八年级第一次月考数学试题
八年级下学期第一次月考数学试卷含答案解析(苏科版)

八年级(下)第一次月考数学试卷一、选择题(每题3分,共24分)1.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个2.下列调查适合做普查的是()A.了解全球人类男女比例情况B.了解一批灯泡的平均使用寿命C.调查20~25岁年轻人最崇拜的偶像D.对患甲型H7N9的流感患者同一车厢的乘客进行医学检查3.如图,▱ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S□ABCD=4S△AOB B.AC=BDC.AC⊥BD D.▱ABCD是轴对称图形4.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形 B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形5.已知样本数据个数为30,且被分成4组,各组数据个数之比为2:4:3:1,则第二小组和第三小组的频率分别为()A.0.4和0.3 B.0.4和9 C.12和0.3 D.12和96.如图,在菱形ABCD中,AB=3,∠ABC=60°,则对角线AC=()A.12 B.9 C.6 D.37.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15°B.20°C.25°D.30°8.如图,大正方形中有2个小正方形,如果它们的面积分别是S1、S2,那么S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.S1、S2的大小关系不确定二、填空题(每空3分,共30分)9.学校为了考察我校八年级同学的视力情况,从八年级的17个班共850名学生中,每班抽取了5名进行分析.在这个问题中.样本是,样本的容量是.10.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确的命题是(将命题的序号填上即可).11.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,CD=5cm,则AB=cm.12.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是.13.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是.14.如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD 于E,则△ABE的周长为cm.15.如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=2,则PP′=.16.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅B(2,0),∠DOB=60°,点P 是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.三、解答题(共96分)18.如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,求CF的长.19.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.20.用反证法证明:等腰三角形的底角是锐角.21.在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,试判定四边形DEBF是何种特殊四边形?并说明理由.22.如图,将△ABC绕点C顺时针方向旋转40°得△A′B′C′,若AC⊥A′B′,求∠BAC的度数.23.我校为了迎接体育中考,了解学生的体育成绩,从全校500名九年级学生中随机抽取了“”根据图表解决下列问题:(1)本次共抽取了名学生进行体育测试,表(1)中,a=,b= c=;(2)补全图(2),所抽取学生成绩中中位数在哪个分数段;(3)“跳绳”数在180以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?24.如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.25.在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.【感知】(1)如图①,当点H与点C重合时,猜想FG与FD的数量关系,并说明理由.【探究】(2)如图②,当点H为边CD上任意一点时,(1)中结论是否仍然成立?不需要说明理由.【应用】(3)在图②中,当DF=3,CE=5时,直接利用探究的结论,求AB的长.26.如图,以△ABC的三边为边,在BC的同侧分别作3个等边三角形,即△ABD、△BCE、△ACF.(1)求证:四边形ADEF是平行四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形,并说明理由.(3)当△ABC满足什么条件时,四边形ADEF是菱形,并说明理由.(4)当△ABC满足什么条件时,四边形ADEF是正方形,不要说明理由.八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:第一个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;第二个图形,∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;第三个图形,此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;第四个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:B.2.下列调查适合做普查的是()A.了解全球人类男女比例情况B.了解一批灯泡的平均使用寿命C.调查20~25岁年轻人最崇拜的偶像D.对患甲型H7N9的流感患者同一车厢的乘客进行医学检查【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解全球人类男女比例情况,人数众多,范围较广,应采用抽样调查,故此选项错误;B、了解一批灯泡的平均使用寿命,普查具有破坏性,应采用抽样调查,故此选项错误;C、调查20~25岁年轻人最崇拜的偶像,人数众多,范围较广,应采用抽样调查,故此选项错误;D、对患甲型H7N9的流感患者同一车厢的乘客进行医学检查,人数较少,意义重大,必须采用普查,故此选项正确;故选:D.3.如图,▱ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S□ABCD=4S△AOB B.AC=BDC.AC⊥BD D.▱ABCD是轴对称图形【考点】平行四边形的性质.【分析】由▱ABCD的对角线AC、BD相交于点O,根据平行四边形的性质求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:∵▱ABCD的对角线AC、BD相交于点O,∴S□ABCD=4S△AOB,AC与BD互相平分(OA=OC,OB=OD),▱ABCD是中心对称图形,不是轴对称图形.故A正确,B,C,D错误.故选:A.4.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形 B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形【考点】矩形的判定;三角形中位线定理.【分析】此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:C.5.已知样本数据个数为30,且被分成4组,各组数据个数之比为2:4:3:1,则第二小组和第三小组的频率分别为()A.0.4和0.3 B.0.4和9 C.12和0.3 D.12和9【考点】频数(率)分布表.【分析】根据比例关系由频数=总数×频率即可得出第二、三组的频数,进而得出各组的频率.【解答】解:∵样本数据个数为30,且被分成4组,各组数据个数之比为2:4:3:1,∴第二小组和第三小组的频数为:30×=12,30×=9,∴第二小组和第三小组的频率分别为:=0.4,=0.3.故选:A.6.如图,在菱形ABCD中,AB=3,∠ABC=60°,则对角线AC=()A.12 B.9 C.6 D.3【考点】菱形的性质;等边三角形的判定与性质.【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC为等边三角形,∴AC=AB=3.故选D.7.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15°B.20°C.25°D.30°【考点】三角形中位线定理.【分析】根据中位线定理和已知,易证明△EPF是等腰三角形.【解答】解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=30°,∴∠PEF=∠PFE=30°.故选:D.8.如图,大正方形中有2个小正方形,如果它们的面积分别是S1、S2,那么S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.S1、S2的大小关系不确定【考点】正方形的性质;勾股定理.【分析】设大正方形的边长为x,根据等腰直角三角形的性质知AC、BC的长,进而可求得S2的边长,由面积的求法可得答案.【解答】解:如图,设大正方形的边长为x,根据等腰直角三角形的性质知,AC=BC,BC=CE=CD,∴AC=2CD,CD=,∴S2的边长为x,S2的面积为x2,S1的边长为,S1的面积为x2,∴S1>S2,故选:A.二、填空题(每空3分,共30分)9.学校为了考察我校八年级同学的视力情况,从八年级的17个班共850名学生中,每班抽取了5名进行分析.在这个问题中.样本是85名学生的视力情况,样本的容量是85.【考点】总体、个体、样本、样本容量.【分析】根据样本、样本的容量的定义即可解决.【解答】解:17×5=85在这个问题中.样本是85名学生的视力情况,样本的容量是85.故答案分别为85名学生的视力情况,85.10.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确的命题是②(将命题的序号填上即可).【考点】平行四边形的判定;命题与定理.【分析】根据平行四边形的判定定理进行判断.定理:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组邻角分别相等的四边形可能为梯形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:①一组对边平行,另一组对边相等的四边形不一定是平行四边形,等腰梯形也满足该条件.故①错误;②对角线互相平分的四边形是平行四边形.故②正确;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD不一定是平行四边形,筝形也满足该条件.故③错误;④一组对边相等,一组对角相等的四边形不能证明另一组对边也相等或平行.故④错误;故填:②.11.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,CD=5cm,则AB=10cm.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴线段CD是斜边AB上的中线;又∵CD=5cm,∴AB=2CD=10cm.故答案是:10.12.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是1<OA<4.【考点】平行四边形的性质;三角形三边关系.【分析】根据三角形的三边关系定理得到AC的取值范围,再根据平行四边形的性质即可求出OA的取值范围.【解答】解:∵AB=3cm,BC=5cm,∴2<AC<8,∵四边形ABCD是平行四边形,∴AO=AC,∴1<OA<4,故答案为:1<OA<4.13.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是cm.【考点】菱形的性质.【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,==×6×8=24cm2,∴S菱形ABCD=BC×AE,∵S菱形ABCD∴BC×AE=24,∴AE==cm.故答案为:cm.14.