预应力钢结构的结构形式与节点设计
钢结构课程设计计算书

钢结构课程设计计算书1 设计资料某车间跨度为24m ,厂房总长度90m ,柱距6m ,车间内设有两台300/50kN 中级工作制吊车(参见平面图、剖面图),工作温度高于-20℃,无侵蚀性介质,地震设防烈度为6度,屋架下弦标高为12.5m ;采用1.5×6 m 预应力钢筋混凝土大型屋面板,Ⅱ级防水,卷材屋面,屋架采用梯形钢桁架,两端铰支在钢筋混凝土柱上,混凝土柱上柱截面尺寸为400×400mm ,混凝土强度等级为C25,屋架采用的钢材为Q235B 钢,焊条为E43型。
钢材采用Q235B 级,焊条采用E43型,手工焊。
桁架计算跨度:L 0=L -2×0.15=27-2×0.15=26.7m 跨终端部高度:桁架的中间高度:h=3.35m26.7m 处h 0=2.015m 27m 处h 0=2.000m 桁架跨中起拱60mm (≈L /500) 2 结构形式与布置桁架形式及几何尺寸如图所示 桁架支撑布置如图所示 3 荷载计算屋面活荷载与雪荷载不会同时出现,从资料可知屋面活荷载大于雪荷载,故取屋面活荷载计算。
沿屋面斜面分布的永久荷载乘以αcos 1=)1102+/10=1.005换算为沿水平投影面分布的荷载。
桁架沿水平投影面积分布的自重(包括支撑)按经验公式(w p =0.12+0.011*跨度)计算,跨度单位为m 。
标准永久荷载:预应力混凝土大型屋面板 1.005×1.42m kn =1.4072m kn 改性沥青防水层 1.005×0.42mkn=0.4022m kn20厚1:2.5水泥砂浆找平层 1.005×0.02m ×0.43mkn =0.008042m kn80mm 厚泡沫混凝土保温层 1.005×0.08m ×0.483mkn=0.0395922m kn4 设计桁架时,应考虑以下三种荷载组合:(1)全跨永久荷载 + 全跨可变荷载 (按永久荷载为主控制的组合) 全跨节点荷载设计值: F=(1.35×2.2732m kn+ 1.4×0.9×0.7)×1.5m ×6m=35.555KN(2)全跨永久荷载 + 半跨可变荷载 全跨永久荷载设计值: 对结构不利时:11-F =1.35×2.2732m kn ×1.5m ×6m=27.617KN(按永久荷载为主的组合)21-F =1.2×2.2732m kn×1.5m ×6m=24.548KN(按可变荷载为主的组合)对结构有利时:31-F =1.0× 2.273 2m kn×1.5m × 6m = 20.457 KN半跨节点荷载设计值12-F =1.4×0.9×0.7×1.5m ×6m=7.938KN (按永久荷载为主的组合) 22-F =1.4×(0.7+0.9×0.7)×1.5m ×6m=16.758KN (按可变荷载为主的组合)(3)全跨桁架包括支撑 + 办跨屋面板自重 + 半跨屋面活荷载 (按可变荷载为主的组合)全跨节点桁架自重设计值: 对结构不利时13-F =1.2×0.42m kn×1.5m ×6m=4.320KN对结构有利时23-F =1.0×0.42m kn×1.5m ×6m=3.6KN半跨节点屋面板自重及活荷载设计值:4F =(1.2×1.42mkn+1.4×0.72m kn)×1.5m ×6m=23.94KN备注:F=13.04KN .11.-F =13.22KN 21-F =12.75KN 31-F =12.13KN 12-F =8.82KN22-F =13.24KN 13-F =4.15KN 23-F =3.46KN 4F =23.94KN5 杆件设计 (1)上弦杆整个上弦采用等截面,按HI 杆件之设计最大内力设计 N=207.34KN=207340N 上弦杆计算长度:在桁架单面内,为节间轴线长度lox=150.8cm在桁架平面外,根据支撑布置和内力变化情况取loy=3*150.8cm=452.4cm因为l oy =3l ox ,故截面宜选用两个小等肢角钢,沿肢相并腹杆最大内力N=122.05KN ,节点板厚度选用6mm ,支座节点板厚度选用8mm 。
钢结构节点设计时如何设定铰接点和刚接点

钢结构节点设计时如何设定铰接点和刚接点作者:孝亚利来源:《建筑工程技术与设计》2014年第10期摘要:钢结构节点设计通常将连接节点分为刚接和铰接两种形式,简单、常规的连接节点可以很快判断节点的刚接性能,但复杂的的连接节点如何判断刚接性能是一直亟待解决的问题。
关键词:节点设计;高强螺栓钢结构房屋具有强度高、自重轻、施工速度快,抗震性能好及工业化程度高等特点,钢结构节点设计是结构能否安全可靠的关键,应该按照"强节点弱构件"或节点等强设计的原则,节点设计合理对结构整体性、可靠度以及建设周期有着直接影响。
本文主要介绍钢结构节点设计的常规做法、国外改进后的节点形式。
1.钢结构节点设计常规做法:1.1在钢结构连接中最常用的是焊缝连接和螺栓连接,铆钉连接现已很少采用:1.1.1焊缝设计中焊缝大小要通过计算确定,不得任意加大焊缝,焊缝的重心应尽量与被连接构件中心接近;焊丝焊剂应与母材强度相匹配,当两种材质钢材焊接时应选用与低标号材质相适应的焊条。
如: E43对应Q235, E50对应Q345.;Q235与Q345连接时,应该选择低强度的E43,而不是E50。
1.1.2螺栓连接分普通螺栓连接、高强螺栓连接。
普通螺栓抗剪性能差,多用在次要结构部位。
高强螺栓根据受力特点分摩擦型连接和承压型连接,两种连接方式工作原理不同,可查阅相关资料,目前钢结构施工上摩擦型高强螺栓的连接应用较广泛,常用8.8s和10.9s两个强度等级。
高强螺栓最小规格为M12,常用M16~ M 30。
超大规格的螺栓性能不稳定,设计中应慎重使用。
1.1.3节点设计必须考虑安装螺栓、现场焊接等的施工空间及构件吊装顺序等。
构件运到现场无法安装是初学者常犯的错误。
此外,还应尽可能使工人能方便的进行现场定位与临时固定。
1.1.4节点设计还应考虑制造厂的工艺水平。
比如钢管连接节点的相贯线的切口需要数控机床等设备才能完成。
1.2. 1在进行结构设计时,在结构分析过程中就应该想好用哪种节点形式,根据结构构件的选用,传力特性不同判断用刚节点、铰节点还是半刚节点,连接方式的不同对结构影响很大,比如:门式刚架结构,为了降低用钢量,钢柱选用变截面柱子,那么柱脚节点做成铰接,梁与柱连接处做成刚接就比较合理。
钢结构课程设计计算说明书(2024版)

