上海市静安区2015-2016学年八年级(下)期末数学试卷(解析版)
15-16第二学期期末八年级数学答案

2015-2016学年第二学期期末八年级数学答案 第1页(共2页)2015—2016学年第二学期期末考试八年级数学试题参考答案及评分标准二、填空题(每小题2分,共10分)16.> 17.100 18.x >1 19.15° 或105° (只填一个答案不能得分) 20.241cm n (无单位不能得分) 三、解答题(本大题共6个小题;共60分) 21.(本题满分12分,每小题3分)(1)12 (2)2 (3)0 (4)ab 2-(以上四个小题,如果结果不正确便不能得分) 22.(本题满分8分)(1)证明:∵四边形ABCD是正方形 ∴AD ∥BC∴∠E=∠DAE---------------------------------------------------2分 ∵AC=EC∴∠E=∠CAE -------------------------------------------------4分 ∴∠DAE =∠CAE即AE 平分∠CAD --------------------------------------------5分 (2)解: ∵正方形ABCD 是正方形且边长为1 ∴∠B=90° AB=BC=1 ∴ EC =AC==--------------------------------7分∴BE=1+∴△ABE 的面积是(1+) ---------------------------8分(其他做法参照此评分标准酌情给分) 23. (本题满分10分) 解:(1)10 ----------------------------------------------------------2分 (2)∵A (1,0),B (9,0),AD=6.∴D (1,6). 将B ,D 两点坐标代入y=kx+b 中, 得, ----------------------------------------4分解得 ,---------------------------------------------6分∴. ----------------------------------8分(3)或.----------------------10分(只答对一个给1分)(第22题图)(第23题图)2015-2016学年第二学期期末八年级数学答案 第2页(共2页)24、(本小题满分10分) 解:(1)甲厂的平均数=(7+8+9+9+9+11+13+14+16+17+19)÷11=12,∴甲厂的广告利用了统计中的平均数;---------------------------------------------------------2分 由于乙厂数据中12出现3次,是众数,故乙厂的广告利用了统计中的众数;------4分 丙厂数据中的中位数是12,故丙厂的广告利用了统计中的中位数;-------------------6分(2)选用甲厂的产品.因为它的平均数较真实地反映灯管的使用寿命.----------10分(如果考生回答选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过12个月,可得满分;如果只回答选用乙厂的产品,有适当理由也不扣分,如果没有适当理由则扣1--2分。
上海市静安区2016学年第二学期期末教学质量调研含答案

静安区2016学年第二学期期末教学质量调研八年级 数学试卷 2017.6(完成时间:100分钟 满分:120分 )一.选择题(本大题共6题,每题3分,满分18分) 【每题只有一个正确选项,在答题纸相应位置填涂】1.下列等式一定成立的是……………………………………………………………( ▲ ) A .5757=; B=; CD=5π-. 2.下列方程中,有实数解的方程是…………………………………………………( ▲ )A10=;B .4210x -=; C. 2360x x ++=; D .111xx x =--. 3.下列事件为必然事件的是…………………………………………………………( ▲ )A .抛掷一枚硬币,落地后正面朝上;B .篮球运动员投篮,投进篮筐;C .从一副扑克牌中抽取16张,出现不同花色;D .打开电视机,正在播放新闻. 4.下列命题是假命题的是 …………………………………………………………( ▲ ) A .两条对角线互相平分的四边形是平行四边形; B .两条对角线相等的平行四边形是矩形; C .两条对角线互相垂直的平行四边形是菱形;D .两条对角线互相垂直且相等的四边形是正方形. 5.一条直线y kx b =+,其中5k b +=-,6kb =,那么该直线经过的象限是…( ▲ ) A .第一、二、三象限; B .第一、二、四象限; C .第一、三、四象限; D .第二、三、四象限.6.如图,在梯形ABCD 中,AD ∥BC ,AC 和BD 相交于点P ,那么下列命题中,错误的是………………………………………………………………………………………( ▲ ) A .如果|AB |=|DC |,那么梯形ABCD 是等腰梯形; B .如果|PB |=|PC |,那么梯形ABCD 是等腰梯形; C .如果梯形ABCD 是等腰梯形,那么AB =DC ; D .如果|AB |=|DC |,那么|AC |=|BD |.二.填空题(本大题共12题,每题3分,满分36分) 【请将结果直接填入答题纸的相应位置上】CADBP第6题7.方程510x -=的根是 ▲ .8.如果关于x 的方程(1)10m x -+=有实数解,那么m 的取值范围是 ▲ .9.已知方程2213+21x x x x +=+,如果设y x x=+12,那么原方程可以变形为关于y 的整式方程 是 ▲ .10.方程(2)30x x --=的解是 ▲ .11.已知一元二次方程0352=+-x x 的两根是1x 和2x ,那么2121x x x x -+的值是 ▲ . 12.一个n 边形,它的内角和等于五边形内角和的2倍,那么n 的值是 ▲ . 13.一次函数y kx b =+的图像如图所示,那么不等式0kx b +<的解集是 ▲ .14.某工厂计划用两年时间把原产量从100台增加到500台,已知每年产量增长的百分率相同.设每年产量增长的百分率为x ,可列出的方程为 ▲ .15.在一个不透明的盒子中装有2个红球和3个白球,这些球除了颜色外无其他差别.现从这个盒子中同时任意摸出2个球,那么摸到1个红球和1个白球的概率是 ▲ .16.商店统计某商品销售金额y (元)随着销售量x (千克)的变化情况如图所示.请写出当 x >40(千克)时,销售金额y (元)与销售量x (千克)的函数关系式是 ▲ .(不写定义域) 17.如果菱形的周长为20厘米,且它的一个内角为30°,那么菱形的面积是 ▲ 平方厘米. 18.如图,梯形ABCD 中,∠D=90°,AB ∥CD ,将线段CB 绕着点B 按顺时针方向旋转,使点C 落在CD 延长线上的点E 处.联结AE 、BE ,设BE 与边AD 交于点F ,如果AB =4,且12AEF ABF S S ∆∆=,那么梯形ABCD 的中位线等于 ▲ .第18题BADC第16题y (元)x (千克)第13题Oxy -2119.附加题(本题最高得3分,当整卷总分不满120分时,计入总分,整卷总分不超过120分)在平面直角坐标系xOy 中,若点P ,Q 为某个菱形相邻的...两个顶点,且该菱形的两条对角线所在的直线分别与x 轴或y 轴垂直,则称该菱形为点P ,Q 的“相关菱形”.如图为点P ,Q 的“相关菱形”的一个示意图.已知点A 的坐标为(1,5),点B 的坐标为(b ,0),如果点A ,B 的“相关菱形”为正方形,那么b 的值是 ▲ .三.解答题(本大题共8题,满分66分) 【将下列各题的解答过程,做在答题纸上】 20.(本题满分8,其中1a =,1b =.21.(本题满分81x =.22.(本题满分8分)解方程组:22240()3()20x y x y x y ⎧-=⎪⎨---+=⎪⎩23.(本题满分8分,第(1)小题2分,第(2)小题4分,第(3)小题2分)如图,在平行四边形ABCD 中,点E 、F 分别在边AB 和CD 上,EF //AD ,且点E 是AB 的中点,联结AF 、DE 、EC .(1)写出图中与AF 相等的向量: ▲ ; (2)如果=AB a ,=AD b ,请用a 、b 分别表示:EC = ▲ ; DE = ▲ ;(3)求作:DE AF BC +-.(请在原图上求作,不要求写作法,但要写出结论)24.(本题满分8分,第(1)小题6分,第(2)小题2分)某公司计划生产1200件新产品,现有甲、乙两家厂都具备加工能力.已知甲厂单独加工完成这批新产品比乙厂单独加工完成这批新产品少用10天;甲厂每天加工数量比乙厂每天加工数量多10件.求:(1)甲、乙两厂每天分别加工多少件产品?(2)如果公司要求甲乙两家工厂合作完成这批新产品的加工任务,那么至少需要多少天?(不满1天的,以1天时间计算)① ②BDFCAE第23题25.(本题满分8分,第(1)小题4分,第(2)小题4分)如图,在△ABC 中,点E 在边AC 上,且AE =2CE ,点D 、F 分别是边AB 和BE 的中点,设DC 与BE 相交于点G .(1) 求证:四边形CEDF 是平行四边形; (2) 如果DG =12BF ,求∠EDF 的度数.26.(本题满分8分,第(1)小题3分,第(2)小题5分)如图,直角坐标平面中,已知点A (2-,0),点B 在第一象 限,点B 的纵坐标是横坐标的6倍,且在反比例函数6y x=的图像 上,作BC ⊥x 轴,垂足为点C .(1)求直线AB 的表达式;(2)如果点E 在第一象限的反比例函数6y x=图像上, 点F 在直线AB 上,使四边形BCEF 为平行四边形,请分别 求出点E 和点F 的坐标.27.(本题满分10分,第(1)小题3分,第(2)小题3分,第(3)小题4分)如图,在平行四边形ABCD 中,点P 是对角线BD 上一个动点,且满足P A =PC . (1)求证:四边形ABCD 是菱形;(2)如果AB =6,∠ABC =60°,设BP =x ,AP =y ,求y 关于x 的函数解析式,并写出定义域; (3)在第(2)题的条件下,延长AP 交射线BC 于点E .当△EPC 是直角三角形时,求BP 的长.(第(3)小题请在答题纸上直接写出答案)第25题ADBC EFG第27题AB CDPABCD备用图第26题O ABCxy八年级第二学期数学期末调研参考答案及评分标准2017.6一、选择题(本大题共6题,每题3分,满分18分)1.A ; 2.B ; 3.C ; 4.D ; 5.D ; 6.C . 二、填空题(本大题共12题,每题3分,满分36分)7.1x =; 8.1m ≠; 9. 23210y y -+= 10.3x =;11.2; 12.8; 13.2x <-; 14.2100(1)500x +=;15.35; 16.10200y x =+; 17.252; 18.7; 19.64或-.三、解答题(本大题共8题,满分66分)20.解:原式⎛⎫÷+ …………………………………………(2分)=……………………………………………………………………………(2分)=………………………………………………………………………(1分)(1分)当1a =,1b =时,得:原式1=.…………………………………………………………(2分)211x =- …………………………………………………………………(1分)22251x x -=-()…………………………………………………………………(1分) 222521x x x -=-+ …………………………………………………………(1分) 222240x x --=2120x x --= …………………………………………………………………(1分)(4)(3)0x x -+= ………………………………………………………………(1分)124,3x x ==- ……………………………………………………………………(2分)经检验:3x =-是增根.4x =是原方程的根. ……………………………………(1分)所以原方程的根是4x =.22.解:由①得 20x y -=或20x y +=, …………………………………………………(2分)由②得 10x y --=或20x y --=, ……………………………………………(2分)原方程组可化为20,10;x y x y -=⎧⎨--=⎩20,20;x y x y -=⎧⎨--=⎩20,10;x y x y +=⎧⎨--=⎩⎩⎨⎧=--=+0202y x y x 解这四个方程组得原方程组的解为12122,4,1;2;x x y y ==⎧⎧⎨⎨==⎩⎩343424,,3312;.33x x y y ⎧⎧==⎪⎪⎪⎪⎨⎨⎪⎪=-=-⎪⎪⎩⎩………(4分)23. (1)EC ; …………………………………………………………………………(2分)(2) EC = 12a b + ;DE = 12a b - ;…………………………(2+2分) (3)正确作出图形 ……………………………………(1分)∴图中DB 为所求向量. …………………………(1分)24.解:(1)设乙厂每天加工数量是x 件, ……………………………………………(1分) 根据题意,得1200120010+10x x -=. ………………………………………………………(2分) 2+1012000x x -=,130x =,或240x =-. …………………………………………………………………(1分)经检验: 130x =,240x =-都是方程的解,但240x =-不符合题意,舍去.……………(1分)4010=+x …………………………………………………………………(1分)答:甲厂每天加工数量是40件,乙厂每天加工数量是30件. (2)甲乙合作需要天数:()1200120=1830+407≈天…………………………………………………(2分)答:甲乙合作至少需要18天第23题25.(1)∵点D 、F 分别是边AB 和BE 上的中点∴DF 是△AEB 的中位线∴DF ∥AC ,AE=2DF ………………………………………………………………………(2分) ∵AE=2EC∴EC=DF ……………………………………………………………………………………(1分) ∴四边形CEDF 是平行四边形; ……………………………………………………(1分) (2) ∵四边形CEDF 是平行四边形∴DG =12DC ,……………………………………………………………………………(1分) ∵DG =12BF∴BF =DC又∵EF=BF∴CD=EF …………………………………………………………………………………(1分) ∴平行四边形CEDF 是矩形 …………………………………………………………(1分) ∴∠EDF =90°…………………………………………………………………………(1分) 26.解:(1)∵点B 的纵坐标是横坐标的6倍,且点B 在第一象限∴点B (1,6) ………………………………………………………………(1分)设AB 为:y kx b =+,分别把点A 和点B 坐标代入,得:026k b k b =-+⎧⎨=+⎩,解得24k b =⎧⎨=⎩∴直线AB 的解析式是24y x =+ . ………………(2分) (2)设点E 6,x x() ,F ,24x x +(),当EF ∥BC EF=BC 时四边形BCEF 是平行四边形第25题ADBC EF GyOABCxEF∴66=24x x+- ……………………………………………(1分)解得:121122x x +==………………(1分)经检验: 121122x x +==212x =不符合题意,舍去.…(1分)∴E),F )…………………………………………(2分)27.解:(1)联结AC 交BD 于O ∵平行四边形ABCD∴AO=CO ………………………………………………………………………………………(1分) ∵AP=CP∴点P 和点O 在线段AC 的垂直平分线上即BD ⊥AC ………………………………………………………………………………………(1分) ∴平行四边形ABCD 是菱形…………………………………………………………(1分) (2)∵菱形ABCD ,且∠ABC =60° ,AB =6,BD ⊥AC ∴∠ABP =30°,AO =3,BO =DO =33, 又∵BP =x ,∴PO =x -33 又∵AP =y ,在Rt △AOP 中,222PO AO AP +=222)33(3x y -+=……………………………………………………(1分)36362+-=x xy =…………………………………………………………………………………(1分)定义域0x ≤≤ …………………………………………………………………………………(1分)(3)点E 在BC 上时:∠PEC =90°,BP ;∠EPC =90°,BP 3;点E 在BC 延长线上时:∠PCE =90°,BP ;∠CPE =90°,BP +3.∴△EPC 是直角三角形时BP 的长为-3、.…………(1+1+1+1分)。