如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD 于E,则△ABE的周长为10cm.【考点】线段垂直平分线的性质;平行四边形的性质.【分析】要求周长,就要求出三角形的三边,利用垂直平分线的性质即可求出BE=DE,所以△ABE的周长=AB+AE+BE=AB+AD.【解答】解:∵AC,BD相交于点O∴O为BD的中点∵OE⊥BD∴BE=DE△ABE的周长=AB+AE+BE=AB+AD=×20=10cm△ABE的周长为10cm.故答案为10.15.如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=2,则PP′=2.【考点】旋转的性质.【分析】根据正方形的性质得到∠ABC=90°,再根据旋转的性质得∠PBP′=∠ABC=90°,PB=P′B=2,则△PBP′为等腰直角三角形,然后根据等腰直角三角形的性质求解.【解答】解:∵四边形ABCD为正方形,∴∠ABC=90°,∵△ABP绕点B顺时针方向旋转能与△CBP′重合,∴∠PBP′=∠ABC=90°,PB=P′B=2,∴△PBP′为等腰直角三角形,∴PP′=2PB=2.故答案为2.16.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅【分析】先求出每周课外阅读时间在1~2(不含1)小时的学生所占的百分比,再乘以全校的人数,即可得出答案.【解答】解:根据题意得:1200×=240(人),答:估计每周课外阅读时间在1~2(不含1)小时的学生有240人;故答案为:240.17.菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P 是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为().【考点】菱形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.【解答】解:连接ED,如图,∵点B的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(0,﹣1),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().三、解答题(共96分)18.如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,求CF的长.【考点】平行四边形的性质.【分析】由平行四边形ABCD中,AE平分∠DAB,可证得△ABF是等腰三角形,继而利用CF=BF﹣BC,求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=3,∴∠DAE=∠F,∵AE平分∠DAB,∴∠DAE=∠BAF,∴∠BAF=∠F,∴AB=BF=5,∴CF=BF﹣BC=5﹣3=2.19.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】通过全等三角形(△AEB≌△DFC)的对应边相等证得BE=CF,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE∥CF.则四边形BECF是平行四边形.【解答】证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠DFC=90°,∵AB∥CD,∴∠A=∠D,在△AEB与△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF.∵BE⊥AD,CF⊥AD,∴BE∥CF.∴四边形BECF是平行四边形.20.用反证法证明:等腰三角形的底角是锐角.【考点】反证法.【分析】根据反证法的步骤进行证明.【解答】证明:用反证法.假设等腰三角形的底角不是锐角,则大于或等于90°.根据等腰三角形的两个底角相等,则两个底角的和大于或等于180°.则该三角形的三个内角的和一定大于180°,这与三角形的内角和定理相矛盾,故假设不成立.所以等腰三角形的底角是锐角.21.在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,试判定四边形DEBF是何种特殊四边形?并说明理由.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【分析】(1)通过“平行四边形的对边相等、对角相等”的性质推知AD=BC,且∠A=∠C,结合已知条件,利用全等三角形的判定定理SAS证得结论;(2)首先判定四边形DEBF是平行四边形,然后根据“邻边相等的四边形是平行四边形”推知四边形DEBF是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C.∵在△ADE与△CBF中,,∴△ADE≌△CBF(SAS);(2)四边形DEBF是菱形.理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形.又∵DF=BF,∴四边形DEBF是菱形.22.如图,将△ABC绕点C顺时针方向旋转40°得△A′B′C′,若AC⊥A′B′,求∠BAC的度数.【考点】旋转的性质.【分析】根据旋转的性质得∠ACA′=40°,∠A=∠A′,然后利用AC⊥A′B′可得到∠A′=50°,于是可得到∠BAC=50°.【解答】解:∵△ABC绕点C顺时针方向旋转40°得△A′B′C′,∴∠ACA′=40°,∠A=∠A′,∵AC⊥A′B′,∴∠A′=90°﹣40°=50°,∴∠BAC=50°.23.我校为了迎接体育中考,了解学生的体育成绩,从全校500名九年级学生中随机抽取了“”根据图表解决下列问题:(1)本次共抽取了50名学生进行体育测试,表(1)中,a=0.2,b=7c=0.32;(2)补全图(2),所抽取学生成绩中中位数在哪个分数段;(3)“跳绳”数在180以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)根据第一组的频数是5,对应的频率是0.1据此即可求得总人数;(2)根据中位数的定义即可求解;(3)利用总人数500乘以对应的比例即可求解.【解答】解:(1)抽测的人数是:5÷0.1=50(人),a==0.2,b=50×0.14=7,c==0.32.故答案是:50,0.2,7,0.32.(2)所抽取学生成绩中中位数在190~200分数段;(3)全校九年级有多少学生在此项成绩中获满分的人数是×500=350(人).答:全校九年级有多少学生在此项成绩中获满分的人数是350人.24.如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.【考点】菱形的性质;矩形的判定.【分析】(1)首先证明△ABC是等边三角形,进而得出∠AEC=90°,四边形AECF是平行四边形,即可得出答案;(2)利用勾股定理得出AE的长,进而求出菱形的面积.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠AEC=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);(2)解:在Rt△ABE中,AE==3,=6×3=18.所以,S菱形ABCD25.在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.【感知】(1)如图①,当点H与点C重合时,猜想FG与FD的数量关系,并说明理由.【探究】(2)如图②,当点H为边CD上任意一点时,(1)中结论是否仍然成立?不需要说明理由.【应用】(3)在图②中,当DF=3,CE=5时,直接利用探究的结论,求AB的长.【考点】四边形综合题.【分析】[感知]连接AF,由折叠的性质可得AB=AG=AD,再结合AF为△AGF和△ADF 的公共边,从而证明△AGF≌△ADF,从而得出结论FD=FG.[探究]连接AF,根据图形猜想FD=FG,由折叠的性质可得AB=AG=AD,再结合AF为△AGF 和△ADF的公共边,从而证明△AGF≌△ADF,从而得出结论.[应用]设AB=x,则BE=EG=x﹣5,FE=x﹣2,FC=x﹣3,在RT△ECF中利用勾股定理可求出x的值,进而可得出答案.【解答】[感知]解:猜想FD=FG.证明:如图1,连接AF,由折叠的性质可得AB=AG=AD,在Rt△AGF和Rt△ADF中,,∴Rt△AGF≌Rt△ADF(HL).故可得FG=FD.[探究]解:猜想FD=FG.证明:如图2,连接AF,由折叠的性质可得AB=AG=AD,在Rt△AGF和Rt△ADF中,,∴Rt△AGF≌Rt△ADF(HL).故可得FG=FD.[应用]设AB=x,则BE=EG=x﹣5,FE=x﹣2,FC=x﹣3,在Rt△ECF中,EF2=FC2+EC2,即(x﹣2)2=(x﹣3)2+52,解得x=15.即AB的长为15.26.如图,以△ABC的三边为边,在BC的同侧分别作3个等边三角形,即△ABD、△BCE、△ACF.(1)求证:四边形ADEF是平行四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形,并说明理由.(3)当△ABC满足什么条件时,四边形ADEF是菱形,并说明理由.(4)当△ABC满足什么条件时,四边形ADEF是正方形,不要说明理由.【考点】正方形的判定;全等三角形的判定与性质;平行四边形的判定;菱形的判定;矩形的判定.【分析】(1)可先证明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;(2)如四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;(3)若四边形ADEF是菱形,则AD=AF,所以AB=AC,则△ABC是等腰三角形;(4)若四边形ADEF是正方形,则AD=AF,且∠DAF=90°,所以△ABC是等腰三角形,且∠BAC=150°.【解答】证明:(1)∵△ABD,△BCE都是等边三角形,∴∠DBE=∠ABC=60°﹣∠ABE,AB=BD,BC=BE.在△ABC与△DBE中,,∴△ABC≌△DBE(SAS).∴DE=AC.又∵AC=AF,∴DE=AF.同理可得EF=AD.∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴当∠DAF=90°时,四边形ADEF是矩形,∴∠FAD=90°.∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.则当∠BAC=150°时,四边形ADEF是矩形;(3)∵四边形ADEF是平行四边形,∴当AD=AF时,四边形ADEF是菱形,又∵AD=AB,AF=AC,∴AB=AC时,四边形ADEF是菱形;(4)综合(2)、(2)知,当△ABC是等腰三角形,且∠BAC=150°时,四边形ADEF是正方形.。
北师大版八年级数学下册第一次月考试卷(含答案)

