宽禁带紫外光电探测器剖析

合集下载

紫外光电探测器件组成及作用

紫外光电探测器件组成及作用

紫外光电探测器件组成及作用下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!一、紫外光电探测器件组成及作用1. 紫外光电探测器件概述1.1 紫外光电探测器件是一种用于检测紫外光辐射的传感器,广泛应用于光电子学、天文观测、环境监测等领域。

宽禁带紫外光电探测器模板

宽禁带紫外光电探测器模板
由上式可知,R与λ成正比,所以短波长探测器的响应度比起长波长的探测器 来说响应度较小。假设η=1,则当波长为365nm时,响应率R=0.294A/W;当 波长为200nm时,响应率R=0.161A/W。
二、宽禁带半导体紫外探测器概述
(3) 量子效率
量子效率分为内量子效率和外量子效率: ◆ 内量子效率定义为入射至器件中的每一个光子所产生的电子-空穴对数目,即
◆ 第三代宽带隙半导体材料主要包括SiC、GaN、ZnO和金刚石等,同第一、 二代电子材料相比,具有禁带宽度大、电子漂移饱和速度高、介电常数小、 导热性能好等特点,适合于制作抗辐射、高频、大功率和高密度集成的电 子器件;而利用其特有的宽禁带,还可以制作蓝、绿光和紫外光的发光器 件和光探测器件。
一、引言
一、引言
◆ 相比之下,我国对宽禁带半导体材料与器件的研究起步晚,而且研究单位较 少,存在生长设备落后、投入不足、缺少高质量大尺寸的衬底、外延生长 技术不成熟等问题,进展较慢,还处在初步阶段。
◆ 虽然军事上、民用上都迫切需要高性能、高可靠性的紫外探测器,但目前所 研制的宽禁带半导体紫外探测器还未达到商品化的程度。
i 产生入的射电 的 空 子光 穴子 对数 个数
◆ 在实际应用中,入射光的一部分在器件表面被反射掉,在有源层中被吸收部分 的大小又取决于材料的吸收系数和厚度,所以实际上只是部分的Popt能被器件有效 地吸收而转化为光电流。定义外量子效率为
◆ 但是由于工艺技术上的问题,特别是材料生长和晶片加工的难题,进展一直十 分缓慢。直到20世纪80年代后期至90年代初,SiC单晶生长技术和GaN异质结 外延技术的突破,使得宽禁带半导体器件的研制和应用得到迅速的发展。
◆ 用SiC、GaN材料制造实用化器件已经在电力电子、射频微波、蓝光激光器、紫 外探测器和MEMS器件等重要领域显示出比硅和GaAs更优异的特性,并开始取 得非常引人注目的进展。

宽带隙半导体材料与紫外光探测器

宽带隙半导体材料与紫外光探测器

具有宽禁带的半导体材料
半导体材料
GaN ZnO
TiO2 C-BN 金刚石 AlN SiC Ga2O3(高温)
禁带类型 直接 直接 间接 间接 间接 直接 间接 直接
禁带宽度Eg/eV
3.39 3.37 金红石3.0,锐钛矿3.2 6.4 5.47
6.2 4H-SiC3.23,6H-SiC3.0
4.8~5.1
• VLS机制中,常采用激光烧蚀法、热蒸发法 以及金属有机化学气相沉积法 • 激光烧蚀法(laser ablation)是利用激光在 特定气氛下轰击靶材,将催化金属和目标材 料的原材料一同用激光蒸发,同时结合一定 气体,在衬底或反应腔壁上沉积纳米材料
气相合成
• 热蒸发法(thermal evaporation):将一种 或几种反应物,在高温区通过加热形成蒸汽 ,然后用惰性气体运送到反应器低温区,从 而生长准一维纳米材料 固体粉 末物理 蒸发 化学气 相沉积
• 溶剂热法则是 以有机溶剂代 替水
汇报内容


紫外敏感材料——宽禁带半导体
1.半导体及其带隙 2.宽禁带材料的特点 3.具有宽禁带的半导体材料


准一维纳米材料的合成
1.合成方法总述 2.气相合成


紫外光探测器
1.发展现状 2.薄膜探测器 3.纳米探测器
气相合成 • 气相合成法的特点 优势:可生长几乎任何无机材料的准一维纳 米材料/结构,操作简单易行 不足:一般需要较高温度,难以制造有机材 料、无机-有机负荷材料及金属离子掺杂体系
(1)在系统工作要求的波长区域范围内,有高的 量子效率; (2)响应速度快; (3)具有好的线性输入-输出性质; (4)能在需要的环境下可靠的工作