一、荷载计算永久荷载(设计值):预应力混凝土屋面板 1.45kN/m2×1.35=1.96kN/m2三毡四油(上铺绿豆砂)防水层0.40kN/m2×1.35=0.54kN/m2水泥砂浆找平层0.40kN/m2×1.35=0.54kN/m2保温层0.70kN/m2×1.35=0.95kN/m2一毡二油隔气层0.05kN/m2×1.35=0.07kN/m2水泥砂浆找平层0.30kN/m2×1.35=0.41kN/m2屋架和支撑自重(0.12+0.011×16)×1.35=0.40kN/m2管道荷载0.10kN/m2×1.35=0.135kN/m2合计 5.005kN/m2可变荷载:施工荷载和雪荷载不同时考虑,而是取两者的较大值。
屋面活荷载0.70kN/m2×1.4=0.98kN/m2积灰荷载0.70kN/m2×1.4=0.98kN/m2合计 1.96kN/m2屋面坡度不大,对荷载影响小,未予考虑。
风荷载对屋面为吸力,重屋盖可不考虑。
二、荷载组合本设计按全跨荷载的永久效应组合:5.005+0.7×0.98+0.9×0.98=6.573kN/m2本设计为16m跨度,取5等分,即每单跨3.2m,根据结构布置,存在两种形式的节点荷载,即6m×3.2m和6m×1.6m,分别计算其大小。
F d=6.573×6×3.2=126.20 kNF d=6.573×6×1.6=63.10 kN内力计算kN 利用ansys软件,计算出各节点的杆件内力,得出最大拉力杆件值为596.10;最大压力在杆件值为606.87。
kN 三、杆件截面设计根据腹杆最大内力值,由屋架节点板厚度参考可知:支座节点板厚度取14mm ;其余节点板与垫板厚度取12mm 。
预应力结构的开洞及加固

预应力结构的开洞及加固一,预应力结构开洞施工要点:1.板底支撑系统的搭设:在开洞剔凿混凝土板前,需在开洞处及相关板(同一束预应力筋所延伸的板)板底搭设支撑系统。
开洞洞口所在处的板底及周边相关板底可采用满堂红支搭方案,也可采用十字双排架木支搭方法。
2.预应力混凝土板开洞混凝土的剔除:(1)剔除顺序:剔除要严格按既定的顺序进行,待先开洞部位一侧预应力筋切断、放张和重新张拉后,再将其余部位混凝土剔除,然后再将另一侧的预应力筋切断、放张和重新张拉。
(2)技术要求:混凝土的剔除采用人工剔凿和机械钻孔两种方法。
先开洞时,由于预应力筋的位置不确定,因此必须釆用人工剔凿,剔凿方向由离轴线较近一侧向较远一侧进行,待先开洞部位一侧预应力筋切断、放张和重新张拉后,其他部位混凝土可用机械法整块破碎剔除。
(3)注意事项:混凝土剔除过程中,注意千万不要损伤预应力筋;普通钢筋上铁也要尽量保留,下铁需全部保留,待预应力张拉端加固角板和端部封堵后浇外包混凝土小圈梁后再切除。
另外,混凝土剔除后应确保预应力张拉端处余留混凝土板断面表面平整,必要时可用高强度等级水泥砂浆抹平以保证预应力筋切割、放张和重新张拉的顺利进行。
3.预应力筋的切断:(1)准备工作:剔除露岀的预应力筋的塑料外包皮,安装工具式开口垫板及开口式双缸千斤顶,为防止放张时预应力筋回缩造成千斤顶难以拆卸回缸,双缸千斤顶的活塞出缸尺寸不得大于180mm,且放张时千斤顶处于出缸状态。
另外,在预应力筋切断位置左右各100mm处, 用铅丝缠绕并绑牢以避免断筋时由于回缩造成钢绞线各丝松散开。
(2)技术要求:切断预应力筋时,用气焊熔断预应力筋。
切断位置应考虑预应力筋放张后回缩尺寸、保证预应力筋重新张拉时外露长度。
(3)注意事项:预应力筋的切断顺序应与混凝土的剔凿顺序相同;切断前,应先检查该筋原张拉端、锚固端混凝土是否开裂和其他质量问题,并注意端部封挡熔断预应力筋时,严禁在该筋对面及原张拉端、锚固端处站人。
预应力钢结构张拉控制应力的取值范围分析(Ⅱ)

[ Abstract ] In the point of prestress steel structures , the method to determinate the tension control stress (σ con ) is different from that of prestress concrete structures because there are so many factors that can influence the value ofσ con In this thesis , the author brought forward the principle to determinate the value of σ con , discussed the maximum and the minimum values of σ con considering the influences of outside2plate stabilizing of cables , curtaining of cables between nodes , fatigue life of cables , bending stress , stress corrosion and high temperature. [ Keywords ] Prestress steel structures ; Cable ; Tension control stress ; Outside 2plate stabilizing ; Curtaining of cables ; Fatigue life ; Bending stress ; Stress corrosion 4 预应力钢结构中 σcon 值的确定原则
完整钢结构课程设计

1.设计资料: ......................................................................................................... 错误!未定义书签。
2.结构形式与布置 ................................................................................................. 错误!未定义书签。
3.荷载计算 ............................................................................................................. 错误!未定义书签。
4.内力计算 ............................................................................................................. 错误!未定义书签。