上海市静安区2017-2018学年八年级下期末数学试卷及答案解析

上海市静安区2017-2018学年八年级下期末数学试卷及答案解析2017-2018学年上海市静安区八年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)1.当a<时,|a-1|等于()A。
a+1 B。
-a-1 C。
a-1 D。
1-a2.下列方程中,是无理方程的为()A。
B。
C。
D.3.某市出租车计费办法如图所示。
根据图象信息,下列说法错误的是()A。
出租车起步价是10元B。
在3千米内只收起步价C。
超过3千米部分(x>3)每千米收3元D。
超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+44.下列关于向量的运算,正确的是()A。
B。
C。
D.5.有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同。
下列事件中属于确定事件的是()A。
从袋子中摸出1个球,球的颜色是红色B。
从袋子中摸出2个球,它们的颜色相同C。
从袋子中摸出3个球,有颜色相同的球D。
从袋子中摸出4个球,有颜色相同的球6.已知四边形ABCD中,AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A。
AC=BD=BC B。
AB=AD=CD C。
OB=OC,AB=CD D。
OB=OC,OA=OD二、填空题(本大题共12题,每题3分,满分36分)7.x+1的图象经过一、二、三象限,那么常数k的取值范围是______。
8.方程x^3+1=0的根是______。
9.方程的根是______。
10.用换元法解方程组时,如果设x=u-v,y=u+v,那么原方程组可化为关于u、v的二元一次方程组是______。
11.已知函数f(x)=x+1,那么f(2a-1)的值是______。
12.3、4这三个数字中任选两个组成两位数,从中选出一个数,这个数是素数的概率是______。
13.如果一个n边形的内角和是1440°,那么n=______。
14.如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为______。
2015-2016学年初二数学第二学期期末试卷带答案

八年级数学期末考试卷2016.6注意事项:1.本卷考试时间为100分钟,满分100分.2. 请把试题的答案写在答卷上,不要写在试题上。
2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、选择题(本大题共10小题,每小题2分,共20分.)1.下列根式中,与是同类二次根式的是(▲) A . B . C . D .2.下列图标中,既是中心对称图形又是轴对称图形的是(▲)A .B .C .D .3.在代数式、、、、、a+中,分式的个数有(▲)A .2个B .3个C .4个D .5个4.为了解一批电视机的使用寿命,从中抽取100台进行试验,这个问题的样本是(▲) A .这批电视机 B .这批电视机的使用寿命 C .抽取的100台电视机的使用寿命 D .100台5.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,AC=12,F 是DE 上一点,连接AF ,CF ,DF=1.若∠AFC=90°,则BC 的长度为(▲) A .12 B .13 C .14 D .156.函数(a 为常数)的图象上有三点(﹣4,y 1),(﹣1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是(▲)A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 1 7.下列一元二次方程没有实数根的是(▲)A .x 2+2x+1=0B .x 2+x+2=0C .x 2﹣1=0D .x 2﹣2x ﹣1=0第5题图第10题图8.若分式方程+1=有增根,则a 的值是(▲)A .4B .0或4C .0D .0或﹣49.在△ABC 中,∠C =90°,AC 、BC 的长分别是方程x 2﹣7x +12=0的两根,△ABC 内一点P 到三边的距离都相等,则PC 长为 (▲)A .1B .2C .223 D .22 10.如图,在坐标系中放置一菱形OABC ,已知∠ABC=60°,点B 在y 轴上,OA=1.将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B 的落点依次为B 1,B 2,B 3,…,则B 2014的坐标为(▲)A .(1343,0)B .(1342,0)C .(1343.5,)D .(1342.5,)二、填空题(本大题共8小题,每空2分,共20分.)11.若二次根式5-x 在实数范围内有意义,则x 的取值范围是 ▲ ;若分式392+-x x 的值为0,则x 的取值是__▲_.12.关于x 的一元二次方程(a -1)x 2+x +||a -1=0的一个根是0,则实数a 的值是▲ . 13.某种油菜籽在相同条件下的发芽试验结果如下:由此可以估计油菜籽发芽的概率约为_▲_(精确到0.01),其依据是__▲_. 14.若实数a 、b 、c 在数轴的位置,如图所示,则化简= ▲ .15.已知点P (a ,b )是反比例函数y=图象上异于点(﹣1,﹣1)的一个动点,则ba +++1212= ▲ . 16.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1,反比例函数xy 3=的图像经过A ,B 两点,则菱形ABCD 的面积为 ▲ .第17题图17.如图,直线y 1=﹣x+b 与双曲线y 2=交于A 、B 两点,点A 的横坐标为1,则不等式 ﹣x+b <的解集是 ▲ .18.在平面直角坐标系中,O 为坐标原点,B 在x 轴上,四边形OACB 为平行四边形,且 ∠AOB =60°,反比例函数ky x=(k >0)在第一象限内过点A ,且与BC 交于点F 。
人教版八年级数学下册上海市静安区期末试卷

初中数学试卷2015-2016学年上海市静安区八年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1.当a<0时,|a﹣1|等于()A.a+1 B.﹣a﹣1 C.a﹣1 D.1﹣a2.下列方程中,是无理方程的为()A.B.C.D.3.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+44.下列关于向量的运算,正确的是()A.B.C.D.5.有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同.下列事件中属于确定事件的是()A.从袋子中摸出1个球,球的颜色是红色B.从袋子中摸出2个球,它们的颜色相同C.从袋子中摸出3个球,有颜色相同的球D.从袋子中摸出4个球,有颜色相同的球6.已知四边形ABCD中,AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CD C.OB=OC,AB=CD D.OB=OC,OA=OD二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置上】7.如果一次函数y=(k﹣2)x+1的图象经过一、二、三象限,那么常数k的取值范围是.8.方程x3+1=0的根是.9.方程的根是.10.用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.11.已知函数,那么=.12.从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数是素数的概率是.13.如果一个n边形的内角和是1440°,那么n=.14.如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是AC、AB边的中点,那么△CDE的周长为.16.如图,已知正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,点F为垂足,那么FC=.17.一次函数y=x+2的图象经过点A(a,b),B(c,d),那么ac﹣ad﹣bc+bd的值为.18.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD 绕点A旋转后得到梯形AB1C1D1,其中B、C、D的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,那么DD1的长为.附加题(本题最高得3分,当整卷总分不满120分时,计入总分,整卷总分不超过120分)19.如果关于x的方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,那么m=.三、解答题(本大题共8题,满分66分)[将下列各题的解答过程,做在答题纸上]20.先化简,再求值:,其中x=.21.解方程:.22.解方程组:.23.如图,在梯形ABCD中,AD∥BC,BC=2AD,过点A作AE∥DC交BC于点E.(1)写出图中所有与互为相反向量的向量:;(2)求作:、.(保留作图痕迹,写出结果,不要求写作法)24.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.25.某公司生产的新产品需要精加工后才能投放市场,为此王师傅承担了加工300个新产品的任务.在加工了80个新产品后,王师傅接到通知,要求加快新产品加工的进程,王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务.问接到通知后,王师傅平均每天加工多少个新产品?26.在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A、与反比例函数(k是常数,k≠0)的图象交于点B(a,3),且这个反比例函数的图象经过点C(6,1).(1)求出点A的坐标;(2)设点D为x轴上的一点,当四边形ABCD是梯形时,求出点D的坐标和四边形ABCD 的面积.27.已知:如图,在矩形ABCD中,AB=3,点E在AB的延长线上,且AE=AC,联结CE,取CE的中点F,联结BF、DF.(1)求证:DF⊥BF;(2)设AC=x,DF=y,求y与x之间的函数关系式,并写出定义域;(3)当DF=2BF时,求BC的长.2015-2016学年上海市静安区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1.当a<0时,|a﹣1|等于()A.a+1 B.﹣a﹣1 C.a﹣1 D.1﹣a【考点】绝对值.【分析】根据负有理数的绝对值是它相反数得结论做出正确判断.【解答】解:当a<0时,即a<1,则|a﹣1|=1﹣a;故选D.2.下列方程中,是无理方程的为()A.B.C.D.【考点】无理方程.【分析】可以判断各选项中的方程是什么方程,从而可以得到哪个选项是正确的.【解答】解:是一元二次方程,是无理方程,=0是分式方程,是一元一次方程,故选B.3.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4【考点】一次函数的应用.【分析】根据图象信息一一判断即可解决问题.【解答】解:由图象可知,出租车的起步价是10元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4,超过3千米部分(x>3)每千米收2元,故A、B、D正确,C错误,故选C.4.下列关于向量的运算,正确的是()A.B.C.D.【考点】*平面向量.【分析】由三角形法则直接求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、+=,故本选项正确;B、﹣=,故本选项错误;C、﹣=,故本选项错误;D、﹣=,故本选项错误.故选:A.5.有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同.下列事件中属于确定事件的是()A.从袋子中摸出1个球,球的颜色是红色B.从袋子中摸出2个球,它们的颜色相同C.从袋子中摸出3个球,有颜色相同的球D.从袋子中摸出4个球,有颜色相同的球【考点】随机事件.【分析】根据袋子中装有3个红球、1个白球、1个绿球以及必然事件、不可能事件、随机事件的概念解答即可.【解答】解:从袋子中摸出1个球,球的颜色是红色是随机事件;从袋子中摸出2个球,它们的颜色相同是随机事件;从袋子中摸出3个球,有颜色相同的球是随机事件;从袋子中摸出4个球,有颜色相同的球是不可能事件,故选:D.6.