,则C
是【 】.
A、120 B、130 C、140 D、150
得分评卷人
二.填填看(每题3分,共21分)
9、比较大小:(1)、-5 -4;(2)、 .
10、小刚每晚19:00都要看中央电视台的新闻联播节目,这
时钟面上时针与分针夹角的度数为____________。
11、(1)、9218-6054= ;
(2)、22.5=______度_____分
12、如图,直线AB、CD相交于点O,OEAB,O为垂足,如果
EOD = 32,则AOC =
COB = 。
13、如上图,在线段AD上有两点B、C,则图中共有__________
条线段,若路线A、D之间
有两个站点B、C,则应该共印刷________种车票.
如果与互为余角,且是的3倍,则=_______度。
第 3 页

15、如图,按虚线剪去长方形纸片的相邻两个角,并使1=120,
ABBC,那么2的度数为__________.
得分评卷人
三:解答题(本大题共7个小题,共计75分)
16、(10分)、填空并在括号内加注理由。(每空1分,共10
分)
如右图,已知DE∥BC,DF、BE分别平分ADE和ABC
求证:FDE=DEB
证明:∵DE∥BC
ADE = ( )
∵DF、BE平分ADE、ABC
ADF=
ABE = ( )
ADF =ABE
FDE= ( )
17、(12分)、如图,于点,于点,.请问:平分吗?若平分,
请说明理由.
18、(13分)某校校长在国庆节带领该校市级三好学生外出旅
游,甲旅行社说如果校长买一张票,则其余学生可享受半价
优惠,乙旅行社说包括校长在内全部按票价的6折优惠(即
按票的60%收费)。现在全票价为240元,学生数为5人,请
算一下哪家旅行社优惠?如果是一位校长,两名学生呢?如果
第 4 页

是一位校长,x名学生呢?(用含x的代数式表示甲、乙两家
旅行社的收费)
19、(12分)如图,一只蚂蚁从O点出发,沿北偏东30方向
爬行2.5cm,碰到障碍物B后,又沿西北方向爬行3cm到达
C处.
(1)画出蚂蚁爬行的路线.
(2)求OBC的度数.
20、(13分)如图,已知点在同一直线上,分别是线段的中点.
(1)若,,求的长;
(2)若,,求的长;
(3)若,,求的长;;
21、(本题15分)如图:三角形ABC中, BE、CF分别是ABC
和ACB的平分线,BE、CF相交于点O(知识链接:三角形三
个内角的和是180度。如图A是三角形ABC的一个内角)
(1)如果A=40度求BOC的度数。(6分)
(2)如果A=50度直接写出BOC的度数(3分)
(3)探求A和BOC的关系(用等式表示),并简要说明理由。
(6分)
期末
数学试题答案
选择题:1,C; 2,D; 3,A; 4,B; 5,A; 6,C; 7,B; 8,D;
填填看;9,, 10, 150;11,3124,
第 5 页

2230 12, 58,122 13, 6, 12 ; 14, 67.5
15,150
解答题16 、ABC,两直线平行,同位角相等.ADEABC 角平分
线的定义.
DF、BE,同位角相等,两直线平行.DEB,两直线平行,内错
角相等.
17题、.证明:因为于,于(已知),
所以(垂直的定义),
所以∥(同位角相等,两直线平行),
所以(两直线平行,内错角相等),(两直线平行,同位角相
等).
又因为(已知),所以(等量代换).
所以平分(角平分线的定义).
18、解 甲社总费用为:240+240550%=840(元),乙社总费用
为:240660%=864(元)
所以甲社优惠.
若1名校长,2名学生,那么:
甲社总费用为:240+240250%=480(元),乙社总费用
为:240360%=432(元)
所以乙社优惠.
若1名校长,x名学生,那么:甲社总费用
为:240+240x50%=240+120x
第 6 页

乙社总费用为:240(x+1)60%=144x+144
19.解.(1)图略;(2)105
20. 解:(1)因为点在同一直线上,分别是的中点,
所以.
而,,,所以.
(2)根据(1)得.
(3)根据(1)得.
21、(1)∵ABC+ACB=180A=40ABC+ACB=140
∵EBC=1/2ABC FCB=1/2ACB EBC+FCB=1/2(ABC+ ACB)=70
BOC=180-70=110。(2)BOC=115(3)BOC=90+1/2A.理由同(1)
以上就是编辑老师为各位同学准备的七年级数学下册期末
试卷,希望对大家有所帮助!

相关文档
最新文档