附件:设计资料1、设计题目:单层工业厂房屋盖结构——梯形钢屋架设计2、设计任务及参数:第五组:某地一机械加工车间,长84m,跨度24m,柱距6m,车间内设有两台40/10T中级工作制桥式吊车,轨顶标高18.5m,柱顶标高27m,地震设计烈度7度;采用梯形钢屋架,封闭结合,×6m预应力钢筋混凝土大型屋面板m2,上铺100mm厚泡沫混凝土保温层容重为1KN/m3,三毡四油上铺绿豆砂防水层m2,找平层2cm厚m2,卷材屋面,屋面坡度i=1/10,屋架简支于钢筋混凝土柱上,混凝土强度等级C20,上柱截面400×400mm;钢材选用Q235B,焊条采用E43型;屋面活荷载标准值m2,积灰荷载标准值m2,3、设计任务分解学生按照下表分派的条件,完成梯形钢屋架设计的全部相关计算和验算及构造设计内容;表-34、设计成果要求在教师指导下,能根据设计任务书的要求,搜集有关资料,熟悉并应用有关规范、标准和图集,独立完成课程设计任务书指导书规定的全部内容;1需提交完整的设计计算书和梯形钢屋架施工图;2梯形钢屋架设计要求:经济合理,技术先进,施工方便;3设计计算书要求:计算依据充分、文理通顺、计算结果正确、书写工整、数字准确、图文并茂,统一用A4纸书写打印;A、按步骤设计计算,各设计计算步骤应表达清楚,写出计算表达式及必要的计算过程,对数据的选取应写明判断依据;B、计算过程中,必须配以相应的计算简图;C、对计算结果进行复核后,为保证施工质量且方便施工,应按规范要求对计算结果进行调整并写明依据;4梯形钢屋架施工图共两张,图纸绘制的要求:布图合理,版面整齐,图线清晰,标注规范,符合规范/图集要求;单层工业厂房屋盖结构——梯形钢屋架设计1.设计资料:1某地一机械加工车间,长84m,跨度24m,柱距6m,车间内设有两台40/10T 中级工作制桥式吊车,轨顶标高18.5m,柱顶标高27m,地震设计烈度7度;采用梯形钢屋架,封闭结合,×6m 预应力钢筋混凝土大型屋面板m 2,上铺100mm 厚泡沫混凝土保温层容重为1KN/m 3,三毡四油上铺绿豆砂防水层m 2,找平层2cm 厚m 2,卷材屋面,屋面坡度i=1/10,屋架简支于钢筋混凝土柱上,混凝土强度等级C20,上柱截面400×400mm;钢材选用Q235B,焊条采用E43型;屋面活荷载标准值m 2,积灰荷载标准值m 2,雪荷载及风荷载见下表;2屋架计算跨度)(7.233.0240m l =-=3跨中及端部高度:设计为无檩屋盖方案,采用平坡梯形屋架,端部高度mmh 19000=中部高度mm h 3100=为6.7/0l ,屋架跨中起拱500/l 考虑,取48m. 2.结构形式与布置屋架形式及几何尺寸如图所示:图1.梯形钢屋架形式和几何尺寸根据厂房长度102m>60m、跨度及荷载情况,设置三道上、下弦横向水平支撑;因柱网采用封闭结合,厂房两端的横向水平支撑设在第一柱间,该水平支撑的规格与中间柱间支撑的规格有所不同;在所有柱间的上弦平面设置了刚性与柔性系杆,以保证安装时上弦杆的稳定,在各柱间下弦平面的跨中及端部设置了柔性系杆,以传递山墙风荷载;在设置横向水平支撑的柱间,于屋架跨中和两端各设一道垂直支撑;梯形钢屋架支撑布置如图下图所示:屋架上弦支撑布置图屋架下弦支撑布置图3.荷载计算屋面和荷载与雪荷载不会同时出现,计算时,取较大的荷载标准值进行计算;故取屋面活荷载2m 进行计算;屋面风荷载迎风面 m KN /88.51235.00.1)0.1(4.11-=⨯⨯⨯-⨯=ω 背风面 m KN /82.31235.00.165.0(4.11-=⨯⨯⨯-⨯=ω由于屋面坡度较小,对荷载影响小,未予考虑;风荷载对屋面为吸力,重屋架不考虑;表 1 荷 载 计 算 表设计屋架时,应考虑以下三种荷载组合: .全跨永久荷载 + 全跨可变荷载全跨节点永久荷载及可变荷载:KN F 991.4865.1)82.16234.3(=⨯⨯+=.全跨永久荷载 + 半跨可变荷载全跨节点永久荷载:611.3265.16234.31=⨯⨯=F半跨节点可变荷载:KN F 38.1665.182.12=⨯⨯=.全跨屋架包括支撑自重+半跨屋面板自重+半跨屋面活荷载:全跨节点屋架自重:KN F 67.465.15184.03=⨯⨯=半跨节点屋面板自重及活荷载:KN F 31.2365.1)7.089.1(4=⨯⨯+=1、2为使用节点荷载情况,3为施工阶段荷载情况; 4.内力计算屋架在上述三种荷载组合作用下的计算简图如图所示:屋架计算简图由图解法或数解法解得F=1的屋架各杆件的内力系数F=1作用于全跨、左半跨和右半跨;然后求出各种荷载情况下的内力进行组合,计算结果见表2屋架构件内力组合表竖杆AaCb、EcGdHRIe 0 00 0 0 0 0 0 05.杆件设计1上弦杆整个上弦采用等截面,按GH,HI杆件的最大内力设计,即KNN89.797-=上弦杆计算长度:在屋架平面内,为节间轴线长度,即在屋架平面外,本屋架为无檩体系,并且认为大型屋面板只起到刚性系杆作用,根据支持布置和内力变化情况,取oyl为支撑点间的距离,即mmloy6000=根据屋架平面外上弦杆的计算长度,上弦杆截面选用两个不等肢角钢,短肢相并;如下图所示;腹杆最大内力KNN06.440-=,由屋架节点板厚度参考可知:中间节点板与垫板厚度取10mm,支座节点板刚度取12mm;设70=λ,查Q235钢的稳定系数表,可得751.0=ϕ由双角钢组成的T形和十字形截面均属于b类,则需要的截面积为236.4941215751.01089.797mmfNA=⨯⨯==ϕmmlloox1508==需要回转半径:mm l i oxx 5.21701508===λ , mm l i oy y 7.85706000===λ根据需要A,x i ,y i 查角钢规格表,选用101101802⨯⨯L ,肢背间距a=10mm,则:25680mm A =,mm i x 3.31=,mm i y 3.86=按所选角钢进行验算:52.693.866000===yoy y i l λ<λ=150, 758.0=y ϕb 类 双角钢T 型截面绕对称轴y 轴应按扭曲计算长细比yz λ,6.331160056.056.0110.1110=⨯=<==b l t b y 则yz λ=y λ=,754.0=ϕ,MPa MPa A N 3.1865680754.01089.7973=⨯⨯=ϕ<MPa 215故所选截面满足要求;填板每个节间放一块满足1l 范围内不少于两块,尺寸取60mmx130mmx10mm 则 间距cm x i cm l d 2.12513.340404.7528.150==<==,取80cm; 2下弦杆整个下弦杆采用同一截面,按最大内力所在的杆计算;K N 86.741=Nmm