八年级数学下册第一次月考试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第二章《一元一次不等式与一元一次不等式组》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.如图,在△ABC中,AB=AC,D是BC的中点,下列结论中不正确的是()A. ∠B=∠CB. AD⊥BCC. AD平分∠BACD. AB=2BD2.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A. ∠A=40°,∠B=50°B. ∠A=40°,∠B=60°C. ∠A=40°,∠B=80°D. ∠A=20°,∠B=80°3.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A. a−c>b−cB. a+c<b+cC. ac>bcD. ab <cb4.若a>b,则()A. a−1≥bB. b+1≥aC. a+1>b−1D. a−1>b+15.不等式组{x−1<−3,2x+9≥3的解集是()A. −3≤x<3B. x>−2C. −3≤x<−2D. x≤−36.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()A. 6折B. 7折C. 8折D. 9折7.如图,在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A. 5B. 6C. 7D. 88.如图,AB⊥AC于点A,BD⊥CD于点D.若AC=DB,则下列结论中不正确的是()A. ∠A=∠DB. ∠ABC=∠DCBC. OB=ODD. OA=OD9.如图,点A,B,C在一条直线上,△ABD和△BCE是等边三角形,连接AE,交BD于点P,连接CD,分别交BE,AE于点Q,M,连接BM,PQ,则∠AMD的度数为()A. 45°B. 60°C. 75°D. 90°10.若3a−22和2a−3是实数m的平方根,且t=√m,则不等式2x−t3−3x−t2≥512的解集为()A. x≥910B. x≤910或x≤6.5C. x≥811D. x≤811二、填空题(本大题共5小题,共20.0分)11.如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,BD平分∠ABC,DE⊥BC于点E,AB=7,DE=4,则△ABD的面积为.13.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为______元/千克.14.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为______.15.若关于x的不等式组{3x+5<5x+1 x>a−1 解集为x>2,则a的取值范围是______.三、解答题(本大题共10小题,共100.0分)16.(8分)解不等式组:{3(x+1)>x−1 x+92>2x17.(10分)已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D作DE垂直AB于点E,(1)求BC的长;(2)求AE的长;(3)求BD的长18.(10分)解不等式组{4(x+1)≤7x+13,①x−4<x−83,②并求它的所有整数解的和.19.(10分)某工厂计划生产甲、乙两种机器共10台,其生产成本和利润如下表所示:(1)某工厂计划投入成本26万元,这些成本刚好生产出整数台机器.问:甲、乙两种机器各应安排生间多少台?(2)若工厂计划生产甲机器的数量不少于4台,并共能获利不少于16万元,问:工厂有哪几种生产方案?并说明哪种方案获利最大?最大利润是多少?20.(10分)如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A′,连接A′B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数表达式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(10分)如图,在四边形ABCD中,E是边BC的中点,F是边CD的中点,且AE⊥BC,AF⊥CD.(1)求证:AB=AD;(2)若∠BCD=114°,求∠BAD的度数.23.(10分)用※定义一种新运算:对于任意实数m和n,规定m※n=m2n−mn−3n,如:1※2=12×2−1×2−3×2=−6.(1)求(−2)※√3;(2)若3※m≥−6,求m的取值范围,并在所给的数轴上表示出解集.24.(12分)甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x(s),甲、乙行走的路程分别为y1(cm),y2(cm),y1,y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发___________s,乙提速前的速度是___________cm/s,m=___________,n=___________;(2)当x为何值时,乙追上了甲?(3)何时乙在甲的前面?25.(12分)(1)如图①,点A、点B在线段l的同侧,请你在直线l上找一点P,使得AP+BP的值最小(不需要说明理由).(2)如图②,菱形ABCD的边长为6,对角线AC=6√3,点E,F在AC上,且EF=2,求DE+BF的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.答案1.D2.D3.B4.C5.C6.C7.A8.C9.B10.B11.4012.1413.1014.x>315.a≤316.解:{3(x+1)>x−1①x+92>2x②解不等式①得x>−2,解不等式②得x<3,∴不等式组的解集为−2<x<3.17.解:(1)∵∠C=90°,AB=10,AC=8,∴BC=√102−82=6;(2)∵BD为∠ABC的角平分线,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,{BD=BDCD=DE,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=6,∴AE=AB−BE=10−6=4;(3)设CD=DE=x,则AD=8−x,在Rt△ADE中,AE2+DE2=AD2,即42+x2=(8−x)2,解得x=3,所以,CD=DE=3,在Rt△BCD中,BD=√62+32=3√5.18.解:−3≤x<2.所有整数解的和为−5.19.解:(1)设甲、乙两种机器各应安排生间x台,(10−x)台,2x+5(10−x)=26,解得,x=8,则10−x=2,答:甲、乙两种机器各应安排生间8台、2台;(2)设生产甲种机器的数量为a台,{a+3(10−a)≥16a≥4,解得,4≤a≤7,∵a是整数,∴a=4,5,6,7,即工厂有四种进货方案,方案一:生产甲种机器4台,乙种机器6台;方案二:生产甲种机器5台,乙种机器5台;方案三:生产甲种机器6台,乙种机器4台;方案四:生产甲种机器7台,乙种机器3台;设利润为w元,w=a+3(10−a)=−2a+30,∴当a=4时,w取得最大值,此时w=22,即方案一获利最大,最大利润是22万元.20.解:(1)方案1:AC+AB=1+5=6,方案2:AM+BM=A′B=√CD2+(AC+BD)2=√41,∵6<√41,∴方案1更合适;(2)(方法不唯一)如图,①若AQ1=AB=5或AQ4=AB=5时,CQ1=CQ4=√52−12=2√6(或√24)>4∴(不合题意,舍去)②若AB=BQ2=5或AB=BQ5=5时,DQ=√52−42=3,③当AQ3=BQ3时,设DQ3=x,则有x2+42=(4−x)2+128x=1∴x=1,8;即:DQ=18故当DQ=3或1时,△ABQ为等腰三角形.821.解:(1)大货车、小货车各有12辆、8辆.(2)设到A地的大货车有x辆,则到A地的小货车有(10−x)辆,到B地的大货车有(12−x)辆,到B地的小货车有(x−2)辆,∴y=900x+500(10−x)+1000(12−x)+700(x−2)=100x+15600(2≤x≤10,且x为整数).(3)根据题意,得15x+10(10−x)≥140.解得x≥8.∴8≤x≤10.∴当x=8时,y取最小值,y最小=100×8+15600=16400.22.解:(1)连接AC,∵点E 是边BC 的中点,AE ⊥BC ,∴AB =AC(三线合一)同理AD =AC ,∴AB =AD ;(2)∵AB =AC ,AD =AC ,∴∠B =∠1,∠D =∠2,∴∠B +∠D =∠1+∠2,即∠B +∠D =∠BCD ,∵∠BAD +(∠B +∠D)+∠BCD =(4−2)⋅180°=360°,∠BCD =114°, ∴∠BAD =360°−114°−114°=132°.23.(1)3√3.(2)m ≥−2.解集在数轴上表示图略.24.解:(1)15 15 31 45(2)设y 1=k 1x.∵点A(31,310)在OA 上,∴31k 1=310.解得k 1=10.∴y 1=10x .设BC 段对应的函数关系式为y 2=k 2x +b ,∵点B(17,30),C(31,450)在BC 上,∴{17k 2+b =30,31k 2+b =450,解得{k 2=30,b =−480.∴y 2=30x −480(17≤x ≤31).当y 1=y 2时,则10x =30x −480,解得x =24.∴当x =24时,乙追上了甲.(3)由图象可知,当x >24且x ≤45时,乙在甲的前面.25.解:(1)如图①中,作点A 关于直线l 的对称点A′,连接A′B 交直线l 于P ,连接PA.则点P 即为所求的点.(2)如图②中,作DM//AC ,使得DM =EF =2,连接BM 交AC 于F ,∵DM=EF,DM//EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=3√3,在Rt△ADO中,OD=√AD2−OA2=3,∴BD=6,∵DM//AC,∴∠MDB=∠BOC=90°,∴BM=√BD2+DM2=√62+22=2√10.∴DE+BF的最小值为2√10.(3)如图③中,连接AC、BD,在AC上取一点,使得DM=DC.∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ADB=60°,∴∠ACD=∠ADB=60°∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠MDC=60°,CM=DC,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC,∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长=AD+AB+CD+BC=AD+AB+AC,∵AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,∴当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大,易知AC的最大值=4√3,∴四边形ABCD的周长最大值为12+4√3.。
八年级下册 第一次月考(1-2章)数学试卷(含答案解析) (17)

八年级(下)第一次月考数学试卷(1-2章)一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.9.如图所示的不等式的解集是.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是.11.当代数式﹣3x的值大于10时,x的取值范围是.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是.三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?八年级(下)第一次月考数学试卷(1-2章)参考答案与试题解析一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°【考点】等腰三角形的性质.【分析】由已知顶角为70°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.【解答】解:∵等腰三角形的顶角为70°,∴它的一个底角为÷2=55°.故选:B.2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、两边都减5,不等号的方向不变,故A符合题意;B、两边都除以5,不等号的方向不变,故B不符合题意;C、两边加不同的数,故C不符合题意;D、两边都乘以负数,不等号的方向改变,故D不符合题意;故选:A3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解【考点】不等式的解集.【分析】正确解出不等式的解集,就可以进行判断.【解答】解:A、正确;B、不等式x>﹣5的负整数解集有﹣4,﹣3,﹣2,﹣1.C、不等式﹣2x<8的解集是x>﹣4D、不等式2x<﹣8的解集是x<﹣4包括﹣40,故正确;故选C.4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得ax>﹣b,系数化成1得x<﹣.故选B.5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm【考点】角平分线的性质.【分析】根据角平分线的性质得到ED=EC,计算即可.【解答】解:∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴ED=EC,∴AE+DE=AE+EC=AC=3cm,故选B.6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1【考点】一次函数的性质.【分析】直接利用函数图象结合一次函数增减性得出答案.【解答】解:如图所示:当y=﹣2时,x=﹣1,则当y<﹣2时,x的取值范围是:x<﹣1.故选:C.二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是等边三角形.【考点】等边三角形的判定.【分析】根据等边三角形的判定定理(有一内角为60°的等腰三角形为等边三角形)进行答题.