已知四边形ABCD中,AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CD C.OB=OC,AB=CD D.OB=OC,OA=OD【考点】等腰梯形的判定.【分析】根据等腰梯形的判定推出即可.【解答】解:A、AC=BD=BC,不能证明四边形ABCD是等腰梯形,错误;B、AB=AD=CD,不能证明四边形ABCD是等腰梯形,错误;C、OB=OC,AB=CD,不能证明四边形ABCD是等腰梯形,错误;D、∵OB=OC,OA=OD,∴∠OBC=∠OCB,∠OAD=∠ODA,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴∠ABO=∠DCO,AB=CD,同理:∠OAB=∠ODC,∵∠ABC+∠DCB+∠CDA+∠BAD=360°,∴∠DAB+∠ABC=180°,∴AD∥BC,∴四边形ABCD是梯形,∵AB=CD,∴四边形ABCD是等腰梯形.故选D二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置上】7.如果一次函数y=(k﹣2)x+1的图象经过一、二、三象限,那么常数k的取值范围是k >2.【考点】一次函数图象与系数的关系.【分析】根据一次函数图象所经过的象限确定k的符号.【解答】解:∵一次函数y=(k﹣2)x+1(k为常数,k≠0)的图象经过第一、二、三象限,∴k﹣2>0.解得:k>2,故填:k>2;8.方程x3+1=0的根是﹣1.【考点】立方根.【分析】先求出x3,再根据立方根的定义解答.【解答】解:由x3+1=0得,x3=﹣1,∵(﹣1)3=﹣1,∴x=﹣1.故答案为:﹣1.9.方程的根是x=0.【考点】分式方程的解.【分析】先去分母,再解整式方程,最后检验即可.【解答】解:去分母得,x2+3x=0,解得x=0或﹣3,检验:把x=0代入x+3=3≠0,∴x=0是原方程的解;把x=﹣3代入x+3=﹣3+3=0,∴x=﹣3不是原方程的解,舍去;∴原方程的解为x=0,故答案为x=0.10.用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.【考点】换元法解分式方程.【分析】设,,则=3u,=2v,从而得出关于u、v的二元一次方程组.【解答】解:设,,原方程组变为,故答案为.11.已知函数,那么=.【考点】函数值.【分析】把自变量x=﹣代入函数解析式进行计算即可得解.【解答】解:∵,∴=;故答案为.12.从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数是素数的概率是.【考点】概率公式.【分析】列表列举出所有情况,看两位数是素数的情况数占总情况数的多少即可解答.【解答】解:列表如下:2 3 42 (2,2)(2,3)(2,4)3 (3,2)(3,3)(3,4)4 (4,2)(4,3)(4,4)共有9种等可能的结果,其中是素数的有3种,概率为;故答案为:13.如果一个n边形的内角和是1440°,那么n=10.【考点】多边形内角与外角.【分析】根据多边形的内角和公式:(n﹣2)×180°,列出方程,即可求出n的值.【解答】解:∵n边形的内角和是1440°,∴(n﹣2)×180°=1440°,解得:n=10.故答案为:10.14.如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为5.【考点】菱形的性质.【分析】根据已知可得较小的内角为60°,从而得到较短的对角线与菱形的一组邻边组成一个等边三角形,从而可求得较短对角线的长度.【解答】解:如图所示:∵菱形的边长为5,∴AB=BC=CD=DA=5,∠B+∠BAD=180°,∵菱形相邻两内角的度数比为1:2,即∠B:∠BAD=1:2,∴∠B=60°,∴△ABC是等边三角形,∴AC=AB=5;故答案为:5.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是AC、AB边的中点,那么△CDE的周长为12.【考点】三角形中位线定理.【分析】利用勾股定理求得边AB的长度,然后结合三角形中位线定理得到DE=AB,则易求△CDE的周长.【解答】解:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB===10.又∵点D、E分别是AC、AB边的中点,∴CE=BC=4,CD=AC=3,ED是△ABC的中位线,∴DE=AB=5,∴△CDE的周长=CE+CD+ED=4+3+5=12.故答案是:12.16.如图,已知正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,点F为垂足,那么FC=﹣1.【考点】正方形的性质;角平分线的性质.【分析】根据正方形的性质和已知条件可求得AF,AC的长,从而不难得到FC的长.【解答】解:∵四边形ABCD是正方形,∴AB=BC=AD=CD=1,∠D=∠B=90°,∴AC==,∵AE平分∠DAC,EF⊥AC交于F,∴AF=AD=1,∴FC=AC﹣AF=﹣1,故答案为:;17.一次函数y=x+2的图象经过点A(a,b),B(c,d),那么ac﹣ad﹣bc+bd的值为4.【考点】一次函数图象上点的坐标特征.【分析】先根据点A、B的坐标代入解析式,再代入代数式计算即可求解.【解答】解:把点A、B的坐标代入解析式,可得:a+2=b,c+2=d,所以ac﹣ad﹣bc+bd=ac﹣a(c+2)﹣(a+2)c+(a+2)(c+2)=4;故答案为:418.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD 绕点A旋转后得到梯形AB1C1D1,其中B、C、D的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,那么DD1的长为.【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;直角梯形.【分析】先根据旋转的性质得出△DAB≌△D1AB1,再根据全等三角形的性质以及等腰三角形的性质,得出∠2=∠3,然后根据平行线的性质,得出∠2=∠4,若设∠1=∠2=∠3=∠4=α,则根据∠2+∠3+∠5=180°,可以求得α的度数为60°,最后根据△ADD1、△BCD都是等边三角形,求得DD1=AD=.【解答】解:如图,将梯形ABCD绕点A旋转后得到梯形AB1C1D1,连接BD,由旋转得:AD=AD1,AB=AB1,∠DAD1=∠BAB1,∴∠DAB=∠D1AB1,且∠1=∠3,在△DAB和△D1AB1中,,∴△DAB≌△D1AB1(SAS),∴∠1=∠2,∴∠2=∠3,∵AD∥BC,∴∠2=∠4,设∠1=∠2=∠3=∠4=α,则∠5=180°﹣∠4﹣∠C=120°﹣α,∵∠2+∠3+∠5=180°,∴α+α+120°﹣α=180°,解得α=60°,∴∠1=∠2=∠3=∠4=60°,∴△ADD1、△BCD都是等边三角形,∴BD=CD=5,∠ABD=30°,∴Rt△ABD中,AD=BD=,∴DD1=AD=.故答案为:附加题(本题最高得3分,当整卷总分不满120分时,计入总分,整卷总分不超过120分)19.如果关于x的方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,那么m=﹣1.【考点】根与系数的关系.【分析】先根据根与系数的关系得到=1,解得m=﹣1或m=1,然后根据判别式的意义确定满足条件的m的值.【解答】解:∵方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,∴=1,解得m=1或m=﹣1,当m=1时,方程变形为x2+x+1=0,△=1﹣4×1×1=﹣3<0,方程没有实数解,所以m的值为﹣1.故答案为:﹣1.三、解答题(本大题共8题,满分66分)[将下列各题的解答过程,做在答题纸上]20.先化简,再求值:,其中x=.【考点】分式的化简求值.【分析】要熟悉混合运算的顺序,分式的除法转化为分式的乘法运算,最后算减法,注意化简后,将x=代入化间后的式子求出即可.【解答】解:原式=÷+,=×+,=+,=,当x=+1,原式=21.解方程:.【考点】无理方程.【分析】分析:将方程中左边的一项移项得:,两边平方得,,两边再平方得x﹣3=1,解得x=4,最后验根,可求解.【解答】解:,,,x﹣3=1,x=4.经检验:x=4是原方程的根,所以原方程的根是x=4.22.解方程组:.【考点】高次方程.【分析】先把第二个方程因式分解,把二元二次方程组转化为二元一次方程组,求解即可.【解答】解:由②得 x ﹣4y=0或x +3y=0,原方程组可化为(Ⅰ)(Ⅱ),解方程组(Ⅰ)得,方程组(Ⅱ)无解,所以原方程组的解是.23.如图,在梯形ABCD 中,AD ∥BC ,BC=2AD ,过点A 作AE ∥DC 交BC 于点E .(1)写出图中所有与互为相反向量的向量: ,, ;(2)求作:、.(保留作图痕迹,写出结果,不要求写作法)【考点】*平面向量;梯形.【分析】(1)根据平行四边形的性质即可解决问题.(2)根据向量和差定义即可解决.【解答】解:(1)∵AD ∥EC ,AE ∥DC ,∴四边形AECD 是平行四边形,∴AD=EC ,∵BC=2AD ,∴BE=EC ,∴所有与互为相反向量的向量有、、.(2)如图﹣=, +=+=,图中.就是所求的向量.24.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.【考点】平行四边形的判定与性质.【分析】法1:由平行四边形对边平行,且CF与AD垂直,得到CF与BC垂直,根据AE 与BC垂直,得到AE与CF平行,得到一对内错角相等,利用等角的补角相等得到∠AGB=∠DHC,根据AB与CD平行,得到一对内错角相等,再由AB=CD,利用AAS得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到AG=CH,利用一组对边平行且相等的四边形为平行四边形即可得证;法2:连接AC,与BD交于点O,利用平行四边形的对角线互相平分得到OA=OC,OB=OD,再由AB与CD平行,得到一对内错角相等,根据CF与AD垂直,AE与BC垂直,得一对直角相等,利用ASA得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到BG=DH,根据等式的性质得到OG=OH,利用对角线互相平分的四边形为平行四边形即可得证.【解答】证明:法1:在□ABCD中,AD∥BC,AB∥CD,∵CF⊥AD,∴CF⊥BC,∵AE⊥BC,∴AE∥CF,即AG∥CH,∴∠AGH=∠CHG,∵∠AGB=180°﹣∠AGH,∠DHC=180°﹣∠CHG,∴∠AGB=∠DHC,∵AB∥CD,∴∠ABG=∠CDH,∴△ABG≌CDH,∴AG=CH,∴四边形AGCH是平行四边形;法2:连接AC,与BD相交于点O,在□ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,∴∠ABG=∠CDH,∵CF⊥AD,AE⊥BC,∴∠AEB=∠CFD=90°,∴∠BAG=∠DCH,∴△ABG≌CDH,∴BG=DH,∴BO﹣BG=DO﹣DH,∴OG=OH,∴四边形AGCH是平行四边形.25.某公司生产的新产品需要精加工后才能投放市场,为此王师傅承担了加工300个新产品的任务.在加工了80个新产品后,王师傅接到通知,要求加快新产品加工的进程,王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务.问接到通知后,王师傅平均每天加工多少个新产品?【考点】分式方程的应用.【分析】根据关键句子“王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务”找到等量关系列出方程求解即可.【解答】解:设接到通知后,王师傅平均每天加工x个新产品.根据题意,得.x2﹣65x+550=0,x1=55,x2=10.经检验:x1=55,x2=10都是原方程的解,但x2=10不符合题意,舍去.答:接到通知后,王师傅平均每天加工55个新产品.26.在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A、与反比例函数(k是常数,k≠0)的图象交于点B(a,3),且这个反比例函数的图象经过点C(6,1).(1)求出点A的坐标;(2)设点D为x轴上的一点,当四边形ABCD是梯形时,求出点D的坐标和四边形ABCD 的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先利用C点坐标计算出反比例函数中的k的值,进而可得反比例函数解析式,再利用反比例函数解析式计算出B的坐标,把B点坐标代入y=x+b可得B的值,进而可得一次函数解析式,然后可得一次函数y=x+b的图象与x轴交点A的坐标;(2)点D为x轴上的一点,因此不可能出现AD∥BC的情形,只有可能AB∥CD,设直线CD的解析式为y=x+m,把C点坐标代入可得m的值,然后可得D点坐标,分别过点B、C 作BE⊥x轴、CF⊥x轴,垂足分别为E、F,然后利用图形中的面积关系计算出四边形ABCD 的面积即可.【解答】解:(1)方法一:∵反比例函数经过点C (6,1),∴, ∴k=6,∴反比例函数解析式为.∵B (a ,3)在该反比例的图象上,∴,∴a=2,即B (2,3),∵y=x +b 经过点B (2,3),∴y=x +1,令y=x +1=0,得x=﹣1,∴A (﹣1,0).方法二:∵点C (6,1)与点B (a ,3)都在反比例函数的图象上,∴6×1=a ×3=k ,∴a=2,∴B (2,3).∵y=x +b 经过点B (2,3),∴y=x +1,令y=x +1=0,得x=﹣1,∴A (﹣1,0).(2)∵四边形ABCD 是梯形,且点D 为x 轴上的一点,∴不可能出现AD ∥BC 的情形,只有可能AB ∥CD ,∵直线AB 的解析式为y=x +1,∴可设直线CD 的解析式为y=x +m ,∵y=x +m 经过点C (6,1),∴y=x ﹣5,令y=x ﹣5=0,得x=5,∴D (5,0),分别过点B 、C 作BE ⊥x 轴、CF ⊥x 轴,垂足分别为E 、F ,则S 梯形ABCD =S △ABE +S 梯形BEFC ﹣S △DCF ,===12.27.已知:如图,在矩形ABCD中,AB=3,点E在AB的延长线上,且AE=AC,联结CE,取CE的中点F,联结BF、DF.(1)求证:DF⊥BF;(2)设AC=x,DF=y,求y与x之间的函数关系式,并写出定义域;(3)当DF=2BF时,求BC的长.【考点】四边形综合题.【分析】(1)方法一:如图1中,连接AF,只要证明△ABF≌DCF即可.方法二:如图2中,连接BD,与AC相交于点O,联结OF,只要证明OB=OF=OD即可.(2)由y=DF=即可解决问题.(3)首先证明CE=DF=AF,列出方程即可解决.【解答】(1)证明:方法一:如图1中,连接AF,∵AE=AC,点F为CE的中点,∴AF⊥CE,即∠AFC=90°,∵在矩形ABCD中,AB=CD,∠ABC=∠DCB=90°,∴∠CBE=180°﹣∠ABC=90°,∴EF=BF=CF=,∴∠FBC=∠FCB,即∠ABC+∠FBC=∠DCB+∠FCB,∴∠ABF=∠DCF,在△ABF和△DCF中,,∴△ABF≌DCF,∴∠AFB=∠DFC,∴∠BFD=∠AFB+∠AFD=∠AFD+∠DFC=∠AFC=90°,即DF⊥BF;方法二:如图2中,连接BD,与AC相交于点O,联结OF,∵在矩形ABCD中,AC=BD,OA=OC,OB=OD,∴OA=OC=OB=OD=AC=BD,∵点F是CE的中点,∴OF=AE,∵AE=AC,∴OF=AC=BD,∴OF=OB=OD,∴∠OBF=∠OFB,∠OFD=∠ODF,∵∠OBF+∠OFB+∠OFD+∠ODF=180°,∴2∠OFB+2∠OFD=180°,∴∠OFB+∠OFD=90°,即∠BFD=90°,∴DF⊥BF;(2)解:在Rt△ABC中,BC2=AC2﹣AB2=x2﹣9,∵AE=AC=x,∴BE=x﹣3,∴EC===,∴BF==,∴y=DF===,∴y=(x>3).(3)∵△ABF≌DCF,∴AF=DF,∵在Rt△ABC中,CE=2BF,又∵DF=2BF,∴CE=DF=AF,∴=,∴x1=0,x2=5.经检验,x1=0,x2=5都是方程的根,但x=0不符合题意.∴BC===4.2016年10月27日。