l ox 3000= ,mm l oy 118502/23700==因跨中有通长系杆,所需截面积为:235.34502151086.741mm f N A =⨯==选用101101802⨯⨯L ,因oy l ≥ox l ,故用不等肢角钢,短肢相并,如下图;25680mm A =,mm i x 3.31=,mm i y 3.86=8.953.313000===x ox x i l λ<350,31.1373.8611850===y oy y i l λ<35018.483.311508===x ox x i l λMPa MPa A N 21561.13056801086.7413<=⨯==σ故所选截面满足要求;填板每个节间放一块,尺寸取60mm ×130mm ×10mm,则 间距cm i cm l d 4.25013.380801502300=⨯=<==,取150cm; 3斜腹杆 ①端斜杆aB :杆件轴力 KN N 06.440-= 计算长度 =ox l mm l oy 2448=因=ox l oy l ,故采用不等肢角钢,长肢相并,使≈x i y i ;选用8801252⨯⨯L ,肢背间距a=10mm,则: 23200mm A =,mm i x 1.40=,mm i y 7.32= 按所选角钢进行验算:86.747.322448===yoy y i l λ<λ=150 双角钢T 型截面绕对称轴y 轴应按扭曲计算长细比yz λ,7.1788.24458.058.0108.08202=⨯=<==b l t b y 则yz λ=y λ1+2204209.1tl b y =×1+y λ>=⨯⨯58.81)8.08.244809.1224故由58.81max ==yz λλ,b 类,678.0=ϕ,MPa MPa A N 8.2023200678.01006.4403=⨯⨯=ϕ<MPa 215 故所选截面满足要求;填板放两块,尺寸取60mm ×145mm ×10mm,则 间距cm i cm l d 8.13027.340406.8138.244=⨯=<==,取90cm; ②杆件dR-RI此杆在R 节点处不断开,采用通长杆件;05.611.402448===x ox x i l λ最大拉力:KN N dR 60.65= ,KN N RI 33.103= 最大压力:KN N dR 63.34-= ,KN N RI 03.31-=再分式桁架中的斜腹杆,在桁架平面内的计算长度取节点中心间距mm l ox 2157=,在桁架平面外的计算长度:mm N N l l oy 5.6399)63.3403.3125.075.0(4314)125.075.0(21=⨯+⨯=⨯+⨯= 选用4632⨯L ,查角钢规格表得2996mm A =,mm i x 6.19=,mm i y 4.29=1507.996.192157<===x ox x i l λ因x λ<y λ,只需求y ϕ;查表得3486.0=y ϕ,则MPa A N y 7.999963486.034630=⨯==ϕσ<MPa 215 拉应力: MPa MPa A N 2157.10399610333<===σ 所选截面满足要求;填板放两块,尺寸取60mm ×83mm ×10mm,则 间距cm i cm l d 4.7896.140409.7137.215=⨯=<==,取75cm; ③ 杆件Bb杆件轴力 KN N 58.339=计算长度 =ox l ×2534=, mm l oy 2534= 选用8752⨯L ,查角钢规格表得22300mm A =,mm i x 8.22=,mm i y 0.35=3509.882.2027<===xoxx i l λ 3504.720.352534<===yoy y i l λ 所选截面满足要求;15067.2174.295.6399<===yoy y i l λ填板放两块,尺寸取60mm ×95mm ×10mm,则 间距cm i cm l d 4.18228.280804.6334.253=⨯=<==,取80cm; ④杆件bD杆件轴力 KN N 24.267-=计算长度 =ox l ×2798=, mm l oy 2798= 选用8752⨯L ,查角钢规格表得22300mm A =,mm i x 8.22=,mm i y 0.35=1502.988.224.2238<===x ox x i l λ,1508.812.342798<===y oy y i l λ x λ>y λ,567.0=x ϕ,MPa MPa A N x 2159.2042300567.0267240<=⨯==ϕσ 所选截面满足要求;填板放三块,尺寸取60mm ×95mm ×10mm,则 间距cm i cm l d 2.9128.240400.7048.279=⨯=<==,取70cm; ⑤杆件Dc杆件轴力 KN N 33.180=计算长度 =ox l ×2778=, mm l oy 2778= 选用8752⨯L ,查角钢规格表得22300mm A =,mm i x 8.22=,mm i y 0.35=3505.978.224.2222<===x ox x i l λ,35037.790.352778<===y oy y i l λ MPa MPa A N 2154.782300180330<===σ 所选截面满足要求;填板放两块,尺寸取60mm ×95mm ×10mm,则 间距cm i cm l d 4.18228.280806.9238.277=⨯=<==,取100cm; ⑥杆件cF杆件轴力 KN N 64.118-=计算长度 =ox l ×3055=2444m, mm l oy 3055=选用8752⨯L ,查角钢规格表得22300mm A =,mm i x 8.22=,mm i y 0.35=1502.1078.222444<===x ox x i l λ,1503.890.353035<===y oy y i l λx λ>y λ,449.0=x ϕ, MPa MPa A N x 2159.1142300449.0118640<=⨯==ϕσ 所选截面满足要求;填板放三块,尺寸取60mm ×95mm ×10mm,则 间距cm i cm l d 2.9128.240404.7645.305=⨯=<==,取cm 80; ⑦杆件Fd杆件轴力 KN N 49.52=计算长度 =ox l ×3035=2444m, mm l oy 3035= 选用4632⨯L ,查角钢规格表得2996mm A =,mm i x 6.19=,mm i y 4.29=3509.1236.192428<===x