【解答】解:∵AB=AD,∴△ABD是等腰三角形;又∵∠BAC=∠CAD=30°,∴∠BAD=60°,∴△ABD是等边三角形;故答案是:等边三角形.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3.【考点】角平分线的性质.【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.9.如图所示的不等式的解集是x≤2.【考点】在数轴上表示不等式的解集.【分析】该不等式的解集是指2及其左边的数,即小于等于2的数.【解答】解:由图示可看出,从2出发向左画出的线,且2处是实心圆,表示x≤2.所以这个不等式的解集为x≤2.故答案为:x≤2.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是20.【考点】等腰三角形的性质.【分析】运用等腰三角形的性质,可得BD=CD,再求出△ABC的周长.【解答】解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D∴BD=CD∵AB=6,CD=4∴△ABC的周长=6+4+4+6=20.故答案为:20.11.当代数式﹣3x的值大于10时,x的取值范围是x<﹣4.【考点】解一元一次不等式.【分析】根据题意列出不等式,再依据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:根据题意得:﹣3x>10,合并同类项,得:﹣x>10,系数化为1,得:x<﹣4,故答案为:x<﹣4.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】连接AP,由MP为线段AB的垂直平分线,根据垂直平分线的性质可得AP=BP,同理可得AP=CP,等量代换可得AP=BP=CP,然后根据等边对等角可得∠ABP=∠BAP,∠PAC=∠ACP及∠PBC=∠PCB,由已知的∠BAC的度数求出∠BAP+∠CAP的度数,等量代换可得∠ABP+∠ACP的度数,同时根据三角形的内角和定理可得∠ABP+∠PBC+∠PCB+∠ACP,进而得到∠PBC+∠PCB的度数,再根据两角相等,即可求出所求角的度数.【解答】解:连接AP,如图所示:∵MP为线段AB的垂直平分线,∴AP=BP,∴∠ABP=∠BAP,又PN为线段AC的垂直平分线,∴AP=CP,∴∠PAC=∠ACP,∴BP=CP,∴∠PBC=∠PCB,又∠BAC=∠BAP+∠CAP=70°,∴∠ABP+∠ACP=70°,且∠ABP+∠PBC+∠PCB+∠ACP=110°,∴∠PBC+∠PCB=40°,则∠PBC=∠PCB=20°.故答案为:20°三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣9x+4x<10﹣15,合并同类项,得:﹣5x<﹣5,系数化为1,得:x>1,这个不等式的解集在数轴上表示如下:.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.【考点】全等三角形的判定与性质.【分析】先根据∠1=∠2得出BD=CD,再由SSS定理得出△ABD≌△ACD,由全等三角形的性质即可得出结论.【解答】证明:∵∠1=∠2,∴BD=CD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.【考点】一元一次不等式的整数解.【分析】解不等式求得不等式的解集,然后把最小的整数代入方程,解方程即可求得.【解答】解:解不等式5﹣3x≤1,得x≥,所以不等式的最小整数解是2.把x=2代入方程(a+9)x=4(x+1)得,(a+9)×2=4×(2+1),解得a=﹣3.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?【考点】一次函数与一元一次不等式.【分析】先根据题意得出关于x的不等式,求出x的取值范围即可.【解答】解:y1=2x+4,y2=5x+10,当y1<y2时,2x+4<5x+10,解得x>﹣2,当x>﹣2时,y1<y2.17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.【考点】等腰三角形的性质;三角形三边关系.【分析】如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,根据题意列方程即可得到结论.【解答】解:如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,(1)当AC+AD=15,BD+BC=12时,则+x=15,y=12,解得x=10,y=7.(2)当AC+AD=12,BC+BD=15时,则+x=12, +y=15,解得x=8,y=11,故得这个三角形的三边长分别为10,10,7或8,8,11.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?【考点】一元一次不等式的应用.【分析】设这个班要胜x场,则负(28﹣x)场,根据题意列出不等式,解不等式即可求出至少要胜几场.【解答】解:设这个班要胜x场,则负(28﹣x)场,由题意得,3x+(28﹣x)≥43,2x≥15,解得:x≥7.5,∵场次x为正整数,∴x≥8.答:这个班至少要胜8场.19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?【考点】等腰三角形的判定与性质;平行线的性质.【分析】由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.【解答】解:EF=EB+FC.理由:∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠EBO=∠OBC,∠FCO=∠OCB.又∵EF∥BC,∴∠OBC=∠BOE,∠OCB=∠COF,∴∠BOE=∠EBO,∠COF=∠FCO,即EB=EO,FC=FO,∴EF=EO+FO=EB+FC.20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.【考点】等腰三角形的性质.【分析】根据三角形的内角和得到∠A=30°.根据等腰三角形的性质得到∠ACD=∠ADC==75°.推出△BCE是等边三角形,于是得到结论.【解答】解:∵∠ACB=90°,∠B=60°,∴∠A=30°.∵AD=AC,∴∠ACD=∠ADC==75°.∵BC=BE,∠B=60°,∴△BCE是等边三角形,∴∠BCE=60°,∴∠DCE=∠ACD+∠BCE﹣∠ACB=75°+60°﹣90°=45°.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.【考点】全等三角形的判定与性质.【分析】由已知可得∠ACE=∠DCB,然后根据SAS即可证明△ACE≌△DCB【解答】证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS).五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.【考点】线段垂直平分线的性质.【分析】连接BD,延长BF交DE于点G,根据线段的垂直平分线的性质得到AD=BD,求出∠CBD=45°,证明△ECD≌△FCB,根据全等三角形的性质解答即可.【解答】解:DE=BF,DE⊥BF.理由如下:连接BD,延长BF交DE于点G.∵点D在线段AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A=22.5°.在Rt△ABC中,∵∠ACB=90°,∠A=22.5°,∴∠ABC=67.5°,∴∠CBD=∠ABC﹣∠ABD=45°,∴△BCD为等腰直角三角形,∴BC=DC.在△ECD和△FCB中,,∴Rt△ECD≌Rt△FCB(SAS),∴DE=BF,∠CED=∠CFB.∵∠CFB+∠CBF=90°,∴∠CED+∠CBF=90°,∴∠EGB=90°,即DE⊥BF.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?【考点】一次函数的应用;一元一次方程的应用.【分析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,根据两种节能灯的总价为46000元建立方程求出其解即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由销售问题的数量关系建立y与a的解析式就可以求出结论.【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,由题意,得25x+45=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由题意,得y=(30﹣25)a+(60﹣45),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.。
沪教版八年级数学下册第一次月考试卷(带有答案)

沪教版八年级数学下册第一次月考试卷(带有答案)1.学校:___________班级:___________姓名:___________考号:___________2.顺次连接等腰梯形各边中点所得到的四边形是( )3.A.正方形B.菱形C.矩形D.等腰梯形4.分别顺次连接①等腰梯形;②矩形;③菱形;④对角线相等的四边形“各边中点所构成的四边形”中,为菱形的是( )5.A.①B.②C.①②③D.①②④6.如果等腰梯形底角为45∘,高等于上底,那么梯形的中位线和高的比为( )7.A.1:2B.2:1C.1:3D.2:38.若等腰梯形两底角为30∘,腰长为8厘米,高和上底相等,那么梯形中位线长为( )A.8√3厘米B.10厘米9.C.(4√3+4)厘米D.16√3厘米10.如图,梯形ABCD中,∠ABC和∠DCB的平分线相交于梯形中位线EF上的一点P,若EF=3,则梯形ABCD的周长为.11.A.9B.10.5C.12D.1512.如图,梯形ABCD的两底长为AD=6,BC=10中位线为EF,且∠B=90∘,若P为AB上的一点,且PE将梯形ABCD分成面积相同的两部分,则△EFP与梯形ABCD的面积比为( )13.A.1:6B.1:10C.1:12D.1:1614.梯形上、下两底长分别为4cm和6cm,则梯形的中位线长cm.15.若一个等腰梯形的中位线长是6,腰长是5,则这个等腰梯形的周长是.16.如果等腰直角三角形斜边上的高等于5cm,那么连接这个三角形两条直角边中点的线段长等于cm.17.等腰梯形ABCD中E,F,G,H分别是各边的中点,则四边形EFGH的形状是.18.顺次连接菱形四条边的中点,所得的四边形是.19.如果等腰梯形的一条底边长8cm,中位线长10cm,那么它的另一条底边长是cm.20.梯形上底长3cm,下底长7cm,梯形被中位线分成的两部分的面积比是.21.如果等腰梯形的一条对角线与下底的夹角为45∘,中位线长为6厘米,则这个梯形的对角线长为厘米.22.梯形的两底之比为3:4,中位线长为21cm,那么较长的一条底边长等于cm.23.若一梯形的中位线和高的长均为6cm,则该梯形的面积为cm2.24.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE的周长是cm.25.26.如图,将三角形纸片中位线剪开,拼成一个新的图形,这个新的图形可能是.27.28.已知:如图,AD是△ABC的高AB=AC,BE=2AE点N是CE的中点.求证:M是AD的中点.29.30.如图,已知在矩形ABCD中,对角线AC,BD交于点O,CE=AE,F是AE的中点AB=4,BC=8求线段OF的长.31.32.如图,在梯形ABCD中AD∥BC,BC=3AD,M,N为底边BC的三等分点,连接AM,DN.(1) 求证:四边形AMND是平行四边形;33.(2) 连接BD,AC,AM与对角线BD交于点G,DN与对角线AC交于点H,且AC⊥BD.试判断四边形AGHD的形状,并证明你的结论.34.如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE平分∠BAC。
江苏省南京市2023-2024学年八年级下学期第一次月考模拟练习数学试卷答案