2015-2016学年度第二学期八年级数学期末测试题(含答案)

2015--2016学年度第二学期八年级数学期末测试题一.选择题(共12小题,每题3分,共计36分。
)1.(2015•乐山)下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b2.(2015•甘孜州)下列图形中,是中心对称图形的是()A.B.C.D.3.(2015•永州)若不等式组恰有两个整数解,则m的取值范围是()A.﹣1≤m<0 B.﹣1<m≤0C.﹣1≤m≤0D.﹣1<m<0 4.(2015•枣庄)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.﹣15.(2015•济南)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<16.(2015•贵港)下列因式分解错误的是()A.2a﹣2b=2(a﹣b)B.x2﹣9=(x+3)(x﹣3)C.a2+4a﹣4=(a+2)2 D.﹣x2﹣x+2=﹣(x﹣1)(x+2)7.(2015•义乌市)化简的结果是()A.x+1 B.C.x﹣1 D.8.(2015•枣庄)关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣19.(2015•营口)若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3 10.(2015•铁岭)如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分∠BAC11.(2015•绥化)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个12.(2015•乌鲁木齐)九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A.=﹣B.=﹣20 C.=+D.=+20二.填空题(共6小题,每题4分,共计24分。
2015-2016学年八年级下学期期末考试数学试题带答案(精品)
CBA2015—2016学年第二学期初二期末试卷数 学学校 姓名 准考证号考 生 须 知1.本试卷共6页,共三道大题,26道小题.满分100分,考试时间100分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系xOy 中,点P (-3,5)关于y 轴对称的点的坐标是( ) A .(-3,-5)B .(3,-5)C .(3,5)D .(5,-3)2.下列图形中,既是中心对称图形又是轴对称图形的是( )3.一个多边形的内角和为540°,则这个多边形的边数是( ) A .4B .5C .6D .74.菱形ABCD 的边长为4,有一个内角为120°,则较长的对角线的长为( ) A .43B .4C .23D .25.如图,利用平面直角坐标系画出的正方形网格中, 若A (0,2),B (1,1),则点C 的坐标为( ) A .(1,-2) C .(2,1)B .(1,-1) D .(2,-1)6.如图,D ,E 为△ABC 的边AB ,AC 上的点,DE ∥BC , 若:1:3AD DB =,AE =2,则AC 的长是( ) A .10 B.8 C .6 D .47.关于x 的一元二次方程2210mx x -+=有两个实数根,则m 的取值范围是( )A .1m ≤ C .1m <且0m ≠B .1m <D .1m ≤且0m ≠8.如图,将边长为3cm 的等边△ABC 沿着边BC 向右平移2cm ,得到△DEF ,则四边形ABFD 的周长为( ) A .15cmB .14cmC .13cmD .12cmA .B .C .D .EDA B CDAB CP第13题图第14题图第8题图第9题图9.园林队在某公园进行绿化,中间休息了一段时间.绿化面积S(单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米10.如右图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则下列图象能大致反映y与x的函数关系的是()二、填空题(本题共18分,每小题3分)11.如图,点D,E分别为△ABC的边AB,BC的中点,若DE=3cm,则AC=cm.12.已知一次函数2()y m x m=++,若y随x的增大而增大,则m的取值范围是.13.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件,使△ACD ∽△ABC(只填一个即可).14.如图,在□ABCD中,BC=5,AB=3,BE平分∠ABC交AD于点E,交对角线AC于点F,则AEFCBFSS△△= .DAB CFE DB CAEDAB CSt/平方米/小时16060421ODAFE CB第15题图15.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在 BC 边上的点F 处,则CE 的长是 .16.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线 AB 上截取BB 1=AB ,过点B 1分别 作x 、y 轴的垂线,垂足分别为点A 1、C 1, 得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别 作x 、y 轴的垂线,垂足分别为点A 2 、C 2, 得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别 作x 、y 轴的垂线,垂足分别为点A 3、C 3, 得到矩形OA 3B 3C 3;……;则点B 1的坐标是 ;第3个矩形OA 3B 3C 3的面积是 ; 第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分)解答应写出文字说明,演算步骤或证明过程. 17.用适当的方法解方程:2610x x --=.18.如图,在□ABCD 中,E ,F 是对角线BD上的两点且BE =DF ,联结AE ,CF . 求证:AE =CF .19.一次函数1y kx b =+的图象与正比例函数2y mx =交于点A (-1,2),与y 轴交于点B (0,3). (1)求这两个函数的表达式;(2)求这两个函数图象与x 轴所围成的三角形的面积.yxy =x+1C 3C 2A 3A 2C 1B 3B 2B 1A B A 1OFE CADBEFCD A B20.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F .(1)求证:△CDE ∽△CBF ;(2)若B 为AF 的中点,CB =3,DE =1,求CD 的长.21.已知关于x 的一元二次方程2(32)60mx m x -++=(0)m ≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.22.如图,Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB上的中线,分别过点A ,C 作AE ∥DC ,CE ∥AB , 两线交于点E .(1)求证:四边形AECD 是菱形;(2)若602B BC ∠=︒=,,求四边形AECD 的面积.23.列方程解应用题:某地区2013年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2015年的快递业务量达到3.92亿件.求该地区这两年快递业务量的年平均增长率.24.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照 “提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题: (1)“基础电价”是_________元/度;(2)求出当x >240时,y 与x 的函数表达式; (3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?y x (元)(度)400120240216B AOEDAFB CEDBAC图1 图225.已知正方形ABCD 中,点M 是边CB (或CB 的延长线)上任意一点,AN 平分∠MAD ,交射线DC 于点N .(1)如图1,若点M 在线段CB 上 ①依题意补全图1;②用等式表示线段AM ,BM ,DN 之间的数量关系,并证明;(2)如图2,若点M 在线段CB 的延长线上,请直接写出线段AM ,BM ,DN 之间的数量关系.ADBCM26.在平面直角坐标系xOy 中,过象限内一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等, 则这个点叫做“和谐点”.如右图,过点H (-3,6)分 别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAHB 的周长与面积相等,则点H (3,6)是“和谐点”.(1)H 1(1,2), H 2(4,-4), H 3(-2,5)这三个点中的“和谐点”为 ; (2)点C (-1,4)与点P (m ,n )都在直线y x b =-+上,且点P 是“和谐点”.若m >0,求点P 的坐标.——————————————草 稿 纸——————————————ADB C MADBCM y x1A BHO2015—2016学年第二学期期末试卷 初二数学 试卷答案及评分参考阅卷须知:为便于阅卷,解答题中的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.若考生的解法与给出的解法不同,正确者可参照评分参考给分.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、 选择题(本题共30分,每小题3分) 题号 123456 7 8 9 10 答案C A B AD BDCBB二、填空题(本题共18分,每小题3分)11.6 12.2m >- 13.ACD B ∠=∠(或ADC ACB ∠=∠或AD ACAC AB=) 14.925 15.3 16.(1,2);12(1)n n +;或2n n +(每空1分) 三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分) 17.18.证明一:联结AF ,CE ,联结AC 交BD 于点O.∵四边形ABCD 是平行四边形 ∴OA =OC ,OB =OD ⋯⋯⋯⋯⋯2分 又∵BE =DF∴OE =OF ⋯⋯⋯⋯⋯3分 ∴四边形AECF 是平行四边形 ⋯⋯4分 ∴AE =CF ⋯⋯⋯⋯⋯5分证明二:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD ⋯⋯⋯⋯⋯1分 ∴∠1=∠2 ⋯⋯⋯⋯⋯2分OFE CADB解法一: 26919x x -+=+ ⋯⋯⋯⋯⋯1分2310x -=() ⋯⋯⋯⋯⋯3分310x -=± ⋯⋯⋯⋯⋯4分12310,310x x ∴==+-⋯⋯5分解法二:2140⨯⨯=---=Q △(6)41() ⋯⋯1分6402x ±∴=⋯⋯⋯⋯⋯3分 62102x ±∴= ⋯⋯⋯⋯⋯4分12310,310x x ∴==+- ⋯⋯5分在△ABE 和△CDF 中12 AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ) ⋯⋯⋯⋯⋯4分∴AE CF = ⋯⋯⋯⋯⋯5分 19.解:(1)∵2y mx =过点A (-1,2)∴-m =2 ∴m =-2 ⋯⋯⋯⋯⋯1分 ∵点A (-1,2)和点B (0,3)在直线1y kx b =+上2133k b k b b -+==⎧⎧∴∴⎨⎨==⎩⎩⋯⋯⋯⋯⋯3分 ∴这两个函数的表达式为:13y x =+和2-2y x=⋯⋯⋯⋯⋯3分(2)过点A 作AD ⊥x 轴于点D ,则AD =2∵13y x =+交x 轴于点C (-3,0) ⋯⋯4分∴1=2AOC S OC AD⨯⨯△ 1=322⨯⨯ =3 ⋯⋯5分即这两个函数图象与x 轴所围成的三角形的面积是3.20.(1)证明:∵四边形ABCD 是矩形∴∠D=∠1=∠2+∠3=90° ⋯⋯⋯⋯⋯1分 ∵CF ⊥CE ∴∠4+∠3=90°∴∠2=∠4∴△CDE ∽△CBF ⋯⋯⋯⋯⋯2分(2) 解:∵四边形ABCD 是矩形∴CD =AB ∵B 为AF 的中点∴BF =AB ∴设CD=BF= x ⋯⋯⋯3分 ∵△CDE ∽△CBF21.(1)证明:∵0m ≠ ∴2(32)60mx m x -++=是关于x 的一元二次方程∵2[(32)]46m m =-+-⨯△ ⋯⋯⋯⋯⋯1分2912424m m m =++- 29-124m m =+23-20m =()≥ ⋯⋯⋯⋯⋯2分21FECADByx–11–1–2–3–41234D CBA O4321EDAFBC∴CD DE CB BF = ⋯⋯4分 ∴13x x =∵x >0 ∴3x =⋯⋯⋯5分即:3CD =∴此方程总有两个实数根. ⋯⋯⋯⋯⋯3分(2) 解:∵(3)(2)0x mx --=∴1223,x x m ==⋯⋯⋯⋯⋯4分∵方程的两个实数根都是整数,且m 是正整数∴m =1或 m =2 ⋯⋯⋯⋯⋯5分22.