ox x i l λ,3505.1004.293035<===y oy y i l λMPa MPa A N 2157.5299652490<===σ 所选截面满足要求填板放两块,尺寸取60mm ×83mm ×10mm,则 间距cm i cm l d 8.15696.180802.10135.303=⨯=<==,取110cm; ⑧杆件RG杆件轴力 KN N 13.34=计算长度 =ox l ×1952=, mm l oy 1952= 选用4632⨯L ,查角钢规格表得2996mm A =,mm i x 6.19=,mm i y 4.29=3507.796.196.1561<===x ox x i l λ,3506.644.291952<===y oy y i l λx λ>y λ,688.0=x ϕ,MPa A N x 8.49996688.034130=⨯==ϕσ<MPa 215 所选截面满足要求填板放两块,尺寸取60mm ×83mm ×10mm,则 间距cm i cm l d 8.15696.180801.6532.195=⨯=<==,取70cm; 4竖杆 ①杆件Aa杆件轴力 KN N 50.24-=计算长度 =ox l ×1900=1520m, mm l oy 1900=由于杆件内力较小,按150][==λλ选择,需要回转半径为mm i x 13.10=,mm i y 67.12=选用4562⨯L ,查角钢规格表得2878mm A =,mm i x 3.17=,mm i y 7.26=15086.873.171520<===x ox x i l λ,15034.697.261900<===y oy y i l λx λ>y λ,636.0=x ϕ,MPa A N x 87.43878636.024500=⨯==ϕσ<MPa 215 所选截面满足要求;填板放两块,尺寸取60mm ×76mm ×12mm,则 间距cm i cm l d 2.6973.140403.633.190=⨯=<==,取65cm; ②杆件HR杆件轴力 KN N 99.48-=计算长度 =ox l ×1406=, mm l oy 1406= 选用4562⨯L ,查角钢规格表得2878mm A =,mm i x 3.17=,mm i y 7.26=15002.653.178.1124<===x ox x i l λ,1503.517.261406<===y oy y i l λx λ>y λ,78.0=x ϕ,MPa A N x 53.7187878.0448990=⨯==ϕσ<MPa 215 所选截面满足要求;填板放三块,尺寸取60mm ×76mm ×10mm,则 间距cm i cm l d 2.6973.140408.4636.140=⨯=<==,取50cm; ③杆件Cb杆件轴力 KN N 92.48-=计算长度 =ox l ×2200=1760m, mm l oy 2200= 选用4562⨯L ,查角钢规格表得2878mm A =,mm i x 3.17=,mm i y 7.26=1507.1013.171760<===x ox x i l λ,1503.807.262200<===y oy y i l λx λ>y λ,483.0=x ϕ,MPa A N x 5.115878483.0448920=⨯==ϕσ<MPa 215 所选截面满足要求;填板放三块,尺寸取60mm ×76mm ×10mm,则 间距,2.6973.14040554220cm i cm l d =⨯=<==取60cm; ④杆件Ec杆件轴力 KN N 92.48-=计算长度 =ox l ×2500=2000m, mm l oy 2500= 选用4562⨯L ,查角钢规格表得2878mm A =,mm i x 3.17=,mm i y 7.26=1506.1153.172000<===x ox x i l λ,15024.917.262200<===y oy y i l λx λ>y λ,460.0=x ϕ,MPa A N x 1.121878460.0448920=⨯==ϕσ<MPa 215 所选截面满足要求;填板放三块,尺寸取60mm ×76mm ×10mm,则间距,2.6973.140405.624250cm i cm l d =⨯=<==取65cm; ⑤杆件Gd杆件轴力 KN N 47.73-=计算长度 =ox l ×2800=2240m, mm l oy 2800= 选用4632⨯L ,查角钢规格表得2996mm A =,mm i x 6.19=,mm i y 4.29=1503.1146.192240<===x ox x i l λ,1507.924.292800<===y oy y i l λ x λ>y λ,468.0=x ϕ,MPa A N x 6.157996468.073470=⨯==ϕσ<MPa 215 所选截面满足要求;填板放三块,尺寸取60mm ×83mm ×10mm,则 间距,4.7896.14040704280cm i cm l d =⨯=<==取70cm表 3 屋 架 杆 件 截 面 选 择 表1.下弦设计 1下弦节点b已知采用用E43型焊条,角焊缝的抗拉、抗压和抗剪强度设计值160wf f Mpa ;设“Bb ”杆的肢背和肢尖焊缝mm mm h f 68和=,则所需的焊缝长度为按等肢角钢连接的角焊缝内力分配系数计算:肢背: mm l w 2.1648216087.02339580321=⨯+⨯⨯⨯⨯=,取180mm ;肢尖: mm l w 4.956216067.02339580312=⨯+⨯⨯⨯⨯=,取100mm ;设“bD ”杆的肢背和肢尖焊缝mm mm h f 68和=,则所需的焊缝长度为: 肢背: mm l w 9.1518216087.02267240321=⨯+⨯⨯⨯⨯=,取120mm ;肢尖: mm l w 6.776216067.02267240312=⨯+⨯⨯⨯⨯=,取90mm ;“Cb ”杆的内力很小,焊缝尺寸可按构造确定,取mm h f 5=;根据上面求得的焊缝长度,并考虑杆件之间应有的间隙及制作和装配等误差,按比例绘出节点详图,从而确定节点板尺寸为300mm ×340mm;下弦节点“b ”下弦与节点板连接的焊缝长度为,mm h f 6=;焊缝所受的力为左右两下弦杆的内力差kN 27.32618.42245.685==∆—N ,受力较大的肢背处的焊缝应力为MPa f MPa w f 1603.971234060.7226270332=)—(<=⨯⨯⨯⨯=τ,焊缝强度满足要求;2下弦节点c已知采用用E43型焊条,角焊缝的抗拉、抗压和抗剪强度设计值160wf