2023-2024学年江苏省南京市八年级数学第一次月考模拟练习参考答案 1.C2.A3.D4.A5.C【解析】如图,连接AC 、与BD 交于点O ,连接ME ,MF ,NF ,EN ,MN ,∵四边形ABCD 是平行四边形∴OA =OC ,OB =OD∵BE =DF∴OE =OF∵点E 、F 时BD 上的点,∴只要M ,N 过点O ,那么四边形MENF 就是平行四边形∴存在无数个平行四边形MENF ,故①正确;只要MN =EF ,MN 过点O ,则四边形MENF 是矩形,∵点E 、F 是BD 上的动点,∴存在无数个矩形MENF ,故②正确;只要MN ⊥EF ,MN 过点O ,则四边形MENF 是菱形;∵点E 、F 是BD 上的动点,∴存在无数个菱形MENF ,故③正确;只要MN =EF ,MN ⊥EF ,MN 过点O ,则四边形MENF 是正方形,而符合要求的正方形只有一个,故④错误;故选:C6.A【解析】 在边长为4的菱形ABCD 中,120ABC ∠=°,4AB CD ∴==,30BAC DAC ∠=∠=°,将ADC 沿射线AC 的方向平移得到′′′A D C △,∴A D ′′4AD =,A D ′′∥AD ,四边形ABCD 是菱形,AD CB ∴=,AD CB ,120ADC ∴∠=°,∴A D CB ′′=,A D CB ′′∥,∴四边形D A BC ′′是平行四边形,∴A B D C ′′=,【解析】如图1,当点P 在线段由折叠可得:3AB AE ==如图2,当点P 在BC 的延长线上时,由折叠得:3AB AE BP PE B ===∠=,,【解】(1)12÷20%=60(人),C 的人数:故答案为:60;(2)如图,△A2B2C2为所作;若点B的坐标为((3)连接A A,C C,作A A和C C22.【解】(1)证明:连接∵E、F、G、H分别是AB(2)如图②中,高AM即为所求;根据网格与勾股定理得出AF=∴ADF EAH≌,∴EAH ADF∠,∠=(3)如图③中,点N即为所求.(2)如图,连接BM MC ,, ∵90ABC ∠=°,四边形ABCD∵AD GF ∥,AB DF ∥,,∵P 为边FG 的中点,∴1322PF FG ==, ∴222235()222PE PF EF =+=+=, 过A 作AM PE ⊥,∴当A ,M ,B 三点共线时高最大,三角形面积最大如图所示,∵90AEF ∠=°, ∴90FEC AEO AEO OAE ∠+∠=∠+∠=°,∴FEC OAE ∠=∠, ∵3OEEC ==,K 为OA 的中点,OA OC =, ∴AK EC =,OK OE =,∴45OKE ∠=°, ∴135AKE ∠=°, ∵CF 是正方形外角的平分线,∴45DCF ∠=°, ∴135ECF ∠=°, ∴AKE ECF ∠=∠, 在AKE 和ECF 中,AKE ECF AK EC KAE FEC ∠=∠ = ∠=∠,∴()ASA AKE ECF ≌△△,∴AE EF =;②延长CD ,并在延长线上截取DH OE =,连接AH ,如图所示,∵四边形AOCD 是正方形,∴AO AD =,90AOE ADH ∠=∠=°, ∴()SAS AOE ADH ≌△△,∴OAE DAH ∠=∠,AE AH =,AEO AHD ∠=∠, 由①可知AE EF =,∴AEF 为等腰直角三角形,∴45EAF ∠=°, ∴45OAE DAG DAH DAG GAH ∠+∠=∠+∠=∠=°,∴GAH GAE ∠=∠, ∴()SAS AEG AHG ≌△△,∴EGGH DG OE ==+,AGE AGH ∠=∠,AEG AHD ∠=∠, ∴AEO AEG ∠=∠, ∵EN CD ∥,∴AGH GNE AGE ∠=∠=∠,。
八年级数学第一次月考试题 试题

2021年秋季期第一次月考试题八年级数学制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题〔每一小题3分,一共36分〕 1.在以下图中,是轴对称图形.....的是 〔 〕2.如图3,Rt △ABC 中,∠°,∠ABC 的平分线BD 交AC 于D ,假设CD=3cm ,那么点D 到AB 的间隔 DE 是〔 〕A .5cmB .4cmC .3cmD .2cmD图7FAE3.如上图7,△ABC ≌△DEF ,BE=4,EC=3,那么EF 的长是〔 〕 A .3B .4C .7D .14. 以下说法正确的选项是〔 〕 A. 有两边和一个角相等的两个三角形全等 B. 两条直角边对应相等的两个直角三角形全等C. 三角形的一条中线把三角形分成的两个小三角形全等D. 三个角对应相等的两个三角形全等5.如以下图,AC ∥BD ,OA=OC ,那么以下结论不一定成立的是 〔 〕班级:姓名:号数:AE FA . ∠B=∠D B. ∠A=∠B C. AD=BC D. OA=OB 6.以下说法正确的选项是( )A .等腰三角形的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形都是全等的。
D .等腰三角形的两个底角相等 7、如以下图,ABC △与A B C '''△关于直线l 对称,且7848A C '∠=∠=°,°,那么∠B 的度 数为〔 〕 A .48°B .54°C .74°D .78°8、如上图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.假设∠EFB =65°,那么∠AED ′等于〔 〕 A. 70° B. 65° C. 50°D. 25°9、M 〔a,3〕和N 〔4,b 〕关于X 轴对称,那么a+b 的值是〔 〕 B 、-1 C.7 D. -710、如上图,∠BAC=110°假设MP 和NQ 分别垂直平分AB 和AC,那么∠PAQ 的度数是 ( )° B. 40° C. 50° D. 60°11、B A AB ''=,A A '∠=∠,B B '∠=∠,那么ABC ∆≌C B A '''∆的根据是〔 〕A .SASB .SSAC .ASAD .AAS 12.,如图,△ABC 中,AB=AC ,AD 是角平分线,第5题第7题第8题 第10题BE=CF ,那么以下说法正确的有几个 〔 〕 〔1〕AD 平分∠EDF ;〔2〕△EBD ≌△FCD ; 〔3〕BD=CD ;〔4〕AD ⊥BC .〔A 〕1个 〔B 〕2个 〔C 〕3个 〔D 〕4个 二、填空题〔每一小题3分,一共18分〕13.如下图,假设△OAD≌△OBC,且∠O=65°,∠C=20°,那么∠OAD=_ ___。
人教版八年级下学期第一次月考数学试卷含答案解析
八年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>32.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣24.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是35.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.37.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,408.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空题(每空3分,共24分)11.当x时,式子有意义;当x时,式子有意义.12.已知:,则x2﹣xy=.13.当x时,.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.18.已知,则=.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=.化简计算:(+++…+).-湖北省黄石市慧德学校八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>3【考点】二次根式有意义的条件.【分析】根据二次根式的意义,被开方数大于或等于0.【解答】解:根据二次根式的意义,得3﹣m≥0,解得m≤3.故选A.【点评】主要考查了二次根式的意义和性质.二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个【考点】二次根式的定义.【分析】根据二次根式的概念“形如(a≥0)的式子,即为二次根式”,进行分析.【解答】解:根据二次根式的概念,知(2)(6)中的被开方数都不会恒大于等于0,故不是二次根式;(4)中的根指数是3,故不是二次根式;故二次根式是(1)(3)(5)(7),共4个.故选C.【点评】此题考查了二次根式的概念,特别要注意a≥0的条件.3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣2【考点】二次根式有意义的条件;分式有意义的条件.【分析】本题主要考查代数式中字母的取值范围,代数式中主要有二次根式和分式两部分.【解答】解:根据二次根式的意义,被开方数a﹣2≥0,解得a≥2;根据分式有意义的条件,a﹣2≠0,解得a≠2.∴a>2.故选B.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.4.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是3【考点】最简二次根式.【分析】根据二次根式的性质,被开方数大于等于0,根据非负数的性质,逐一判断.【解答】解:∵x2+9总是正数,∴当x=0时,二次根式==3,是个有理数,∴B错.故选B.【点评】本题考查了两个非负数的性质:≥0(a≥0),a2≥0.5.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m【考点】勾股定理的应用.【分析】如(解答)图,AB为梯子长,AC为底端离建筑物的长5m,BC为顶端离地面的长12m;根据勾股定理即可求得.【解答】解:如图:∵AC=5m,BC=12m,∠C=90°∴AB==13m故选B.【点评】此题考查了勾股定理的应用.解题时要注意数形结合思想的应用.6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.3【考点】勾股定理.【分析】由AB垂直于BC,得到三角形ABC为直角三角形,进而由AB及BC的长,利用勾股定理求出AC的长,由AC垂直于CD,得到三角形ACD为直角三角形,由AC及CD 的长,利用勾股定理求出AD的长,由DE垂直于AD,得到三角形ADE为直角三角形,由AD及DE的长,利用勾股定理即可求出AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴由勾股定理得:AC==;AD==;AE==2.故选B.【点评】此题考查了勾股定理的运用,熟练掌握勾股定理是解本题的关键.7.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半得出AC的长即可.【解答】解:∵正方形ABCD的面积为,AC=BD,∴AC×BD=,则AC2=,故AC=,故选:A.【点评】此题主要考查了正方形的性质,利用正方形的面积等于对角线乘积的一半得出是解题关键.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.【点评】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2【考点】翻折变换(折叠问题).【分析】首先根据翻折的性质得到ED=BE,再设出未知数,分别表示出线段AE,ED,BE 的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.【解答】解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9﹣x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2).故选:A.【点评】此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.二、填空题(每空3分,共24分)11.当x≥﹣1时,式子有意义;当x>2时,式子有意义.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式有意义的条件可得x+1≥0,再解即可;根据二次根式有意义的条件和分式有意义的条件可得,再解不等式组即可.【解答】解:由题意得:x+1≥0,解得:x≥﹣1;由题意得:,解得:x>2,故答案为:≥﹣1;>2.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.12.已知:,则x2﹣xy=8.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质列出方程求出x、y的值,然后代入所求代数式计算即可.