(1)证明:∵AE ∥DC ,CE ∥AB∴四边形AECD 是平行四边形 ⋯⋯⋯⋯⋯1分 ∵Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线 ∴CD =AD∴四边形AECD 是菱形 ⋯⋯⋯⋯⋯2分(2) 解:联结DE .∵90ACB ∠=︒,60B ∠=︒∴30BAC ∠=︒ ∴423A ABC ==, ⋯⋯⋯⋯⋯3分∵四边形AECD 是菱形 ∴EC =AD =DB 又∵EC ∥DB ∴四边形ECBD 是平行四边形∴ED = CB =2 ⋯⋯⋯⋯⋯4分∴2322322AECD AC ED S ⨯⨯===菱形 ⋯⋯⋯⋯⋯5分23. 解:设该地区这两年快递业务量的年平均增长率为x . 根据题意,得 ⋯⋯1分 22(1) 3.92x += ⋯⋯⋯⋯⋯3分解得120.4, 2.4x x ==-(不合题意,舍去) ⋯⋯⋯⋯⋯4分 ∴0.440x ==%答:该地区这两年快递业务量的年平均增长率为40%. ⋯⋯⋯⋯⋯5分24.(1)0.5 ⋯⋯⋯⋯⋯ 1分 (2)解:当x >240时,设y =kx+b ,由图象可得:2401200.640021624k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩ ⋯⋯⋯⋯⋯2分 ∴0.624(240)y x x =-> ⋯⋯⋯⋯⋯3分(3)解:∵132120y =>∴令0.624=132x -, ⋯⋯⋯⋯⋯4分 得:=260x ⋯⋯⋯⋯⋯5分∴小石家这个月用电量为260度.EDBAC25.(1)①补全图形,如右图所示. ⋯⋯⋯⋯⋯1分 ②数量关系:AM BM DN =+ ⋯⋯⋯⋯⋯2分 证明:在CD 的延长线上截取DE =BM ,联结AE .∵四边形ABCD 是正方形∴190B ∠=∠=︒,AD AB =,AB CD ∥ ∴6BAN ∠=∠ 在△ADE 和△ABM 中1 AD AB B DE BM =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABM (SAS ) ∴AE AM =,32∠=∠ ⋯⋯⋯⋯⋯⋯3分又∵54∠=∠ ∴EAN BAN ∠=∠ 又∵6BAN ∠=∠ ∴6EAN ∠=∠∴AE NE = ⋯⋯⋯⋯⋯4分 又∵AE AM =,NE DE DN BM DN +=+=∴AM BM DN =+ ⋯⋯⋯⋯⋯5分 (证法二:在CB 的延长线上截取BF =DN ,联结AF ) (2)数量关系:AM DN BM =- ⋯⋯⋯⋯⋯6分26.(1)H 2 ⋯⋯⋯⋯⋯1分 (2)解:∵点C (-1,4)在直线y x b =-+上∴14b += ∴3b =∴3y x =-+ ⋯⋯⋯⋯⋯2分 ∴3y x =-+与x 轴,y 轴的交点为N (3, 0),M (0,3) ∵点P (m ,n )在直线3y x =-+上 ∴点P (m ,-m +3)过点P 分别作x 轴,y 轴的垂线,垂足为D ,E ∵m >0∴点P 可能在第一象限或第四象限(解法一) ① 若点P 在第一象限,如图1,则,3OD m PD n m +=== -∴3)6PEOD C m m ++==2(-矩形654321EN AD B CMNADB CMyy = -x+33)PEOD S m m +=(-矩形∵点P 是“和谐点”∴3)6m m +(-= ⋯⋯⋯3分 260m m +-3=2(-3)460=-⨯△<∴此方程无实根∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分② 若点P 在第四象限,如图2,则,3)3OD m PD n m m -=+=-== --( ∴3)46PEOD C m m m +=-=2(-矩形3)PEOD S m m =(-矩形 ∵点P 是“和谐点”∴3)46m m m -(-= ⋯⋯5分 260m m +-7=1261m m ==,∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分综上所述,满足条件的点P 的坐标为P (6,-3).(解法二)① 若点P 在第一象限,如图1,则,3OD m PD n m +=== - ∴3)6PEOD C m m ++==2(-矩形∵133 4.52MON S ⨯⨯==△ ⋯⋯⋯3分而MONPEOD S S <△矩形 ∴PEOD PEOD C S 矩形矩形≠∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分 ② 若点P 在第四象限,如图2,则,OD m PD n == -∴)PEOD C m n =2(-矩形PEOD S mn =-矩形∵点P 是“和谐点”∴2)m n mn (-=- ⋯⋯⋯⋯⋯5分 ∴22mn m =-∵点P (m ,n )在直线3y x =-+上 ∴3n m =-+yxy = -x+3EDP (m ,-m +3)O y x 33y = -x+3E D MN OP (m ,-m +3)图1∴232m m m =-+-260m m +-7= 1261m m ==, 经检验,1261m m ==,是方程232m m m=-+-的解 ∵点P (m ,-m +3)在第四象限∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分 综上所述,满足条件的点P 的坐标为P (6,-3).yx y = -x+3E D P (m ,-m +3)O。
2016-2017学年上海市静安区八年级(下)期末数学试卷
2016-2017学年上海市静安区八年级(下)期末数学试卷一、填空题(本大题共14题,每题3分,满分42分)1.(3分)直线y=x﹣2的截距是.2.(3分)已知函数,当y≤﹣1时,x的取值范围是.3.(3分)生产某种产品所需的成本y(万元)与数量x(吨)之间的关系如图所示,那么生产10吨这一产品所需成本为万元.4.(3分)请你写出一个图象经过点(1,﹣2)的一次函数解析式.5.(3分)如果点A(﹣1,a),B(1,b)在直线y=﹣2x+m上,那么a b (填“>”、“<”或“=”).6.(3分)方程x3﹣2x=0的根是.7.(3分)关于y的方程b(y﹣2)=2(b≠0)的解是.8.(3分)方程的根是.9.(3分)用换元法解方程时,如果设x2﹣2x=y,那么原方程可以化为.10.(3分)在等腰梯形ABCD中,已知AD∥BC,∠A=100°,那么∠C的度数是.11.(3分)如果一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数为.12.(3分)边长为8的正方形ABCD中,E、F是边AD、AB的中点,连接CE,取CE中点G,那么FG=.13.(3分)已知在梯形ABCD中,AD∥BC.写出所有与平行的向量:.14.(3分)在四边形ABCD中,AC⊥BD,AB=AD,要使四边形ABCD是菱形,只需添加一个条件,这个条件可以是(只要填写一种情况).二、选择题(本大题共4题,每题3分,满分12分)【每题只有一个正确答案,将代号填入括号内】15.(3分)下列方程中,有实数解的是()A.2x6+3=0B.C.D.2x2+3y2+1=016.(3分)如果一次函数y=kx+1﹣k的图象经过第一、三、四象限,那么k的取值范围是()A.k>0B.k>1C.k<0D.k<1.17.(3分)顺次连接等腰梯形各边中点所得到的四边形一定是()A.正方形B.菱形C.矩形D.等腰梯形18.(3分)下列命题中,假命题是()A.有一组对角是直角且一组对边平行的四边形是矩形B.有一组对角是直角且一组对边相等的四边形是矩形C.有两个内角是直角且一组对边平行的四边形是矩形D.有两个内角是直角且一组对边相等的四边形是矩形三、(本大题共7题,每题8分,满分56分)19.(8分)解方程:2x+=6.20.(8分)解方程组:21.(8分)如图,点E、F在平行四边形ABCD的对角线BD上,且EB=DF.(1)填空:=;=;=.(2)求作:.22.(8分)如图,已知在矩形ABCD中,对角线AC、BD交于点O,CE=AE,F 是AE的中点,AB=4,BC=8.求线段OF的长.23.(8分)已知:如图,在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,且AE=CG,AH=CF,EG平分∠HEF.(1)求证:四边形EFGH是平行四边形;(2)求证:四边形EFGH是菱形.24.(8分)某书店两次从图书批发市场购进某种图书,每次都用2000元.其中第二次购进这种书每本的批发价比第一次每本的批发价降低了2元,且比第一次购进的书多了50本,求第一次购书时每本的批发价.25.(8分)已知一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B,梯形AOBC的边AC=5,且OA∥BC.(1)求点C的坐标;(2)如果点A、C在一次函数y=kx+b(k、b为常数,且k<0)的图象上,求这个一次函数的解析式.四、(本大题共1题,满分10分)26.(10分)如图,在正方形ABCD中,点E在边AB上(点E与点A、B不重合),过点E作FG⊥DE,FG与边BC相交于点F,与边DA的延长线相交于点G.(1)由几个不同的位置,分别测量BF、AG、AE的长,从中你能发现BF、AG、AE的数量之间具有怎样的关系?并证明你所得到的结论;(2)连接DF,如果正方形的边长为2,设AE=x,△DFG的面积为y,求y与x 之间的函数解析式,并写出函数的定义域;(3)如果正方形的边长为2,FG的长为,求点C到直线DE的距离.2016-2017学年上海市静安区八年级(下)期末数学试卷参考答案与试题解析一、填空题(本大题共14题,每题3分,满分42分)1.(3分)直线y=x﹣2的截距是﹣2.【分析】把x=0代入一次函数的解析式求出y即可.【解答】解:把x=0代入y=x﹣2得:y=﹣2,故答案为:﹣2.【点评】本题主要考查对一次函数的性质的理解和掌握,能熟练地根据一次函数的性质进行计算是解此题的关键.2.(3分)已知函数,当y≤﹣1时,x的取值范围是x≤﹣4.【分析】将y≤﹣1代入原函数解析式列出关于x的一元一次不等式,然后解不等式即可.【解答】解:∵函数的关系式是,∴当y≤﹣1时,+1≤﹣1,解得,x≤﹣4;故答案是:x≤﹣4.【点评】本题考查了一次函数的性质.解得此题时,还可以采用“数形结合”的数学思想,利用一次函数图象的单调性解答.3.(3分)生产某种产品所需的成本y(万元)与数量x(吨)之间的关系如图所示,那么生产10吨这一产品所需成本为万元.【分析】首先利用待定系数法,求得成本y与数量x之间的函数关系式,然后把y=20代入即可求得x的数值.【解答】解:设成本y(万元)与数量x(吨)之间的关式是:y=kx+b,根据题意得:,解得:,则函数的解析式是:y=x+10.当x=10吨时,y=×10+10=万元.故答案是:.【点评】本题考查了一次函数的应用,是利用一次函数解决成本与数量之间的关系,正确利用待定系数法求得函数解析式是关键.4.(3分)请你写出一个图象经过点(1,﹣2)的一次函数解析式y=x﹣3(答案不唯一).【分析】根据一次函数的定义,可以先给出k值等于1,再找出符合点的b的值即可.【解答】解:设k=1,则y=x+b∴1+b=﹣2,解得b=﹣3,∴一次函数解析式为y=x﹣3(答案不唯一).【点评】本题主要考查对一次函数的常数k、b的理解和待定系数法的运用,是开放型题目.5.(3分)如果点A(﹣1,a),B(1,b)在直线y=﹣2x+m上,那么a>b (填“>”、“<”或“=”).【分析】根据一次函数y=kx+b(k≠0,k、b均为常数)的性质,k=﹣2<0,故y 随x的增大而减小,据此即可作出判断.【解答】解:在直线y=﹣2x+m中,k=﹣2<0,故y随x的增大而减小,∵﹣1<1,∴a>b,故答案为>.【点评】本题考查了一次函数的性质,要知道,对于y=kx+b(k≠0,k、b均为常数),k>0时,y随x的增大而增大;k<0时,y随x的增大而减小.6.(3分)方程x3﹣2x=0的根是.【分析】用因式分解的方法解题,在提取x后,要观察题中各因式的形式,要分解彻底.【解答】解:因式分解得x(x+)(x﹣)=0,解得x1=0,x2=﹣,x3=.故答案为0,.【点评】本题考查了因式分解法解高次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解方程的一种简便方法,要会灵活运用.7.(3分)关于y的方程b(y﹣2)=2(b≠0)的解是y=.【分析】根据一元一次方程的解法,只要先去括号,再移项,合并同类项,化系数为1,从而得到方程的解.【解答】解:去括号得,by﹣2b=2,移项得,by=2b+2,∵b≠0,∴方程两边同除以b得,y=.故答案为:y=.【点评】本题主要考查了解一元一次方程,是基础题,比较简单,需要注意b≠0的条件的运用.8.(3分)方程的根是﹣2.【分析】首先方程两边同乘以最简公分母,去掉分母,然后解方程求解,即可,最后要把x的值代入最简公分母进行检验.【解答】解:∵,方程两边同乘以x﹣2得:x2=4,∴x1=2,x2=﹣2,检验:当x1=2时,x﹣2=0,所以x1=2不是原方程的解,当x2=﹣2时,x﹣2=﹣4,所以x2=﹣2为原方程的解.故答案为:﹣2.【点评】本题主要考查解分式方程,关键在于找出最简公分母,去掉分母,注意最后要把x的值代入最简公分母进行检验.9.(3分)用换元法解方程时,如果设x2﹣2x=y,那么原方程可以化为或2y2﹣3y+1=0.【分析】可设x2﹣2x=y,则2x2﹣4x=2y,原方程可化为+2y=3,即2y2﹣3y+1=0.【解答】解:设x2﹣2x=y,则原方程化为+2y=3,即2y2﹣3y+1=0.故答案为或2y2﹣3y+1=0.【点评】本题考查用换元法解分式方程的能力.用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化.10.(3分)在等腰梯形ABCD中,已知AD∥BC,∠A=100°,那么∠C的度数是80°.【分析】由AD∥BC,∠A=100°,根据两直线平行,同旁内角互补,即可求得∠B 的度数,又由四边形ABCD等腰梯形,即可求得∠C的度数.【解答】解:∵AD∥BC,∴∠A+∠B=180°∵∠A=100°,∴∠B=80°,∵四边形ABCD是等腰梯形,∴∠C=∠B=80°.故答案为:80°.【点评】此题考查了等腰梯形的性质.此题比较简单,解题的关键是注意掌握等腰梯形的同一底上的两个角相等定理的应用与数形结合思想的应用.11.(3分)如果一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数为6.【分析】多边形的外角和是360°,内角和是它的外角和的2倍,则内角和是2×360=720度.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形的边数为n,∵n边形的内角和为(n﹣2)•180°,多边形的外角和为360°,∴(n﹣2)•180°=360°×2,解得n=6.