f Mpa ;设“cD ”杆的肢背和肢尖焊缝mm mm h f 68和=,则所需的焊缝长度为按等肢角钢连接的角焊缝内力分配系数计算:肢背: mm l w 4.838216087.02180330321=⨯+⨯⨯⨯⨯=,取100mm ;肢尖: mm l w 3.566216067.02180330312=⨯+⨯⨯⨯⨯=,取60mm ;设“cF ”杆的肢背和肢尖焊缝mm mm h f 68和=,则所需的焊缝长度为: 肢背: mm l w 4.608216087.02186401321=⨯+⨯⨯⨯⨯=,取80mm ;肢尖: mm l w 3.416216067.02118640312=⨯+⨯⨯⨯⨯=,取60mm ;“cE ”杆的内力很小,焊缝尺寸可按构造确定,取mm h f 5=;根据上面求得的焊缝长度,并考虑杆件之间应有的间隙及制作和装配等误差,按比例下弦节点“c ”绘出节点详图,从而确定节点板尺寸为260mm ×300mm;下弦与节点板连接的焊缝长度为,mm h f 6=;焊缝所受的力为左右两下弦杆的内力差kN 41.15545.86586.741=-=∆N ,受力较大的肢背处的焊缝应力为MPa f MPa w f 16079.371234060.7215541032=)—(<=⨯⨯⨯⨯=τ,焊缝强度满足要求;3下旋节点d已知采用用E43型焊条,角焊缝的抗拉、抗压和抗剪强度设计值160wf f Mpa ;设“Fd 的肢背和肢尖焊缝mm mm h f 68和=,则所需的焊缝长度为按等肢角钢连接的角焊缝内力分配系数计算:肢背: mm l w 6.358216087.0252490321=⨯+⨯⨯⨯⨯=,取80mm.肢尖: mm l w 8.246216067.0252490312=⨯+⨯⨯⨯⨯=,取60mm.设“dR 的肢背和肢尖焊缝mm mm h f 68和=,则所需的焊缝长度为: 肢背: mm l w 5.408216087.0265600321=⨯+⨯⨯⨯⨯=,取80mm.肢尖: mm l w 1.286216067.0265600312=⨯+⨯⨯⨯⨯=,取60mm .“Gd 的内力很小,焊缝尺寸可按构造确定,取mm h f 5=;根据上面求得的焊缝长度,并考虑杆件之间应有的间隙及制作和装配等误差,按比例绘出节点详图,从而确定节点板尺寸为260mm ×340mm;下弦节点“d ”下弦与节点板连接的焊缝长度为,mm h f 6=;焊缝所受的力为左右两下弦杆的内力差kN 05.181.74086.741=-=∆N ,受力较大的肢背处的焊缝应力为MPa f MPa w f 16026.01234060.72105032=)—(<=⨯⨯⨯⨯=τ,焊缝强度满足要求;4下弦节点e1弦杆与拼接角钢连接焊缝计算:下弦与节点板连接的焊缝长度为50cm,mm h f 8=;焊缝所受的力为弦杆的内力kN 81.740=N ,则需焊缝长度为: =+⨯⨯⨯=167.04w ff w f h N l mm 222.698216087.04740810=⨯+⨯⨯⨯,取w l =250mm 拼接角钢长度不小于2⨯250+10=510mm,取540mm;为了保证施焊方便和保证连接焊缝的质量,还需将连接角钢的竖直肢切去Δ=t+mm h f 5+=10+8+5=23mm;2竖杆与节点板连接焊缝计算:按下弦杆内力的15%计算;kN N 12.111%15408107=⨯=设肢背、肢尖焊脚尺寸为6mm,弦杆一侧需焊缝长度为肢背:mm l w 39.671216067.021012.111323=+⨯⨯⨯⨯⨯=,取w l =80mm 肢尖mm l w 28.391216067.021012.111313`=+⨯⨯⨯⨯⨯=,按构造要求,取焊缝长度`w l ≥50mm, 取`w l =60mm3节点板尺寸:按比例绘出节点详图,从而确定节点板尺寸:图14.下弦节点“e ”MPa f MPa w f 16056.911650080.7274081032=)—(<=⨯⨯⨯⨯=τ 焊缝强度满足要求;2上弦设计1上弦节点“B ”“Bb ”杆与节点板的焊缝尺寸和节点“b ”相同;已知: kN 06.440-N =aB设“aB ”杆的肢背和肢尖焊缝mm mm h f 68和=,则所需的焊缝长度为按不等肢角钢短肢连接的角焊缝内力分配系数计算:肢背: mm l w 164.538216087.024********=⨯+⨯⨯⨯⨯=,取170mm ; 肢尖: mm l w 120.056216067.024********=⨯+⨯⨯⨯⨯=,取140mm ; 为了便于在上弦上搁置屋面板,节点板的上边缘可缩进上弦肢背8mm;用槽焊缝把上弦角钢和节点板连接起来;槽焊缝作为两条角焊缝计算,槽焊缝强度设计值乘以的折减系数;计算时可略去屋架上弦坡度的影响,而假定集中荷载P 与上弦垂直;上弦肢背槽焊缝内的应力由下面计算得到:。
同济大学钢结构基本原理课件 赵宪忠

1
钢结构初步概念
定义 & 范围
钢结构初步概念
定义 & 范围 钢结构 也包括工程结构中的子结构或局部关键构件采用钢结构
钢结构: 以结构钢作为主要承重体系构件的 工程结构称为钢结构 [强度、刚度、耗能]
钢结构 PK 混凝土结构
钢结构,钢筋混凝土结构,钢管混凝土结构,钢-混凝土组合结构…
钢书架 钢窗框 钢制家具 ……
结构构件面积↓, 基础结构造价↓ 结构延性韧性:适合柔性变形,减轻地震作用,增大耗能能力
大跨度结构
钢材受拉强度大、强重比大的优点可以实现轻质大跨结构Biblioteka 8钢结构发展现状和前景
State-of-the-art & prospective market
钢产量
2007 y > overall output of the world before 1966 2008 y > 2nd-8th output
开合结构:上海网球场
开合结构:南通体育场
Oh, he is coming…
开合结构:南通体育场
风能结构
5
其他:地下工程支护结构
其他:机械、车辆、船舶… …
钢结构的主要结构形式
以建筑与桥梁为例
桁架结构(杆系)
Bar or truss members
主要结构形式
桁架结构(杆系)
框架结构(杆系)
可接受的:
安全性的可接受度 经济性的可接受度 0 Rd-Sd
设计一个可接受的安全的结构 设计一个在给定条件下最合理的结构
结构设计概念与原理
结构设计与建造
学习方法与学习要求
学习方法
结构的破坏模式 解决对策 理想模型的受力机理
钢结构课程设计计算书