【解答】解:∵,∴,解得,∴x2﹣xy=4+4=8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.当x≤时,.【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=|2x﹣1|,结合二次根式以及绝对值的性质求解.【解答】解:∵=1﹣2x根据算术平方根的结果为非负数,可知1﹣2x≥0,解得x≤,故当x≤时,=1﹣2x.【点评】根据算术平方根的结果为非负数,列不等式是解题的关键.故答案为:“两直线平行,同位角相等”.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为6和4.【考点】勾股定理.【分析】设全等的直角三角形的两直角边长分别为a,b(a>b),则根据已知条件和勾股定理得到a2+b2=52,(a﹣b)2=4,根据这两个等式可以求出a,b的长.【解答】解:设全等的直角三角形的两直角边长分别为a,b(a>b>0),∵图中大小正方形的面积分别为52和4,∴a2+b2=52,(a﹣b)2=4,∴a﹣b=2,∴a=b+2,代入a2+b2=52中得:(b+2)2+b2=52,整理得(x﹣4)(x+6)=0∴b1=4,b2=﹣6(不合题意舍去),∴a=4+2=6,∴直角三角形的两条直角边的长分别为4,6,故答案为:6和4.【点评】此题主要考查了勾股定理和三角形,正方形的面积公式,解题关键在于找出各边关系列出方程.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是10.【考点】平面展开-最短路径问题.【专题】应用题.【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故答案为:10.【点评】本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.18.已知,则=.【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,求出满足两个被开方数条件的x的值.【解答】解:依题意有x﹣2≥0且2﹣x≥0,解得x=2,此时y=,则=.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式,此时≥0;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)根据二次根式的乘法法则运算;(2)利用平方差公式计算;(3)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算;(4)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=﹣=﹣=﹣46=﹣24;(2)原式=16﹣5=11;(3)原式=(6﹣+4)÷2=÷2=;(4)原式=++=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.【考点】二次根式的化简求值.【分析】(1)把式子写成(x﹣y)2﹣xy的形式,然后代入求值即可;(2)把式子写成(x+y)(x﹣y)的形式,然后代入求解即可.【解答】解:(1)原式=(x﹣y)2+xy=22+(+1)(﹣1)=4+2=6;(2)原式=(x+y)(x﹣y)=2×2=4.【点评】本题考查了求代数式的值,正确对代数式进行变形可以简化运算过程.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.【考点】二次根式的应用.【分析】(1)利用二次根式的乘法运算公式直接求出即可;(2)利用勾股定理和完全平方公式求出AB即可.【解答】解:(1)Rt△ABC的面积=AC×BC=×(+)(﹣)=;(2)斜边AB的长==.答:斜边AB的长为.【点评】此题主要考查了二次根式的应用,正确利用乘法公式进行计算求出是解题关键.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.【考点】勾股定理;勾股定理的逆定理.【专题】计算题.【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD 的形状,最后利用三角形的面积公式求解即可.【解答】解:连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC==5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S=ABBC+ACCD=×3×4+×5×12=36.四边形ABCD【点评】本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键,难度适中.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.【考点】矩形的性质;翻折变换(折叠问题).【专题】应用题.【分析】(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,第一问可求解;(2)由于EF=DE,可设EF的长为x,进而在Rt△EFC中,利用勾股定理求解直角三角形即可.【解答】解:(1)由题意可得,AF=AD=10cm,在Rt△ABF中,∵AB=8,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)由题意可得EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得.【点评】本题主要考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=﹣.化简计算:(+++…+).【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,发现:连续两个正整数的算术平方根的和乘以这两个算术平方根的差积是1,根据二次根式的乘法,可得答案;(2)根据上述规律,可得答案.【解答】解:(1)请用字母表示你所发现的律:即=﹣(n为正整数),故答案为:﹣;(2)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=2﹣1.【点评】本题考查了分母有理化,认真观察等式,发现规律是解题关键.。
华师大版八年级下册第一次月考数学试卷(含答案及解析)
八年级数学试卷一、选择题(每小题4分,共40分)1.下列各式﹣3x ,,,﹣,,,中,分式的个数为()A.4B.3C.2D.12.下列函数关系式:①y=﹣2x,②,③y=﹣2x2,④y=2,⑤y=2x﹣1.其中是一次函数的是()A.①⑤B.①④⑤C.②⑤D.②④⑤3.分式无意义,则x的值()A.1B.﹣1 C.0D.±14.分式的最简公分母是()A.24a2b2c2B.24a6b4c3C.24a3b2c3D.24a2b3c35.如果把分式的x和y都扩大k倍,那么分式的值应()A.扩大k倍B.不变C.扩大k2倍D.缩小k倍6.方程=﹣的解是()A.1B.﹣1 C.2D.无解7.若分式方程=2+有增根,则a的值为()A.4B.2C.1D.08.(2011•曲靖)点P(m﹣1,2m+1)在第二象限,则m的取值范围是()A.B.C.m<1 D.9.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.10.(2004•万州区)如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.二、填空题(每小题4分,共24分)11.(2006•永州)当x=_________时,分式的值为0.12.不改变分式的值,把分式的分子、分母的系数都化为整数的结果是_________.13.科学记数法得N=﹣3.25×10﹣5,则原数N=_________.14.若点P(2x﹣2,﹣x+4)到两坐标轴的距离相等,则点P的坐标为_________.15.若函数y﹦(m﹣1)x+m2﹣1是正比例函数,则m的值为_________.16.(2009•鸡西)若关于x的分式方程无解,则a=_________.三、解答题(17题每小题4分,18,19,每小题6分,)17.(16分)计算(1)(﹣)0﹣(﹣)2÷2﹣2﹣(﹣1)3 (2)+﹣(3)+÷(4)(2mn2)﹣2(m﹣2n﹣1)﹣3(结果化为只含有正指数幂的形式)18.先化简,再求值:(1),其中:x=﹣2.(2)先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.(3)先化简,再求值:,其中a=.19.(6分)暑假期间,明明进行爬山锻炼,某时,从山脚出发,1小时后回到了山脚,他离开山脚的距离s(米)与爬山时间t(分)的关系可用下图的曲线表示,根据这个图象回答:(1)明明离开山脚多长时间爬得最高?爬了多少米?(2)爬山多长时间进行休息?休息了几分钟?(3)爬山第30分钟到第40分钟,爬了多少米?(4)下山时,平均速度是多少?(6分)直线y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简求值:四、解答题(20,21,22,每小题8分,23题10分,24题12分)20.(8分)要使关于x的方程﹣=的解是正数,求a的取值范围.21.(8分)某校组织学生到距离6km的少年科技馆参观,学生小李因有事没有赶上学校的包车,于是准备在学校门口改坐出租车去少年科技馆,出租车的收费标准如下:里程收费(元)3km以下(含3km)8.003km以上,每增加1km 1.80(1)写出坐出租车的里程数为xkm(x>3)时,所付车费的代数式.(2)小李同学身上只有14元钱,坐出租车到少年科技馆的车费够不够?请说明理由.22.(8分)已知函数y=﹣2x+3,(1)画出这个函数的图象;(2)写出函数与x轴的交点坐标,与y轴的交点坐标;(3)求此函数的图象与坐标轴围成的三角形的面积.23.(10分)甲、乙两地相距828千米,一列普通列车与一列直快列车都由甲地开往乙地,直快列车的平均速度是普通列车的平均速度的1.5倍,直快列车比普通列车晚出发2小时,比普通列车早到4小时,求两列火车的平均速度.24.(12分)(2012•岳阳二模)我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:①设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;②如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;③若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.湘莲品种 A B C每辆汽车运载量(吨)12 10 8每吨湘莲获利(万元) 3 4 2八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列各式﹣3x,,,﹣,,,中,分式的个数为()A.4B.3C.2D.1考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:下列各式﹣3x,,,﹣,,,中,分式有:,,,,∴分式的个数为4个.故选A.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.下列函数关系式:①y=﹣2x,②,③y=﹣2x2,④y=2,⑤y=2x﹣1.其中是一次函数的是()A.①⑤B.①④⑤C.②⑤D.②④⑤考点:一次函数的定义.分析:根据一次函数的定义条件进行逐一分析即可.解答:解:①y=﹣2x是一次函数;②自变量次数不为1,故不是一次函数;③y=﹣2x2自变量次数不为1,故不是一次函数;④y=2是常数;⑤y=2x﹣1是一次函数.所以一次函数是①⑤.故选A.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.3.分式无意义,则x的值()A.1B.﹣1 C.0D.±1考点:分式有意义的条件.分析:分母为零,分式无意义;分母不为零,分式有意义,即|x|﹣1=0,解得x的取值.解答:解:当分母|x|﹣1=0,即x=±1时,分式无意义.故选D.点评:从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.分式的最简公分母是()A.24a2b2c2B.24a6b4c3C.24a3b2c3D.24a2b3c3考点:最简公分母.分析:解答本题关键是要求出三个分式的分母的最小公倍数,即是分式的最简公分母.