∴此多边形的边数为6.故答案为:6.【点评】本题主要考查了根据正多边形的外角和求多边形的边数,这是常用的一种方法,需要熟记.12.(3分)边长为8的正方形ABCD中,E、F是边AD、AB的中点,连接CE,取CE中点G,那么FG=6.【分析】根据题意,正方形ABCD的边长为8,E边AD的中点,可得出AE、BC 的长;又由点F、G分别是AB、CE的中点,根据梯形的中位线定理,可得出FG的长;【解答】解:如图,∵正方形ABCD的边长为8,E、F是边AD、AB的中点,∴AE=4,BC=8,又∵点G是CE的中点,∴FG为梯形ABCE的中位线,∴EF==×(4+8)=6.故答案为:6.【点评】本题主要考查了梯形的中位线定理,熟练掌握梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.13.(3分)已知在梯形ABCD中,AD∥BC.写出所有与平行的向量:,,.【分析】由在梯形ABCD中,AD∥BC,即可求得与平行的向量,注意与是不同的向量.【解答】解:∵在梯形ABCD中,AD∥BC,∴与平行的向量有:,,.故答案为:,,.【点评】此题考查了平面向量的知识.注意向量是有方向性的,小心别漏解.14.(3分)在四边形ABCD中,AC⊥BD,AB=AD,要使四边形ABCD是菱形,只需添加一个条件,这个条件可以是AB∥CD(本题答案不唯一)(只要填写一种情况).【分析】首先根据条件可得∠AOD=∠AOB=90°,再证明Rt△ABO≌Rt△ADO,从而得到BO=DO,再证明△ABO≌Rt△CDO,进而得到AB=CD,再加上条件AB ∥CD可得到四边形ABCD是平行四边形,又有AB=AD可证出四边形ABCD是菱形.【解答】解:添加条件AB∥CD,理由:∵AC⊥BD,∴∠AOD=∠AOB=90°,在Rt△ABO和Rt△ADO中,∴Rt△ABO≌Rt△ADO,∴BO=DO,∵AB∥CD,∴∠ABO=∠CDO,在△ABO和Rt△CDO中,∴△ABO≌Rt△CDO,∴AB=CD,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形.【点评】此题主要考查了全等三角形的判定,平行四边形的判定,菱形的判定,解决问题的关键是证明AB=CD,从而得到四边形ABCD是平行四边形.二、选择题(本大题共4题,每题3分,满分12分)【每题只有一个正确答案,将代号填入括号内】15.(3分)下列方程中,有实数解的是()A.2x6+3=0B.C.D.2x2+3y2+1=0【分析】根据任何数的偶次方,以及算术平方根一定是非负数即可判断式子中的等号是否成立,即方程是否有实数解.【解答】解:A、∵2x6≥0.3>0,故2x6+3>0,则方程一定没有实数解,选项错误;B、两边同时乘以2x得:2x﹣4=x2﹣2x,解得:x=2,故选项正确;C、≥0,则+3>0一定成立,故选项错误;D、2x2+3y2+1>0,故选项一定错误.故选:B.【点评】本题主要考查了任何数的偶次方,以及算术平方根一定是非负数,理解非负数的性质是关键.16.(3分)如果一次函数y=kx+1﹣k的图象经过第一、三、四象限,那么k的取值范围是()A.k>0B.k>1C.k<0D.k<1.【分析】根据一次函数y=kx+1﹣k的图象经过第一、三象限,得出x的系数大于0,即k>0,又经过第四象限,说明常数项小于0,即1﹣k<0,即可确定k 的取值范围.【解答】解:∵一次函数y=kx+1﹣k的图象经过第一、三、四象限,∴k>0且1﹣k<0,解得k>1,故选:B.【点评】本题考查了一次函数图象与系数的关系.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b <0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.①k>0,b>0,y=kx+b的图象在一、二、三象限;②k>0,b<0,y=kx+b的图象在一、三、四象限;③k<0,b>0,y=kx+b的图象在一、二、四象限;④k<0,b<0,y=kx+b的图象在二、三、四象限;⑤k>0,b=0,y=kx+b的图象在一、三象限;⑥k<0,b=0,y=kx+b的图象在二、四象限.17.(3分)顺次连接等腰梯形各边中点所得到的四边形一定是()A.正方形B.菱形C.矩形D.等腰梯形【分析】根据等腰梯形的对角线相等和三角形中位线定理,所得四边形的各边都相等,所以判定为菱形.【解答】解:如图所示,根据三角形中位线定理,EF=GH=BD,FG=EH=AC,∵ABCD为等腰梯形,∴AC=BD,∴EF=GH=FG=EH,∴EFGH为菱形.故选:B.【点评】此题考查了菱形的判定方法、等腰梯形的性质、三角形中位线定理等知识点,掌握菱形的判别方法:①定义;②四边相等;③对角线互相垂直平分是解题的关键.18.(3分)下列命题中,假命题是()A.有一组对角是直角且一组对边平行的四边形是矩形B.有一组对角是直角且一组对边相等的四边形是矩形C.有两个内角是直角且一组对边平行的四边形是矩形D.有两个内角是直角且一组对边相等的四边形是矩形【分析】利用矩形的定义或者是矩形的判定定理分别判断四个选项的正误即可.【解答】解:A、有一组对角是直角且一组对边平行即可得到两组对边平行或四个角均是直角,故此选项不符合题意;B、有一组对角是直角且一组对边相等可以得到其两组对边平行,有一个角是直角的平行四边形是矩形可知此选项不符合题意;C、有两个内角是直角且一组对边平行的四边形可能是直角梯形,故此选项符合题意;D、有两个内角是直角的且一组对边相等可以得到其两组对边相等,所以能判定其是一个平行四边形,根据有一个角是直角的平行四边形是矩形可知此选项不符合题意.故选:C.【点评】本题考查了矩形的判定,熟练掌握矩形的判定方法是解决此类题目的关键.举反例往往是解决此类题目的重要的方法.三、(本大题共7题,每题8分,满分56分)19.(8分)解方程:2x+=6.【分析】先把原方程进行移项,得出=6﹣2x,再两边平方得x﹣3=(6﹣2x)2,然后解出这个方程,再把所得的结果进行检验即可.【解答】解法一:移项,,x﹣3=(6﹣2x)2,化简得,4x2﹣25x+39=0,(x﹣3)(4x﹣13)=0,解得:,经检验,x1=3是原方程的根,是增根.所以原方程的根为x=3.【点评】此题考查了无理方程,解题的关键是通过把方程两边平方,把无理方程转化成有理方程,在计算时要注意检验.20.(8分)解方程组:【分析】根据提公因式法把(1)化为x=0或x﹣y﹣3=0,重新组成方程组,解方程组即可.【解答】解:由(1)得,x(x﹣y﹣3)=0∴x=0或x﹣y﹣3=0,∴原方程组可化为两个方程组:,分别解这两个方程组,得原方程组的解是:,,.【点评】本题考查的是高次方程的解法,解高次方程一般要降次,即把它转化成二次方程或一次方程.21.(8分)如图,点E、F在平行四边形ABCD的对角线BD上,且EB=DF.(1)填空:=;=;=.(2)求作:.【分析】(1)根据平行四边形法则,即可得出答案.(2)利用平行四边形法则来作合向量:即可.【解答】解:(1)=;=;∵=,∴=.(2)∵=,∴=,即是根据平行四边形法则求作的合向量.图形如下所示:所作即为所求.【点评】本题考查了平面向量的知识,属于基础题,注意平面向量定义及平行四边形法则的熟练掌握.22.(8分)如图,已知在矩形ABCD中,对角线AC、BD交于点O,CE=AE,F 是AE的中点,AB=4,BC=8.求线段OF的长.【分析】要想求OF的长,只需求出CE的长,若设DE=x,那么AE=CE=8﹣x,则在Rt△DEC中,CE2=DE2+CD2,代入即可求出DE和AE的值,继而求出答案.【解答】解:∵四边形ABCD是矩形,∴∠ADC=90°,AD=BC=8,CD=AB=4,设DE=x,那么AE=CE=8﹣x,∵在Rt△DEC中,CE2=DE2+CD2,∴(8﹣x)2=x2+42,∴x=3,∴CE=8﹣x=5,∵四边形ABCD是矩形,∴O为AC中点.又∵F是AE的中点,∴.【点评】本题考查矩形的性质及勾股定理的知识,难度不大,关键是根据勾股定理求出AE的长.23.(8分)已知:如图,在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,且AE=CG,AH=CF,EG平分∠HEF.(1)求证:四边形EFGH是平行四边形;(2)求证:四边形EFGH是菱形.【分析】(1)由于四边形ABCD是平行四边形,易得∠A=∠C,∠B=∠D,结合AE=CG,AH=CF,利用SAS可证△AEH≌△CGF,于是EH=FG,而AB=CD,AD=BC,利用等式性质易得BE=DG,BF=DH,再利用SAS可证△BEF≌△DGH,于是EF=GH,易证四边形EFGH是平行四边形;(2)由(1)知四边形EFGH是平行四边形,那么EF∥GH,那么∠HGE=∠FEG,而EG是角平分线,易得∠HEG=∠FEG,等量代换可得∠HEG=∠HGE,从而有HE=HG,易证四边形EFGH是菱形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,又∵AE=CG,AH=CF,∴△AEH≌△CGF,∴EH=FG,∵AB=CD,AD=BC,∴BE=DG,BF=DH,∴△BEF≌△DGH,∴EF=GH,∴四边形EFGH是平行四边形;(2)∵四边形EFGH是平行四边形,∴HG∥EF,∴∠HGE=∠FEG,∵∠HEG=∠FEG,∴∠HEG=∠HGE,∴HE=HG,∴四边形EFGH是菱形.【点评】本题考查了全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定.解题的关键是掌握两组对边相等的四边形是平行四边形,一组邻边相等的平行四边形是菱形.24.(8分)某书店两次从图书批发市场购进某种图书,每次都用2000元.其中第二次购进这种书每本的批发价比第一次每本的批发价降低了2元,且比第一次购进的书多了50本,求第一次购书时每本的批发价.【分析】本题首先依题意可知等量关系为第一次购书的本数=第二次购书的本数﹣50,根据等量关系列出方程,最后求出结果检验并作答.【解答】解:设第一次购书时每本的批发价为x元.(1分)根据题意得,(3分)化简方程得x2﹣2x﹣80=0,(1分)解得x1=10,x2=﹣8.(1分)经检验,x1=10,x2=﹣8都是方程的根,但x=﹣8不合题意,舍去.(1分)答:第一次购书时每本的批发价为10元.(1分)【点评】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.25.(8分)已知一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B,梯形AOBC的边AC=5,且OA∥BC.(1)求点C的坐标;(2)如果点A、C在一次函数y=kx+b(k、b为常数,且k<0)的图象上,求这个一次函数的解析式.【分析】(1)根据梯形的对边平行,画出图形,结合勾股定理求解;(2)根据(1)中所求C点坐标,一次函数y=kx+b中k<0的条件,确定C的坐标,求一次函数解析式.【解答】解:(1)如图,∵一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B,∴A(8,0),B(0,4).在梯形AOBC中,OA=8,OB=4,当BC∥OA时,设点C(x,4).∵AC=5,∴(x﹣8)2+(4﹣0)2=52,∴x1=5,x2=11,这时点C的坐标为(5,4)或(11,4),∴点C的坐标为(5,4)或(11,4);(2)∵点A、C在一次函数y=kx+b(k<0)的图象上,∴点(8,5)与(11,4)都不符合题意,只有当C为(5,4)时,k<0,∴,∴,∴这个一次函数的解析式为y=﹣x+.【点评】本题考查了一次函数的综合运用.根据组成梯形的字母顺序,梯形的底边,分类求C点坐标,再求一次函数解析式.四、(本大题共1题,满分10分)26.(10分)如图,在正方形ABCD中,点E在边AB上(点E与点A、B不重合),过点E作FG⊥DE,FG与边BC相交于点F,与边DA的延长线相交于点G.(1)由几个不同的位置,分别测量BF、AG、AE的长,从中你能发现BF、AG、AE的数量之间具有怎样的关系?并证明你所得到的结论;(2)连接DF,如果正方形的边长为2,设AE=x,△DFG的面积为y,求y与x 之间的函数解析式,并写出函数的定义域;(3)如果正方形的边长为2,FG的长为,求点C到直线DE的距离.【分析】(1)要寻找3条线段的数量关系,往往采用作辅助线截长或补短的方法,然后找到其中的关系,本题证明三角形全等是关键.(2)由(1)可知DE=FG,∴△DGF的底与高可以关键勾股定理用含x的式子表示出来,所以解析式就可以表示出来.(3)要解决本题,关键题意作出辅助线是关键,利用三角形的面积公式建立两个不同的式子是问题解决.【解答】解:(1)BF+AG=AE.证明:过点F作FH⊥DA,垂足为H,∵在正方形ABCD中,∠DAE=∠B=90°,∴四边形ABFH是矩形,∴FH=AB=DA,∵DE⊥FG,∴∠G=90°﹣∠ADE=∠DEA,又∴∠DAE=∠FHG=90°,∴△FHG≌△DAE,∴GH=AE,即HA+AG=AE,∵BF=HA,∴BF+AG=AE.(2)∵△FHG≌△DAE,∴FG=DE=,=FG•DE,∵S△DGF∴y=,∴解析式为:y=,定义域为0<x<2.=CD•AD=2,(3)连接CE,作CP⊥DE于P,S△CDE∴S=DE•CP=2,△CDE∵DE=FG=,∴•CP=2,∴CP=,∴点C到直线DE的距离为.【点评】此题主要考查了全等三角形的判定与性质,根据已知得出∠G=∠DEA,进而得出△FHG≌△DAE是解决问题的关键.作辅助线是难点.。
上海市2015学年第二学期期末期末质量抽测初二数学
上海市2015学年度第二学期期末教学质量测试初二数学模拟试卷(满分:100分 考试时间:100分钟)考生注意:本试卷含三个大题,共25题,除第一、二大题外,其余各题如无特别说明,都必须在试卷的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每小题各2分,满分12分)1. 一次函数12.0+=x y 的截距是:( ) (A)0。
2;(B )2;(C)1;(D )0;2。
下列方程有实数根的是:( )(A )6-2=+x x ; (B)x x -1-=; (C )111-=-x x x ; (D )22+=-x x x 。