钢结构课程设计计算书⼀由设计任务书可知:⼚房总长为120m,柱距6m,跨度为24m,屋架端部⾼度为2m,车间内设有两台中级⼯作制吊车,该地区冬季最低温度为-22℃。
暂不考虑地震设防。
屋⾯采⽤1.5m×6.0m预应⼒⼤型屋⾯板,屋⾯坡度为i=1:10。
卷材防⽔层⾯(上铺120mm 泡沫混凝⼟保温层和三毡四油防⽔层)。
屋⾯活荷载标准值为0.7KN/㎡,雪荷载标准值为0.4KN/㎡,积灰荷载标准值为0.5KN/㎡。
屋架采⽤梯形钢屋架,钢屋架简⽀于钢筋混凝⼟柱上,混凝⼟强度等级C20.⼆选材:根据该地区温度及荷载性质,钢材采⽤Q235-C。
其设计强度为215KN/㎡,焊条采⽤E43型,⼿⼯焊接,构件采⽤钢板及热轧钢筋,构件与⽀撑的连接⽤M20普通螺栓。
屋架的计算跨度L。
=24000-2×150=23700,端部⾼度:h=2000mm(轴线处),h=2150(计算跨度处)。
三结构形式与布置:屋架形式及⼏何尺⼨见图1所⽰:图1屋架⽀撑布置见图2所⽰:图2四荷载与内⼒计算:1.荷载计算:活荷载于雪荷载不会同时出现,故取两者较⼤的活荷载计算。
永久荷载标准值:防⽔层(三毡四油上铺⼩⽯⼦)0.35KN/㎡找平层(20mm厚⽔泥砂浆)0.02×20=0.40 KN/㎡保温层(40mm厚泡沫混凝⼟0.25 KN/㎡预应⼒混凝⼟⼤型屋⾯板 1.4 KN/㎡钢屋架和⽀撑⾃重0.12+0.011×24=0.384 KN/㎡总计:2.784 KN/㎡可变荷载标准值:雪荷载<屋⾯活荷载(取两者较⼤值)0.7KN/㎡积灰荷载0.5KN/㎡风载为吸⼒,起卸载作⽤,⼀般不予考虑。
总计:1.2 KN/㎡永久荷载设计值 1.2×2.784 KN/㎡=3.3408KN/㎡可变荷载设计值 1.4×1.2KN/㎡=1.68KN/㎡2.荷载组合:设计屋架时应考虑以下三种组合:组合⼀全跨永久荷载+全跨可变荷载屋架上弦荷载P=(3.3408KN/㎡+1.68KN/㎡) ×1.5×6=45.1872KN组合⼆全跨永久荷载+半跨可变荷载屋架上弦荷载P1=3.3408KN/㎡×1.5×6=30.07KNP2=1.68KN/㎡×1.5×6=15.12KN组合三全跨屋架及⽀撑⾃重+半跨⼤型屋⾯板⾃重+半跨屋⾯活荷载屋架上弦荷载P3=0.384KN/㎡×1.2×1.5×6=4.15KNP4=(1.4×1.2+0.7×1.4)×1.5×6=23.94KN3,内⼒计算:⾸先求出杆件内⼒系数,即单位荷载作⽤下的杆件内⼒,荷载布置如图3所⽰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
预应力钢结构的结构形式及节点设计郑佳锌[摘要]:预应力钢结构做为一种较新型钢结构类型,具有受力合理、节约材料、外观优美等诸多特点,近年来得到广泛应用。
本文主要介绍预应力钢结构常用的结构形式及相应的节点设计,并对这门新兴工程学科的未来发展做一定展望。
[关键词]:预应力钢结构结构形式节点设计第一章绪论预应力钢结构始于20世纪50年代,发展初期,各国都偏向于基本构件的试验研究,并逐渐投入工程实践。
期间,大多数的工程及试验是在平面钢结构体系中引入预应力进行的,如1953年建造的布鲁塞尔机场飞机库双跨预应力连续钢桁架门梁结构,便是在简单的桁架体系中加入预应力而产生的。
这时候,最佳预应力效果的结构体系并未出现。
在经历了十余年的探索和研究后,在对基本平面体系与基本构件的掌握达到一定程度后。
预应力钢结构这种新型的结构体系的改革,寻找更节约高效的结构体系成为研究者们的共识。
伴随着计算机技术在结构设计领域的应用,钢结构高难度计算及高精度加工难题得以解决,一时间,各种新型结构形式如雨后春笋般涌现,如网架、网壳、悬索及索膜结构等以其优异的受力性能和新颖独特的造型,风靡世界。
我国在解放后也曾开展过预应力钢结构研究,并兴建了少量预应力钢结构建筑。
但后来因为历史原因,预应力钢结构的研究和使用一度陷入停滞。
改革开放三十余年以来,建筑行业发展欣欣向荣,带动了预应力钢结构的发展。
近年来,各种结构形式的预应力钢结构建筑相继建成,我国对这种新型的建筑结构的研究也渐深入,积累了不少的工程实践和设计经验。
第二章预应力钢结构的结构形式预应力钢结构在经历了六十余年发展,已形成了多种多样的结构类型。
本文主要介绍工程中使用较多的结构体系,而对其基本构件则不再赘述。
一、预应力钢桁架预应力钢桁架作为一种使用较早平面结构体系,是通过各种手段在结构承受全部荷载单次或多次地引入预应力以对杆件卸载、降低内力峰值的。
其中,拉索预应力桁架作为研究较多较深入的一种,将是我们重点介绍的。
拉索预应力钢桁架通过布索方案可分为局部布索和整体布索两类;整体布索又可分为廓外布索和廓内布索两种。
局部布索一般布置于受力较大的杆件上,受力计算简单明确,单杆经济效益好,适用于现场装配的重型桁架。
但因其节点构造复杂,用钢量大。
从整体上考量省钢率仅为10%左右。
在设计时,应考虑布索与杆件共同工作,采取措施保证预应力体系的整体工作性能。
平面桁架结构简单,但平面外钢度较差。
应用立体桁架能很好的解决这个问题。
一般情况下,立体钢桁架的跨中挠度值仅为(1/400~1/500)l,远小于平面桁架。
立体钢桁架的截面形式有三角形和四边形,就采用预应力而言,三边形截面比四边形的易于布置拉索,方便施工,具有较大的卸载力臂,所以三角形桁架要优于四边形的。
图1-1 预应力钢结构桁架结构示意图二、预应力拱架结构预应力拱架是一种无弯矩或小弯矩结构,可分为拉索式和位移式两种。
预应力索拱的布索方案多种(图2-1),其经济效益与拱的几何轴线、荷载特征、索系类型、张拉程度等因素有关。
拉索的功能是承担拱架的侧推力及调整拱困截面应力峰值。
图2-1 预应力拱架结构方案为免除张索工艺的麻烦与减少锚固件及拉索的材料消耗量,可采取强迫支座位移法引入预应力,即为位移式拱架。
澳大利亚Strarch建筑体系是支座位移预应力拱架体系的先进典型。
在全球各地已兴建了80余座Strarch拱架,2002年海口美兰机场维修机库就是采用跨度99.6米的拱架专利技术。
三、预应力框架在框架中引入预应力主要有三种方式:一是拉索法,或是局部或整体拉索;二是支座位移法,强迫支座水平位移或垂直位移调整内力;三是以上两种联合使用。
由于预应力效应对杆件的卸载和增载并存,预应力布索与力度的合理性应以卸载节约量和增载消耗量之间的比例为准。
在预应力框架结构体系中,合理的框架图形及布索方案尤为重要,不合理的方案往往会产生反效果,造成得不偿失的情况。
支座位移预应力同样能产生较好的效果,但在地质条件差时不宜使用,因其基础加固用料增加抵消了大部分的卸载节约量。