解答:解:3,2,8的最小公倍数为24,a2b,ab2,a3bc3的最小公倍数为a3b2c3,∴分式的最简公分母为24a3b2c3,故选C.点评:本题考查最简公分母的知识,比较简单,同学们要熟练掌握.5.如果把分式的x和y都扩大k倍,那么分式的值应()A.扩大k倍B.不变C.扩大k2倍D.缩小k倍考点:分式的基本性质.分析:依题意分别用kx和ky去代换原分式中的x和y,利用分式的基本性质化简即可.解答:解:分别用kx和ky去代换原分式中的x和y,得===,可见新分式是原分式的k倍.故选A.点评:解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.方程=﹣的解是()A.1B.﹣1 C.2D.无解考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2=x+1﹣3(x﹣1),去括号得:2=x+1﹣3x+3,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.若分式方程=2+有增根,则a的值为()A.4B.2C.1D.0考点:分式方程的增根.专题:计算题.分析:已知方程两边都乘以x﹣4去分母后,求出x的值,由方程有增根,得到x=4,即可求出a的值.解答:解:已知方程去分母得:x=2(x﹣4)+a,解得:x=8﹣a,由分式方程有增根,得到x=4,即8﹣a=4,则a=4.故选A点评:此题考查了分式方程的增根,分式方程的增根即为最简公分母为0时x的值.8.(2011•曲靖)点P(m﹣1,2m+1)在第二象限,则m的取值范围是()A.B.C.m<1 D.考点:点的坐标;解一元一次不等式组.专题:证明题.分析:让点P的横坐标小于0,纵坐标大于0列不等式求值即可.解答:解:∵点P(m﹣1,2m+1)在第二象限,∴m﹣1<0,2m+1>0,解得:﹣<m<1.故选:B.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.考点:由实际问题抽象出分式方程.专题:应用题.分析:本题的等量关系为:顺流时间+逆流时间=9小时.解答:解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选A.点评:未知量是速度,有速度,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.10.(2004•万州区)如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.解答:解:根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.故选C.点评:考查根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.二、填空题(每小题4分,共24分)11.(2006•永州)当x=﹣2时,分式的值为0.考点:分式的值为零的条件.专题:计算题.分析:要使分式的值为0,必须分式分子的值为0,并且分母的值不为0.解答:解:由分子x+2=0,解得x=﹣2,而x=﹣2时,分母x﹣2=﹣2﹣2=﹣4≠0.所以x=﹣2.点评:要注意分母的值一定不能为0,分母的值是0时分式没有意义.12.不改变分式的值,把分式的分子、分母的系数都化为整数的结果是.考点:分式的基本性质.分析:不改变分式的值就是依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.解答:解:分子分母上同时乘以100得到,故分式的分子、分母的系数都化为整数的结果是.点评:本题主要考查分式的基本性质的应用,是一个基础题.13.科学记数法得N=﹣3.25×10﹣5,则原数N=﹣0.0000325.考点:科学记数法—原数.分析:科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“﹣3.25×10﹣5中﹣3.25的小数点向左移动5位就可以得到.解答:解:﹣3.25×10﹣5=﹣0.0000325,故答案为:﹣0.0000325.点评:本题主要考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.14.若点P(2x﹣2,﹣x+4)到两坐标轴的距离相等,则点P的坐标为(2,2)或(﹣6,6).考点:点的坐标.分析:由点P到两坐标轴的距离相等得到(2x﹣2)=±(﹣x+4),解得x的值,从而得到点P的坐标.解答:解:∵点P到两轴的距离相等,∴2x﹣2=﹣x+4或2x﹣2=﹣(﹣x+4),即x=2或x=﹣2,代入点P坐标(2,2)或(﹣6,6).故答案为:(2,2)或(﹣6,6).点评:本题考查的是点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离.15.若函数y﹦(m﹣1)x+m2﹣1是正比例函数,则m的值为﹣1.考点:正比例函数的定义.分析:根据正比例函数的定义列式计算即可得解.解答:解:根据题意得,m2﹣1=0且m﹣1≠0,解得m=±1且m≠1,所以m=﹣1.故答案为:﹣1.点评:本题考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.16.(2009•鸡西)若关于x的分式方程无解,则a=1或﹣2.考点:分式方程的解.专题:计算题;压轴题.分析:分式方程无解,即化成整式方程时无解,或者求得的x能令最简公分母为0,据此进行解答.解答:解:方程两边都乘x(x﹣1)得,x(x﹣a)﹣3(x﹣1)=x(x﹣1),整理得,(a+2)x=3,当整式方程无解时,a+2=0即a=﹣2,当分式方程无解时:①x=0时,a无解,②x=1时,a=1,所以a=1或﹣2时,原方程无解.点评:分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.三、解答题(17题每小题16分,18,19,20题每小题16分,)17.(16分)计算(1)(﹣)0﹣(﹣)2÷2﹣2﹣(﹣1)3(2)+﹣(3)+÷(4)(2mn2)﹣2(m﹣2n﹣1)﹣3(结果化为只含有正指数幂的形式)解答:解:(1)原式=1﹣÷﹣(﹣1)=1﹣1+1=1;(2)原式==﹣=﹣1;(3)原式=+•=﹣=;(4)原式=m﹣2n﹣4•m6n3=m4n﹣1=.18.(6分)先化简,再求值:,其中:x=﹣2.考点:分析:解解:,答:=,=,=x+1,当x=﹣2时,原式=﹣2+1,=﹣1.(2)先化简,然后从1、、﹣1中选取一个你认为合适的数作为a 的值代入求值.(3)先化简,再求值:,其中a=.:解答:解:=×=﹣==,由于a≠±1,所以当a=时,原式==.解答:解:原式=+•=+=,当a=1+时,原式===.19.(6分)暑假期间,明明进行爬山锻炼,某时,从山脚出发,1小时后回到了山脚,他离开山脚的距离s(米)与爬山时间t(分)的关系可用下图的曲线表示,根据这个图象回答:(1)明明离开山脚多长时间爬得最高?爬了多少米?(2)爬山多长时间进行休息?休息了几分钟?(3)爬山第30分钟到第40分钟,爬了多少米?(4)下山时,平均速度是多少?解答:解;(1)根据图象得出:明明离开山脚时间为40分钟爬得最高,爬了600米;(2)爬山8分钟和30分钟时进行休息,分别休息了(10﹣8)=2(分钟)和35﹣30=5(分钟);(3)爬山第30分钟到第40分钟,爬了600﹣400=200(米);(4)下山时,平均速度是:=30米/秒.(6分)直线y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简求值:根据图象可知直线y=(3﹣a)x+b﹣2经过第二、三、四象限,所以3﹣a<0,b﹣2<0,所以a>3,b<2,所以b﹣a<0,a﹣3>0,2﹣b>0,所以=a﹣b﹣|a﹣3|﹣(2﹣b)=a﹣b﹣a+3﹣2+b=1.四、解答题(21,22,23每小题8分,24题10分,25题12分)20.(8分)要使关于x的方程﹣=的解是正数,求a的取值范围.解答:解:去分母,得(x+1)(x﹣1)﹣x(x+2)=a,解得x=﹣因为这个解是正数,所以﹣>0,即a<﹣1.又因为分式方程的分母不能为零,即﹣≠1且﹣≠﹣2,所以a≠±3.所以a的取值范围是a<﹣1且a≠﹣3.21.(8分)某校组织学生到距离6km的少年科技馆参观,学生小李因有事没有赶上学校的包车,于是准备在学校门口改坐出租车去少年科技馆,出租车的收费标准如下:里程收费(元)3km以下(含3km)8.003km以上,每增加1km 1.80(1)写出坐出租车的里程数为xkm(x>3)时,所付车费的代数式.(2)小李同学身上只有14元钱,坐出租车到少年科技馆的车费够不够?请说明理由.解答:解:(1)根据题意得:8+1.8(x﹣3)=1.8x+2.6;(2)1.8x+2.6=14,x=6.∴坐出租车到少年科技馆距离大于6公里,车费够.22.(8分)已知函数y=﹣2x+3,(1)画出这个函数的图象;(2)写出函数与x轴的交点坐标,与y轴的交点坐标;(3)求此函数的图象与坐标轴围成的三角形的面积.考点:一次函数的图象;一次函数图象上点的坐标特征.专题:计算题.分析:(1)利用描点法画函数图象;(2)根据图象写出直线与坐标轴的交点坐标;(3)根据三角形面积根式计算.解答:解:(1)当x=0时,y=3;当y=0时,x=,描点如图:(2)函数图象与x轴的交点坐标为(,0),与y轴的交点坐标为(0,3);(3)此函数的图象与坐标轴围成的三角形的面积=×3×=.23.(10分)甲、乙两地相距828千米,一列普通列车与一列直快列车都由甲地开往乙地,直快列车的平均速度是普通列车的平均速度的1.5倍,直快列车比普通列车晚出发2小时,比普通列车早到4小时,求两列火车的平均速度.解答:解:设普通列车的平均速度为x千米∕时,则直快列车的平均速度为1.5x千米∕时,由题意得解得x=46经检验,x=46是原分式方程的解1.5x=1.5×46=69(千米∕时)答:普通列车的平均速度为46千米∕时,直快列车的平均速度为69千米∕时.24.(12分)(2012•岳阳二模)我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:①设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;②如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;③若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.湘莲品种 A B C每辆汽车运载量(吨)12 10 8每吨湘莲获利(万元) 3 4 2解答:解:(1)设装A种为x辆,装B种为y辆,则装C种为10﹣x﹣y辆,由题意得:12x+10y+8(10﹣x﹣y)=100∴y=10﹣2x.(2)10﹣x﹣y=10﹣x﹣(10﹣2x)=x故装C种车也为x 辆.∴解得2≤x≤4.x为整数,∴x=2,3,4故车辆有3种安排方案,方案如下:方案一:装A种2辆车,装B种6辆车,装C种2辆车;方案二:装A种3辆车,装B种4辆车,装C种3辆车;方案三:装A种4辆车,装B种2辆车,装C种4辆车.(3)设销售利润为W(万元),则W=3×12x+4×10×(10﹣2x)+2×8x=﹣28x+400∴W是x的一次函数,且x增大时,W减少,∴x=2时,W max=400﹣28×2=344(万元).参与本试卷答题和审题的老师有:sks;lanchong;星期八;HJJ;zhjh;weibo;gsls;438011;Liuzhx;gbl210;lk;137-hui;孙廷茂;wdxwwzy;马兴田;733599;sd2011;lanyan;csiya;蓝月梦;nhx600;lantin(排名不分先后)菁优网2014年3月17日。
人教版八年级下册数学第一次月考试题含答案