3. 下列说法中错误的是:( ) (A )“掷骰子点数为6"是随机事件;(B)“地球会自转和公转"是必然事件;(C )“抛硬币决胜负”获胜概率为50%; (D)一局制“猜拳”获胜概率为50%.4. 若要使关于x 的方程:k x =-+193有负实数根,则k 的取值范围是:( )(A)801<≤-k ;(B)901<<-k ;(C )81<≤-k ;(D )91<<-k .5. 在梯形ABCD 中,BC AD //,点M 、N 分别是AB 、CD 的中点,则:( )(A )若21=BC AD ,则21=BMNC AMND S S 梯形梯形,31-=+-BC AD C C BMNC AMND 梯形梯形;(C )若73=BC AD ,则32=BMNC AMND S S 梯形梯形,52-=+-BC AD C C BMNC AMND 梯形梯形;(B )若43=BC AD ,则21=BMNC AMND S S 梯形梯形,31-=+-BC AD C C BMNC AMND 梯形梯形;(D )若135=BC AD ,则32=BMNC AMND S S 梯形梯形,52-=+-BC AD C C BMNC AMND 梯形梯形。
6。
下列选项中所指的“四边形”不可能是正方形的是:( ) (A )顺次联结对角线互相垂直且且相等的四边形的各边上的中点所围成的四边形;(B )顺次联结等边三角形三条角平分线的交点与三边上的各一点所围成的四边形;(C )顺次联结正n 变形(n 为偶完成平方数)不同的4个顶点所围成的四边形;(D )顺次联结直线1+=x y 、x 轴、1--=x y 上的各一点、原点所围成的四边形。
2015-2016学年度沪科版八年级数学下册期末测试题及答案(2套)
2015-2016学年度八年级数学下册期末检测题(完卷时间:90分钟,满分:100分)一、选择题(每小题3分,共18分)1.二元二次方程2220x xy y --=可以化为两个二元一次方程,下列表示正确的是( )(A )020x y x y +=⎧⎨-=⎩; (B )020x y x y -=⎧⎨+=⎩;(C )0x y +=或20x y -=; (D )0x y -=或20x y +=.2.下列函数中,在其定义域内y 随x 的增大而增大的是………………………………( )(A )62x y =-+; (B )62x y =+; (C )2y x =-; (D )2y x=.3.下列图形中,是轴对称图形,但不是中心对称图形的是……………………………( )(A )矩形; (B )菱形; (C )平行四边形; (D )等腰梯形 4.如图,DE 是△ABC 的中位线,下面的结论中错误的是……( )(A )AB DE 21=; (B )AB ∥DE ; (C )2BC CE =; (D )2AC DE =5. 下列事件属于必然事件的是…………………………………( ) (A )10只鸟关在3个笼子里,至少有1个笼子里关的鸟超过3只;(B )某种彩票的中奖概率为1001,购买100张彩票一定中奖;(C )将10克浓度为3%的盐水和10克浓度为7%的盐水混合得20克浓度为10%的盐水; (D )夹在两条互相平行的直线之间的线段相等.6.下列命题中,真命题的是………………………………………………………………( ) (A )对角线互相垂直平分的四边形是正方形;(B )对角线互相垂直的四边形是菱形; (C )对角线互相平分的四边形是平行四边形;(D )对角线相等的四边形是矩形. 二、填空题(每小题2分,共24分)7.在实数范围内,二项方程4160x -=的解是 . 8.如果一个n 边形的每一个内角都是160o,那么n = .9.已知函数112y x =+,当1y ≤-时,x 的取值范围是____________.10.化简:MN MP NP -+=u u u u r u u u r u u u r.11.已知平行四边形一组对角的和等于270°,那么在这个平行四边形中较小的一个内角等于 度.12.直线2y mx =-和6y nx =-相交于x 轴上同一点,则mn的值为 _______________. 13.在1~4这四个数中,任取两个不相等的数组成一个分数(分母不为1),则分子和分母互素的分数的概率为____________.14.如果顺次联结四边形ABCD 各边中点所得的四边形是矩形,那么对角线AC BD 与需满足的条件是_____________.15.如图,在梯形ABCD 中,AB ∥CD ,∠ABC =︒90,如果AB =5,BC =4,CD =3,那么第4题图E DCBADC BA AD =____________.16.如图,菱形ABCD 中,︒=∠130A ,M 在BD 上,MC MB =.则=MCD ∠ _ o 17.如图,已知正方形ABCD ,点E 在边DC 上,3=DE ,1=EC .联结AE ,点F 在射线AB 上,且满足AE CF =,则A 、F 两点的距离为 .15题图18.如图所示梯形ABCD 中,AB ∥DC ,5AB =,11DC =.图(1)中11A B 是联结两腰中点的线段.易知,11=8A B .图(2)中11A B 、22A B 是联结两腰三等分点且平行于底边的线段,可求得1122+A B A B 的值.…照此规律下去,图(3)中11A B 、22A B …1010A B 是联结两腰十一等分点且平行于底边的线段.则11+A B 22+A B …1010+A B 的值为__________.三.解答题(19-20题各5分,21-22题各6分,23-24题各8分,共38分)19.解方程:x x =++1052 20. 解方程组:2220449x xy x xy y ⎧+=⎪⎨++=⎪⎩21.已知:如图,AE ∥BF ,AC 平分∠BAD ,交BF 于点C ,BD 平分∠ABC ,交AE 于点D ,联结CD .求证:四边形ABCD 是菱形.A16题图 BC D M 17题图 EB C D A F O E D C B A 第21题图22.如图,在平面直角坐标系中,O 为原点,点A 、B 、C 的坐标分别为(2,0)、(-1,3)、(-2,-2). (1)在图中作向量OB OA +; (2)在图中作向量-;(3)填空:||||AB BC CA ++=u u u r u u u r u u u r.24.一个不透明的口袋里装有2个红球和1个白球,它们除颜色外其他都相同.(1)摸出一个球放回袋中,搅匀后再摸一个球.求前后都摸到红球的概率(用树形图法说明).(2)若在上述口袋中再放入若干个形状完全一样的黄球,使放入黄球后摸到一个红球(只摸1次)的概率为51,求放入黄球的个数.25.某学校准备用2400元购买一批学习用品作为奖品奖励优秀学生,已知甲种学习用品的单价比乙种学习用品的单价少2元,若用这些钱全部购买甲种学习用品比全部购买乙种学习用品可多买200件,现学校决定用这些钱购买甲、乙两种学习用品,且使乙种学习用品的件十是甲种学习用品的件数的2倍,问:这两种学习用品的单价分别是多少元?应分别购买多少件?第22题图四、综合题(每题10分,共20分)26.周六上午8:00小明从家出发,乘车1小时到郊外某地参加社会实践活动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年上海市静安区八年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1.当a<0时,|a﹣1|等于()A.a+1 B.﹣a﹣1 C.a﹣1 D.1﹣a2.下列方程中,是无理方程的为()A.B.C.D.3.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+44.下列关于向量的运算,正确的是()A.B.C.D.5.有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同.下列事件中属于确定事件的是()A.从袋子中摸出1个球,球的颜色是红色B.从袋子中摸出2个球,它们的颜色相同C.从袋子中摸出3个球,有颜色相同的球D.从袋子中摸出4个球,有颜色相同的球6.已知四边形ABCD中,AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CD C.OB=OC,AB=CD D.OB=OC,OA=OD二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置上】7.如果一次函数y=(k﹣2)x+1的图象经过一、二、三象限,那么常数k的取值范围是.8.方程x3+1=0的根是.9.方程的根是.10.用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.11.已知函数,那么=.12.从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数是素数的概率是.13.如果一个n边形的内角和是1440°,那么n=.14.如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是AC、AB边的中点,那么△CDE的周长为.16.如图,已知正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,点F为垂足,那么FC=.17.一次函数y=x+2的图象经过点A(a,b),B(c,d),那么ac﹣ad﹣bc+bd的值为.18.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD 绕点A旋转后得到梯形AB1C1D1,其中B、C、D的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,那么DD1的长为.附加题(本题最高得3分,当整卷总分不满120分时,计入总分,整卷总分不超过120分)19.如果关于x的方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,那么m=.三、解答题(本大题共8题,满分66分)[将下列各题的解答过程,做在答题纸上] 20.先化简,再求值:,其中x=.21.解方程:.22.解方程组:.23.如图,在梯形ABCD中,AD∥BC,BC=2AD,过点A作AE∥DC交BC于点E.(1)写出图中所有与互为相反向量的向量:;(2)求作:、.(保留作图痕迹,写出结果,不要求写作法)24.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.25.某公司生产的新产品需要精加工后才能投放市场,为此王师傅承担了加工300个新产品的任务.在加工了80个新产品后,王师傅接到通知,要求加快新产品加工的进程,王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务.问接到通知后,王师傅平均每天加工多少个新产品?26.在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A、与反比例函数(k是常数,k≠0)的图象交于点B(a,3),且这个反比例函数的图象经过点C(6,1).(1)求出点A的坐标;(2)设点D为x轴上的一点,当四边形ABCD是梯形时,求出点D的坐标和四边形ABCD 的面积.27.已知:如图,在矩形ABCD中,AB=3,点E在AB的延长线上,且AE=AC,联结CE,取CE的中点F,联结BF、DF.(1)求证:DF⊥BF;(2)设AC=x,DF=y,求y与x之间的函数关系式,并写出定义域;(3)当DF=2BF时,求BC的长.2015-2016学年上海市静安区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1.当a<0时,|a﹣1|等于()A.a+1 B.﹣a﹣1 C.a﹣1 D.1﹣a【考点】绝对值.【分析】根据负有理数的绝对值是它相反数得结论做出正确判断.【解答】解:当a<0时,即a<1,则|a﹣1|=1﹣a;故选D.2.下列方程中,是无理方程的为()A.B.C.D.【考点】无理方程.【分析】可以判断各选项中的方程是什么方程,从而可以得到哪个选项是正确的.【解答】解:是一元二次方程,是无理方程,=0是分式方程,是一元一次方程,故选B.3.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4【考点】一次函数的应用.【分析】根据图象信息一一判断即可解决问题.【解答】解:由图象可知,出租车的起步价是10元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4,超过3千米部分(x>3)每千米收2元,故A、B、D正确,C错误,故选C.4.下列关于向量的运算,正确的是()A.B.C.D.【考点】*平面向量.【分析】由三角形法则直接求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、+=,故本选项正确;B、﹣=,故本选项错误;C、﹣=,故本选项错误;D、﹣=,故本选项错误.故选:A.5.有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同.下列事件中属于确定事件的是()A.从袋子中摸出1个球,球的颜色是红色B.从袋子中摸出2个球,它们的颜色相同C.从袋子中摸出3个球,有颜色相同的球D.从袋子中摸出4个球,有颜色相同的球【考点】随机事件.【分析】根据袋子中装有3个红球、1个白球、1个绿球以及必然事件、不可能事件、随机事件的概念解答即可.【解答】解:从袋子中摸出1个球,球的颜色是红色是随机事件;从袋子中摸出2个球,它们的颜色相同是随机事件;从袋子中摸出3个球,有颜色相同的球是随机事件;从袋子中摸出4个球,有颜色相同的球是不可能事件,故选:D.6.已知四边形ABCD中,AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CD C.OB=OC,AB=CD D.OB=OC,OA=OD【考点】等腰梯形的判定.【分析】根据等腰梯形的判定推出即可.【解答】解:A、AC=BD=BC,不能证明四边形ABCD是等腰梯形,错误;B、AB=AD=CD,不能证明四边形ABCD是等腰梯形,错误;C、OB=OC,AB=CD,不能证明四边形ABCD是等腰梯形,错误;D、∵OB=OC,OA=OD,∴∠OBC=∠OCB,∠OAD=∠ODA,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴∠ABO=∠DCO,AB=CD,同理:∠OAB=∠ODC,∵∠ABC+∠DCB+∠CDA+∠BAD=360°,∴∠DAB+∠ABC=180°,∴AD∥BC,∴四边形ABCD是梯形,∵AB=CD,∴四边形ABCD是等腰梯形.故选D二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置上】7.如果一次函数y=(k﹣2)x+1的图象经过一、二、三象限,那么常数k的取值范围是k >2.【考点】一次函数图象与系数的关系.【分析】根据一次函数图象所经过的象限确定k的符号.【解答】解:∵一次函数y=(k﹣2)x+1(k为常数,k≠0)的图象经过第一、二、三象限,∴k﹣2>0.解得:k>2,故填:k>2;8.