在框架结构体系中采用预应力效益的大小与结构图形、几何尺寸、布索方案、张拉力度等因素有关。
避免或降低增载的不利影响,扩大或加强卸载的有利范围,以及采用梁柱铰接的混合结构体系等,可能是提高经济效益的合理途径。
四、吊挂结构吊挂结构是指用高强钢索吊挂屋盖的承重结构体系的统称。
可分为平面吊挂结构和空间吊挂结构两类。
而按吊索的几何形状可分为斜向吊挂结构和竖向吊挂结构两种。
吊挂结构可由三部分组成:支承结构、屋盖结构和吊索。
平面吊挂体系承受平面外荷载的能力很差,必须尽量加大平面外的稳定性和刚度,措施有:1、由顶点吊挂屋盖的索系采用多根沿纵向交错吊挂相邻横梁的方案,加大结构纵向刚度;2、在主承重结构间布置纵向十字拉索支撑以传递平面外荷载;3、在同一平面吊挂单元交界处进行竖向连接以加强屋盖结构的整体性,但应保证水平向的相对位移及自由胀缩。
4、选择结构合理的几何尺寸及简图,例如适宜的高跨比会影响索系交角与附加力大小;合理的刚度比会影响中间弹性支座的弹性系数等。
空间吊挂结构宜采用整体式,亦可由单元式组拼成整体结构。
吊挂的空间结构可采用网架、网壳、空间桁架等形式。
吊索的形式可分为放射式,竖琴式,扇式和星式数种。
吊索与屋面的夹角不宜小于25度。
图4-1 预应力斜拉结构的布索方案示意1958年布鲁塞尔博览会上前苏联馆是早期的吊挂结构的工程之一(图4-2)。
跨度48m的主厅由一对高29.5m的格构钢柱吊挂体系构成。
钢柱两侧对称布索形成12m副跨及主跨拱桁架支点。
在外墙平面设有抗风索,施加预拉力以承受风载下的压应力。
由于其承重结构以受压为主,受弯构件皆跨度不大,所以结构轻巧灵活。
该馆于会后被苏联方面拆解运回国内。
图4-2 布鲁塞尔博览会前苏联馆(尺寸单位:m)五、预应力网架预应力网架是一种把预应力技术引入网架结构而形成的新型预应力大跨度空间结构。
近十几年来,我国在该结构体系的研究相当活跃,并已开发了独创的结构形式。
1、预应力网架的分类和特点按施工预应力方法分类:支座位移法、拉索法。
按网架结构形式分类:有单层、双层的和多层的,仅双层网架,目前应用较多的有平面桁架体系网架、四角锥体系网架和三角锥网架体系等。
按施加预应力阶次分类:可分为单次预应力网架和多次预应力网架。
2、预应力网架的布索方案预应力网架布索应遵循以下原则:布索应选择在网架受力的敏感区域,使以较小的索力换取较大的杆力,以卸载量最大、挠度合适、杆力峰值不致过大,用钢量最省为目标,经过多方案优选,试算后确定。
目前常用的几种布索方案有:直线布索(图5-1a)、折线布索(图5-1b、c)。
图5-1 预应力拉索类型a)直线索b)折线索c)双折索预应力索的平面布置可采用对角线布索(图5-2a)、平行边布索(图5-2b)、井字式布索(图5-2c)、多重井字布索(图5-2d)和四角放射布索(图5-2e)等方案。
图5-2 预应力网架中索的平面布置在预应力网架的设计中,只有保证布索的合理布置和预应力的合理施加,才能有效的改善结构的受力性能,控制结构的刚度和内力分布,从而可以较大地节省用钢量,降低结构造价。
这点在设计过程中应特别注意。
六、预应力网壳结构近年来,我国在预应力空间结构方面取得了一些国外没有或罕见的科技成果及新技术。
1994年9月建成的四川省攀枝花体育馆是世界首例多次预应力钢网壳工程。
2008年北京奥运会羽毛球馆采用弦支穹顶的预应力结构屋盖,同样取得了良好的社会和经济效益。
利用预应力网壳所建工程,建筑造型和结构形式丰富新颖,预应力工艺和布索方式多种多样,预应力技术高科技含量显著,能大幅度节省钢材消耗量和工程造价,是一种有广阔发展前景的空间结构体系。
1、预应力网壳结构的分类预应力网壳按照受力体系特点可分为以下几种:支座拉索预应力网壳、交叉梁系预应力网壳和弦支穹顶等。
其中支座拉索预应力网壳可采用下列结构形式:预应力球面网壳、预应力柱面网壳、预应力双曲扁网壳和预应力扭网壳。
图6-1 预应力网壳曲面外形a)球面网壳b)双曲扁网壳c)柱面网壳d)双曲抛物面鞍形网壳交叉梁系预应力网壳包含双向、多向和肋形环交叉梁系预应力网壳。
弦支穹顶则可分为:肋环型、施威德勒型、联方型、凯威特型和凯威特-联方型弦支穹顶几种。
图6-2 弦支穹顶结构体系2、预加应力体系及布索方案预应力网架的体系设计应满足以下几个要求:1)符合建筑造型和使用功能的要求;2)卸载效果好;3)计算简图明晰;4)构造简单,施工方便。
在布索设计时,应使结构体系具有最多数量的卸载杆,最少数量的增载杆和中性杆,这样才能使网壳的卸载作用明显,从而收到明显的受益。
正是由于预应力网架结构的形式及布索方案对建筑的成功与否产生着至关重要的作用,在进行此类型结构设计时,应做到:结构的选型和优化、布索方案的比较与选择以及张拉阶次与力度的分析与设计几方面内容。
第三章预应力钢结构的节点设计根据预应力钢结构的特点和拉索节点的连接功能,节点可分为张拉节点、锚固节点、转折节点、索杆连接节点、交叉节点等类型。
一、张拉节点张拉节点主要设置于预应力构件端头位置,起到拉索张拉及张拉后固定以及与结构体系相连接的作用。
张拉节点应能满足以下几个要求:首先,应易于张拉锚固,施工操作简便;其次,张拉节点为本身为应力集中处,设计时应考虑超张拉力及使用荷载阶段拉索实际受力大小,节点与主体结构杆件连接应牢固可靠,防止节点处Z向破坏。
以下是几种类型的张拉节点示意图:图7-1 张拉法锚头式节点图7-2 顶推法锚头式节点图7-3 花蓝螺栓式节点二、锚固节点锚固节点应采用传力可靠、预应力损失低且施工便利的锚具,尤其应保证锚固区的局部承压强度和刚度,应设置必要的加劲肋、加劲环或加劲构件等加强措施。
锚固节点仅起到锚固预应力索、杆,传递应力的作用,因此其节点构造相对较为简单,节点形式也较为多样,但无论采用何种形式的节点,节点区的强度、刚度应是重点控制对象。
三、转折节点转折节点宜与主体结构连接。
转折节点应设置滑槽或孔道供应索准确定位和改变角度。
滑槽或孔道内可采用润滑剂或衬垫等摩擦系数低的材料;转折节点沿拉索夹角平分线方向对主体结构施加集中力,应验算该处的局部承压强度和该集中力对主体结构的影响,并采取加强措施。
节点处受力可采用有限元法进行分析。
转折节点形式:图8-1 下弦拉索节点图8-2 弧形连接件式节点图8-3 弧形夹具式节点四、索杆连接节点索杆连接节点应保证其承载力不低于杆件和拉索承载力的较小值。
节点应传力可靠,连接便利,外形符合建筑造型的要求。
索杆连接节点又有以下几种不用形式:铸钢节点、销接节点板式空间节点、销接式平面节点、U型夹具式钢节点、在进行索杆节点设计时应注意直接受拉式节点,节点宜设计成“变拉为压”式(图9-1、图9-2),防止局部屈曲或者产生Z向撕裂破坏。