2021年八年级下册第一次月考数学试题一.选择题(共10小题,满分30分,每小题3分)1.下列式子一定是二次根式的是()A.B.C.D.2.下列四组线段中,可以构成直角三角形的是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,63.要使在实数范围内有意义,则()A.x为任何值B.x≤﹣C.x≥D.x≥﹣4.下列计算正确的是()A.=2 B.C.×D.5.以下二次根式:①;②;③;④中,与是同类二次根式的是()A.①和②B.②和③C.①和④D.③和④6.如图所示,点C的表示的数为2,BC=1,以O为圆心,OB为半径画弧,交数轴于点A,则点A表示的数是()A.B.C.﹣D.﹣7.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13 B.26 C.47 D.94姓名:学号:8.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.9 B.10 C.D.9.如图,由四个全等的直角三角形与中间的小正方形拼成的大正方形图案是某届国际数学大会的会标,如果大正方形的面积为16,小正方形的面积为3,直角三角形的两直角边分别为a和b,那么(a+b)2的值为()A.256 B.169 C.29 D.4810.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11 B.13 C.15 D.17二.填空题(共8小题,满分24分,每小题3分)11.的计算结果是.12.若+|5﹣n|=0,则m+n=.13.若正方形的面积是9,则它的对角线长是.14.已知直角三角形两边的长为5和12,则此三角形斜边上的高为.15.点A的坐标为(﹣2,0),点B的坐标(0,4),那么A、B两点间的距离是.16.化简后值为.17.探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…,请写出第6个数组: .18.已知a 、b 、c 为△ABC 的三边,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,则△ABC 为 三角形. 三、解答题(共66分)19、(6分)如图,字母b 的取值如图所示,化简251022+-+-b b b =________20、计算下列各题:(每小题5分,共20分) (1)0)2(218+⨯ (2))5.02313()81448(--- (3)520)61(2÷+- (4)020142013)3(232)32()32(----+⋅-21、(7分)先化简,再求值:)111(1222+-+÷+-x x x x x ,其中12+=x .22、(8分)已知13+=x ,13-=y ,求下列各式的值:(1)222y xy x ++, (2)22y x -.23、(6分)如图,在四边形ABCD 中,AB=AD=8cm ,∠A=60°,∠ADC=150°,已知四边形ABCD 的周长为32cm ,求△BCD 的面积.24、(6分)如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点D ′处,求重叠部分△AFC 的面积.25、(6分)如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米, 问:发生火灾的住户窗口距离地面多高?26、(7分)在ABC ∆中,BC a =,AC b =,AB c =.设c 为最长边.当222+=a b c 时,ABC ∆是直角三角形;当222a b c +≠时,利用代数式22a b +和2c 的大小关系,探究ABC ∆的形状(按角分类). (1)、当ABC ∆三边分别为6、8、9时,ABC ∆为______三角形;当ABC ∆三边分别为6、8、11时,ABC ∆为______三角形.(2)、猜想,当22a b +______2c 时,ABC ∆为锐角三角形;当22a b +______2c 时,ABC ∆为钝角三角形.(3)判断当2a =,4b =时,ABC ∆的形状,并求出对应的c 的取值范围参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:(B)当x<0时,此时二次根式无意义,故B不一定是二次根式;(C)当x+2<0时,此时二次根式无意义,故C不一定是二次根式;(D)当x2﹣2<0,此时二次根式无意义,故D不一定是二次根式;故选:A.2.【解答】解:A、12+22≠32,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、32+42=52,能构成直角三角形,故符合题意;D、42+52≠62,不能构成直角三角形,故不符合题意.故选:C.3.【解答】解:依题意得:9+2x≥0.解得x≥﹣.故选:D.4.【解答】解:A、=4,此选项错误;B、与不是同类二次根式,不能合并,此选项错误;C、×==,此选项正确;D、÷==,此选项错误;故选:C.5.【解答】解:∵,,,,∴与是同类二次根式的是①和④,故选:C.6.【解答】解:∵点C的表示的数为2,BC=1,以O为圆心,OB为半径画弧,交数轴于点A,∴BO==,则A表示﹣.故选:D.7.【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=9+25+4+9=47.故选:C.8.【解答】解:如图(1),AB==;如图(2),AB===10.故选B.9.【解答】解:大正方形的面积为16,得到它的边长为4,即得a2+b2=42=16,由题意,2ab=13,所以(a+b)2=a2+2ab+b2=16+13=29.故选:C.10.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故选:B.二.填空题(共8小题,满分24分,每小题3分)11.【解答】解:﹣=4﹣=3.5故答案为:3.5.12.【解答】解:根据题意得,m+2=0,5﹣n=0,解得m=﹣2,n=5,则m+n=﹣2+5=3.故答案为:3.13.【解答】解:若正方形的面积是9,则它的边长是3,根据勾股定理得到则它的对角线长===3.故答案为314.【解答】解:设斜边的长为c,斜边上的高为h,分两种情况:①直角三角形的两直角边长分别为5和12时,则c==13,∴×5×12=×13h,解得:h=.②直角三角形的斜边长为12时,则另一条直角边长==,∴×5×=×12h,解得:h=;故答案为:或.15.【解答】解:A、B两点间的距离==2.故答案为2.16.【解答】解:由题意得1﹣a<0,∴=.故答案为﹣.17.【解答】解:∵①3=2×1+1,4=2×12+2×1,5=2×12+2×1+1;②5=2×2+1,12=2×22+2×2,13=2×22+2×2+1;③7=2×3+1,24=2×32+2×3,25=2×32+2×3+1;④9=2×4+1,40=2×42+2×4,41=2×42+2×4+1;⑤11=2×5+1,60=2×52+2×5,61=2×52+2×5+1,则⑥13=2×6+1,2×62+2×6=84,2×62+2×6+1=85,故答案为:13,84,85.18.【解答】解:∵a2c2﹣b2c2=a4﹣b4,∴c2(a+b)(a﹣b)=(a2+b2)(a+b)(a﹣b),∴当a=b,则△ABC是等腰三角形;当a≠b,则c2=(a2+b2),故△ABC是直角三角形,当a=b,且c2=(a2+b2),故△ABC是等腰直角三角形,∴△ABC为等腰三角形或直角或等腰直角三角形.故答案为:等腰或直角或等腰直角.。
人教版八年级下册数学第一次月考试卷及答案
人教版八年级下册数学第一次月考试卷及
答案
第一部分选择题
1. 在下列四个比例中,哪一个与 3/4 最相等?
A. 2/10
B. 10/3
C. 4/12
D. 12/16
2. 签字,3的立方等于_________。
A. 9
B. 6
C. 0
D. 27
...
第二部分解答题
1. 在平行四边形 ABCD 中,AD = 8cm,AE 是 AD 的一半,连接 AE,交 BC 于点 F,求 BF 的长。
2. 两个选民小组A和B分别对五项议案进行了投票,AB对议案的投票结果如下表所示,请根据表格完成相关问题:| | A | B |
b. 同意议案的选民人数比反对议案的选民人数多几人?
c. 同一小组中,弃权与支持同意议案人数之和的比值是多少?...
答案
第一部分:
1. C
2. D
第二部分:
1. BF 的长为 4 cm.
2. a. A和B两个选民小组共有 87 人.
b. 同意议案的选民人数比反对议案的选民人数多 3 人.
c. 弃权与支持同意议案人数之和的比值是 4:11.
...。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3题 第4题
八年级第一次月考数学试题
(时间120分钟 总分120分)
一、单项选择题(每小题3分,共30分)
1.以下列各组线段为边,能组成三角形的是 ( )
A. 2 cm ,3 cm,5 cm B.3 cm,3 cm,6 cm
C. 5 cm,8 cm,2 cm D. 4 cm,5 cm,6 cm
2.已知等腰三角形的两边长分别为3和6,则它的周长等于 ( )
A. 12 B.12或15 C. 15 D.15或18
3. 如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为( )
A.40° B.45° C.50° D.55°
4.如图:将一副三角板按如图所示摆放,图中∠α的度数是( )
A.75° B.90° C.105° D.120°
5.一个多边形的内角和是外角和的2倍,则这个多边形的边数为( )
A、4 B、5 C、6 D、7
6.在△ABC和△ABC中,AB=AB,∠B=∠B,补充条件后仍不一定能保证△ABC≌△ABC,则补
充的这个条件是 ( )
A.BC=BC B.∠A=∠A C.AC=AC D.∠C=∠C
7.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是( )
A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE
8.如图是用直尺和圆规作角平分线的示意图,通过证明△DOP≌△EOP
可以说明OC是 ∠AOB的角平分线,那么△DOP≌△EOP的依据是( )
A. SSS B. SAS C. ASA D. AAS
9.用一批完全相同的正多边形地砖铺地面,不能进行镶嵌的是( )。
第7题
第8题图
第17题
第16题图 第15题图
第20题图 第19题图
图6
E
D
A
B
C
第18题图
A.正三角形 B.正四边形 C.正六边形 D.正八边形
10. 在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是( )。
A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定
二、填空题(每题3分,共30分)
11.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是利用了
___________________.
12.一个多边形的每个内角都等于150°,则这个多边形是_____边形。
13. 如果一个三角形两边为2cm,7cm,且第三边为奇数,则三角形的周长是_____cm。
14.在△ABC中,∠A=60°,∠C=2∠B,则∠C=_____ °。
15.如图,将△ABC沿射线AC平移得到△DEF,若AF=17,DC=7,则AD=
16、如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=
________°.
17.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= °.
18.三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使点C
落在AB边上的点E,折痕为BD,则 △AED的周长为
19.如图, 已知:BD是∠ABC的平分线,DE⊥BC于E,S△ABC=36cm2;,AB=12cm,BC=18cm则 DE的
长为 cm。
20、如图,Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN
分别与边AB、AC交于E、F两点.下列结论:①、△DEF是等腰直角三角形; ②、AE=CF
③、△BDE≌△AD F ;④、BE+CF=EF; ⑤、S四边形AEDF=14AD2,
其中正确结论是 (填序号)
三、解答下列各题(写出必要的解题过程,每小题6分,共24分)
21、如图,铁路和公路都经过P地,曲线MN是一条河流,现欲在河上建一个货运码头Q,使其到
铁路和公路的距离相等,请用直尺和圆规通过画图找到码头Q的位置。(注意:①保留作图痕
迹;②在图中标出点Q)
22、已知:如图,AB// CD,求图形中的x的值.
23、如图,AD为△ABC的中线,BE为三角形ABD中线,
(1)在△BED中作BD边上的高EF;
(2)若△ABC的面积为60,BD=5,求EF的长。
24、一个零件的形状如图,按规定∠A=90º ,检验已量得∠ C=25º,∠B=25º,
∠BCD=150º,请运用三角形的有关知识判断这个零件是否合格,并说明理由。
x
60°150°125°DC
B
A
E
M
P
N
铁路
公路
ACDB
第22题图