方程x3+1=0的根是﹣1.【考点】立方根.【分析】先求出x3,再根据立方根的定义解答.【解答】解:由x3+1=0得,x3=﹣1,∵(﹣1)3=﹣1,∴x=﹣1.故答案为:﹣1.9.方程的根是x=0.【考点】分式方程的解.【分析】先去分母,再解整式方程,最后检验即可.【解答】解:去分母得,x2+3x=0,解得x=0或﹣3,检验:把x=0代入x+3=3≠0,∴x=0是原方程的解;把x=﹣3代入x+3=﹣3+3=0,∴x=﹣3不是原方程的解,舍去;∴原方程的解为x=0,故答案为x=0.10.用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.【考点】换元法解分式方程.【分析】设,,则=3u,=2v,从而得出关于u、v的二元一次方程组.【解答】解:设,,原方程组变为,故答案为.11.已知函数,那么=.【考点】函数值.【分析】把自变量x=﹣代入函数解析式进行计算即可得解.【解答】解:∵,∴=;故答案为.12.从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数是素数的概率是.【考点】概率公式.【分析】列表列举出所有情况,看两位数是素数的情况数占总情况数的多少即可解答.【解答】解:列表如下:2 3 42 (2,2)(2,3)(2,4)3 (3,2)(3,3)(3,4)4 (4,2)(4,3)(4,4)共有9种等可能的结果,其中是素数的有3种,概率为;故答案为:13.如果一个n边形的内角和是1440°,那么n=10.【考点】多边形内角与外角.【分析】根据多边形的内角和公式:(n﹣2)×180°,列出方程,即可求出n的值.【解答】解:∵n边形的内角和是1440°,∴(n﹣2)×180°=1440°,解得:n=10.故答案为:10.14.如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为5.【考点】菱形的性质.【分析】根据已知可得较小的内角为60°,从而得到较短的对角线与菱形的一组邻边组成一个等边三角形,从而可求得较短对角线的长度.【解答】解:如图所示:∵菱形的边长为5,∴AB=BC=CD=DA=5,∠B+∠BAD=180°,∵菱形相邻两内角的度数比为1:2,即∠B:∠BAD=1:2,∴∠B=60°,∴△ABC是等边三角形,∴AC=AB=5;故答案为:5.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是AC、AB边的中点,那么△CDE的周长为12.【考点】三角形中位线定理.【分析】利用勾股定理求得边AB的长度,然后结合三角形中位线定理得到DE=AB,则易求△CDE的周长.【解答】解:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB===10.又∵点D、E分别是AC、AB边的中点,∴CE=BC=4,CD=AC=3,ED是△ABC的中位线,∴DE=AB=5,∴△CDE的周长=CE+CD+ED=4+3+5=12.故答案是:12.16.如图,已知正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,点F为垂足,那么FC=﹣1.【考点】正方形的性质;角平分线的性质.【分析】根据正方形的性质和已知条件可求得AF,AC的长,从而不难得到FC的长.【解答】解:∵四边形ABCD是正方形,∴AB=BC=AD=CD=1,∠D=∠B=90°,∴AC==,∵AE平分∠DAC,EF⊥AC交于F,∴AF=AD=1,∴FC=AC﹣AF=﹣1,故答案为:;17.一次函数y=x+2的图象经过点A(a,b),B(c,d),那么ac﹣ad﹣bc+bd的值为4.【考点】一次函数图象上点的坐标特征.【分析】先根据点A、B的坐标代入解析式,再代入代数式计算即可求解.【解答】解:把点A、B的坐标代入解析式,可得:a+2=b,c+2=d,所以ac﹣ad﹣bc+bd=ac﹣a(c+2)﹣(a+2)c+(a+2)(c+2)=4;故答案为:418.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD 绕点A旋转后得到梯形AB1C1D1,其中B、C、D的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,那么DD1的长为.【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;直角梯形.【分析】先根据旋转的性质得出△DAB≌△D1AB1,再根据全等三角形的性质以及等腰三角形的性质,得出∠2=∠3,然后根据平行线的性质,得出∠2=∠4,若设∠1=∠2=∠3=∠4=α,则根据∠2+∠3+∠5=180°,可以求得α的度数为60°,最后根据△ADD1、△BCD都是等边三角形,求得DD1=AD=.【解答】解:如图,将梯形ABCD绕点A旋转后得到梯形AB1C1D1,连接BD,由旋转得:AD=AD1,AB=AB1,∠DAD1=∠BAB1,∴∠DAB=∠D1AB1,且∠1=∠3,在△DAB和△D1AB1中,,∴△DAB≌△D1AB1(SAS),∴∠1=∠2,∴∠2=∠3,∵AD∥BC,∴∠2=∠4,设∠1=∠2=∠3=∠4=α,则∠5=180°﹣∠4﹣∠C=120°﹣α,∵∠2+∠3+∠5=180°,∴α+α+120°﹣α=180°,解得α=60°,∴∠1=∠2=∠3=∠4=60°,∴△ADD1、△BCD都是等边三角形,∴BD=CD=5,∠ABD=30°,∴Rt△ABD中,AD=BD=,∴DD1=AD=.故答案为:附加题(本题最高得3分,当整卷总分不满120分时,计入总分,整卷总分不超过120分)19.如果关于x的方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,那么m=﹣1.【考点】根与系数的关系.【分析】先根据根与系数的关系得到=1,解得m=﹣1或m=1,然后根据判别式的意义确定满足条件的m的值.【解答】解:∵方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,∴=1,解得m=1或m=﹣1,当m=1时,方程变形为x2+x+1=0,△=1﹣4×1×1=﹣3<0,方程没有实数解,所以m的值为﹣1.故答案为:﹣1.三、解答题(本大题共8题,满分66分)[将下列各题的解答过程,做在答题纸上] 20.先化简,再求值:,其中x=.【考点】分式的化简求值.【分析】要熟悉混合运算的顺序,分式的除法转化为分式的乘法运算,最后算减法,注意化简后,将x=代入化间后的式子求出即可.【解答】解:原式=÷+,=×+,=+,=,当x=+1,原式=21.解方程:.【考点】无理方程.【分析】分析:将方程中左边的一项移项得:,两边平方得,,两边再平方得x﹣3=1,解得x=4,最后验根,可求解.【解答】解:,,,x﹣3=1,x=4.经检验:x=4是原方程的根,所以原方程的根是x=4.22.解方程组:.【考点】高次方程.【分析】先把第二个方程因式分解,把二元二次方程组转化为二元一次方程组,求解即可.【解答】解:由②得x﹣4y=0或x+3y=0,原方程组可化为(Ⅰ)(Ⅱ),解方程组(Ⅰ)得,方程组(Ⅱ)无解,所以原方程组的解是.23.如图,在梯形ABCD中,AD∥BC,BC=2AD,过点A作AE∥DC交BC于点E.(1)写出图中所有与互为相反向量的向量:,,;(2)求作:、.(保留作图痕迹,写出结果,不要求写作法)【考点】*平面向量;梯形.【分析】(1)根据平行四边形的性质即可解决问题.(2)根据向量和差定义即可解决.【解答】解:(1)∵AD∥EC,AE∥DC,∴四边形AECD是平行四边形,∴AD=EC,∵BC=2AD,∴BE=EC,∴所有与互为相反向量的向量有、、.(2)如图﹣=, +=+=,图中.就是所求的向量.24.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.【考点】平行四边形的判定与性质.【分析】法1:由平行四边形对边平行,且CF与AD垂直,得到CF与BC垂直,根据AE 与BC垂直,得到AE与CF平行,得到一对内错角相等,利用等角的补角相等得到∠AGB=∠DHC,根据AB与CD平行,得到一对内错角相等,再由AB=CD,利用AAS得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到AG=CH,利用一组对边平行且相等的四边形为平行四边形即可得证;法2:连接AC,与BD交于点O,利用平行四边形的对角线互相平分得到OA=OC,OB=OD,再由AB与CD平行,得到一对内错角相等,根据CF与AD垂直,AE与BC垂直,得一对直角相等,利用ASA得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到BG=DH,根据等式的性质得到OG=OH,利用对角线互相平分的四边形为平行四边形即可得证.【解答】证明:法1:在□ABCD中,AD∥BC,AB∥CD,∵CF⊥AD,∴CF⊥BC,∵AE⊥BC,∴AE∥CF,即AG∥CH,∴∠AGH=∠CHG,∵∠AGB=180°﹣∠AGH,∠DHC=180°﹣∠CHG,∴∠AGB=∠DHC,∵AB∥CD,∴∠ABG=∠CDH,∴△ABG≌CDH,∴AG=CH,∴四边形AGCH是平行四边形;法2:连接AC,与BD相交于点O,在□ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,∴∠ABG=∠CDH,∵CF⊥AD,AE⊥BC,∴∠AEB=∠CFD=90°,∴∠BAG=∠DCH,∴△ABG≌CDH,∴BG=DH,∴BO﹣BG=DO﹣DH,∴OG=OH,∴四边形AGCH是平行四边形.25.某公司生产的新产品需要精加工后才能投放市场,为此王师傅承担了加工300个新产品的任务.在加工了80个新产品后,王师傅接到通知,要求加快新产品加工的进程,王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务.问接到通知后,王师傅平均每天加工多少个新产品?【考点】分式方程的应用.【分析】根据关键句子“王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务”找到等量关系列出方程求解即可.【解答】解:设接到通知后,王师傅平均每天加工x个新产品.根据题意,得.x2﹣65x+550=0,x1=55,x2=10.经检验:x1=55,x2=10都是原方程的解,但x2=10不符合题意,舍去.答:接到通知后,王师傅平均每天加工55个新产品.26.在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A、与反比例函数(k是常数,k≠0)的图象交于点B(a,3),且这个反比例函数的图象经过点C(6,1).(1)求出点A的坐标;(2)设点D为x轴上的一点,当四边形ABCD是梯形时,求出点D的坐标和四边形ABCD 的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先利用C点坐标计算出反比例函数中的k的值,进而可得反比例函数解析式,再利用反比例函数解析式计算出B的坐标,把B点坐标代入y=x+b可得B的值,进而可得一次函数解析式,然后可得一次函数y=x+b的图象与x轴交点A的坐标;(2)点D为x轴上的一点,因此不可能出现AD∥BC的情形,只有可能AB∥CD,设直线CD的解析式为y=x+m,把C点坐标代入可得m的值,然后可得D点坐标,分别过点B、C 作BE⊥x轴、CF⊥x轴,垂足分别为E、F,然后利用图形中的面积关系计算出四边形ABCD 的面积即可.【解答】解:(1)方法一:∵反比例函数经过点C(6,1),∴,∴k=6,∴反比例函数解析式为.∵B(a,3)在该反比例的图象上,∴,∴a=2,即B(2,3),∵y=x+b经过点B(2,3),∴y=x+1,令y=x+1=0,得x=﹣1,∴A(﹣1,0).方法二:∵点C(6,1)与点B(a,3)都在反比例函数的图象上,∴6×1=a×3=k,∴a=2,∴B(2,3).∵y=x+b经过点B(2,3),∴y=x+1,令y=x+1=0,得x=﹣1,∴A(﹣1,0).(2)∵四边形ABCD是梯形,且点D为x轴上的一点,∴不可能出现AD∥BC的情形,只有可能AB∥CD,∵直线AB 的解析式为y=x +1,∴可设直线CD 的解析式为y=x +m ,∵y=x +m 经过点C (6,1),∴y=x ﹣5,令y=x ﹣5=0,得x=5,∴D (5,0),分别过点B 、C 作BE ⊥x 轴、CF ⊥x 轴,垂足分别为E 、F ,则S 梯形ABCD =S △ABE +S 梯形BEFC ﹣S △DCF ,===12.27.已知:如图,在矩形ABCD 中,AB=3,点E 在AB 的延长线上,且AE=AC ,联结CE ,取CE 的中点F ,联结BF 、DF .(1)求证:DF ⊥BF ;(2)设AC=x ,DF=y ,求y 与x 之间的函数关系式,并写出定义域;(3)当DF=2BF 时,求BC 的长.【考点】四边形综合题.【分析】(1)方法一:如图1中,连接AF,只要证明△ABF≌DCF即可.方法二:如图2中,连接BD,与AC相交于点O,联结OF,只要证明OB=OF=OD即可.(2)由y=DF=即可解决问题.(3)首先证明CE=DF=AF,列出方程即可解决.【解答】(1)证明:方法一:如图1中,连接AF,∵AE=AC,点F为CE的中点,∴AF⊥CE,即∠AFC=90°,∵在矩形ABCD中,AB=CD,∠ABC=∠DCB=90°,∴∠CBE=180°﹣∠ABC=90°,∴EF=BF=CF=,∴∠FBC=∠FCB,即∠ABC+∠FBC=∠DCB+∠FCB,∴∠ABF=∠DCF,在△ABF和△DCF中,,∴△ABF≌DCF,∴∠AFB=∠DFC,∴∠BFD=∠AFB+∠AFD=∠AFD+∠DFC=∠AFC=90°,即DF⊥BF;方法二:如图2中,连接BD,与AC相交于点O,联结OF,∵在矩形ABCD中,AC=BD,OA=OC,OB=OD,∴OA=OC=OB=OD=AC=BD,∵点F是CE的中点,∴OF=AE,∵AE=AC,∴OF=AC=BD,∴OF=OB=OD,∴∠OBF=∠OFB,∠OFD=∠ODF,∵∠OBF+∠OFB+∠OFD+∠ODF=180°,∴2∠OFB+2∠OFD=180°,∴∠OFB+∠OFD=90°,即∠BFD=90°,∴DF⊥BF;(2)解:在Rt△ABC中,BC2=AC2﹣AB2=x2﹣9,∵AE=AC=x,∴BE=x﹣3,∴EC===,∴BF==,∴y=DF===,∴y=(x>3).(3)∵△ABF≌DCF,∴AF=DF,∵在Rt△ABC中,CE=2BF,又∵DF=2BF,∴CE=DF=AF,∴=,∴x1=0,x2=5.经检验,x1=0,x2=5都是方程的根,但x=0不符合题意.∴BC===4.2016年10月27日。