ZnO基紫外探测器研究进展

ZnO基紫外探测器研究进展

,6/,0 薄膜, 制作出 #, 结型紫外探测器& 在紫外区 域, ,6/,0 : #67) 结型探测器在波长为 ;89 ,< 的光照 下的光响应度为 9& 5 = : >, 同时, 它还保持和增强了 7) 对可见光区域的光响应特性, 因此这种 ,6/,0 : #67) 结型探测器可以适用于紫外和可见光波长区域&
石上生长 /,0 薄膜, 制作出 /,0 肖特基型 A7A 紫 外光探测器& 图 . 为该肖特基探测器的暗电流、 光电 流的 !"# 曲线和器件表面结构的 7TA 图& 5F 偏压和 波长为 ;?H ,< 的光照下, 该探测器有明显的光电流 响应, 其光响应度为 8& 5 = : >, 漏电流大约为 8 ,=& 探测器有一个快的响应时间, 上升时间为 8. ,D, 下 降时间为 59 ,D&
料, 在室温时带隙为 "- "’ 9: , 束缚激子能高达 &%
[ "] Q9: - 738 与 >1=、 [0\ 等其他的宽带隙材料相比
有很高的化学和热稳定性、 更好的抗辐射损伤的能 力、 较低的生长温度、 适合作长寿命器件等优点, 特 别是 738 基三元合金 ]A : 734 V : 8, 随 ]A 组分的变 化, 可以使其带隙在 "- " 9: ( 738) 到 ’- Y 9: ( ]A) 连
738 是一种新型的直接带隙宽禁带半导体材
4! 引言
紫外探测器被广泛的应用于天文学、 燃烧工程、 水净化处理、 火焰探测、 生物效应、 天际通信及环境 [ 4] - 紫外探测技术的关键是研制高 污染监测等领域 灵敏度、 低噪声的紫外探测器- 目前, 已投入商用的 紫外探测器主要有紫外真空二极管、 紫外光电倍增 管、 紫外增强器、 紫外摄像管和固体紫外探测器等, 其中常用的是光电倍增管和硅基紫外光电二极管硅基紫外光电管需要附带滤光片, 光电倍增管需要 在高电压下工作, 而且体积笨重、 效率低、 易损坏且 成本较高, 对于实际应用有一定的局限性- 因此, 人 们开始关注宽带隙半导体紫外探测器- 在过去十年 中, 为了避免使用昂贵的滤光器, 实现紫外探测器在 太阳盲区下 ( $%% —"%% 3Q ) 工作, [0\ 、 金刚石薄膜、 >1= 基和 738 基等宽带隙半导体紫外探测器, 已引 [ $] 起研究人员的广泛重视 -

实验14 禁带宽度的测量

实验14 禁带宽度的测量

实验十四 禁带宽度的测量应物0903 蔡志骏 u200910207 张文杰 u200910205一、实验目的1、学习紫外分光光度计的工作原理和使用方法。

2、学习用紫外分光光度计测量薄膜样品的透射(吸收)光谱3、能根据吸收光谱推算出材料的光学禁带宽度。

二、实验原理1、禁带宽度的涵义(1)、禁带宽度表示晶体中公有化电子所不能具有的能量范围 (2)、禁带支付表示价键束缚的强弱 2、允许的带间直接跃迁在跃迁过程中波矢改变量0k ∆=,这种跃迁为允许带间直接跃迁。

这种跃迁满足g g E ω=如果假定仅讨论导带底以上价带顶以下较小的能量范围内光吸收过程,对于导带与价带都是抛物线的并且非简并的情况有()()1412210gE cmαωω-≈⨯-吸收系数与能量的关系服从1/2次方律。

3、禁戒的带间直接跃迁在一些情况中,0k = 的跃迁被选择定则1L ∆=±禁止,而0k ≠的跃迁允许,这种跃迁为禁戒的直接跃迁。

虽然在0k = 徙的跃迁几率为0,但是0k ≠处仍存在一定的的跃迁几率,且跃迁几率正比于2k ,此时的吸收系数为()()411.310gE cmωαωω--=⨯由上式可知吸收系数主要由3/2次方律决定4、导带底和价带顶位于波矢空间不同位置的带间直接跃迁和间接跃迁这种情况是指导带底的最低能量状态和价带的最高能量状态不在k空间同一位置而发生直接跃迁。

(1)、当g p E E ω>- 时,只能伴随着声子的吸收过程,吸收系数为()()2exp 1g p p B c E E E k T αωαω-+=⎛⎫- ⎪⎝⎭(2)、对于g p E E ω>+ 时,既可伴随着声子的发射,也可伴随着声子的吸收。

其中伴随一个声子发射的吸收光谱为()()21exp g p e p B c E E E k T ωαω--=⎛⎫- ⎪⎝⎭以上两式表明间接跃迁系数与入射光子的能量有二次方关系。

5、透射率、吸光度与吸收系数之间的关系吸光度A 与透射率T 的关系为1lgA T=光吸收规律()0exp I I x α=-α为吸收系数,x 为光的传播距离,根据朗伯—比尔定律,A 正比于α。

紫外探测器原理

紫外探测器原理

紫外探测器原理紫外探测器是一种可以检测紫外光的光电传感器,广泛应用于科学研究、工业检测、环境监测等领域。

它基于紫外光与物质之间的相互作用原理,将光信号转换为电信号,实现对紫外光的探测、测量和分析。

紫外探测器的工作原理基于紫外光的光电效应,即当紫外光照射到感光材料上时,光子的能量被传递给感光材料中的电子,使其从价带跃迁到导带,形成电子空穴对。

紫外光的强度越大,传递给感光材料的能量就越大,电子的跃迁数量就越多,形成的电子空穴对也就越多。

接着,这些电子空穴对会被电场分离并收集到电极上,产生电流信号,从而实现对紫外光的探测。

常用于紫外探测器的感光材料有硅(Si)、氮化镓(GaN)、硒化镉(CdSe)等。

硅是一种常见的半导体材料,具有良好的光电性能和相对较宽的响应范围,在宽波长范围内都能对紫外光产生响应。

氮化镓则是一种具有较高选择性的材料,适用于高能量的光子探测。

而硒化镉则是一种高灵敏度的材料,适用于高精度的紫外光测量。

除了感光材料,紫外探测器还包括光透过窗、滤光膜、光敏电极等组件。

光透过窗用于过滤掉紫外光以外的光线,确保只有紫外光能够进入探测器。

滤光膜则用于进一步调节入射光的波长和强度,以满足具体应用需求。

光敏电极则负责收集感光材料中产生的电子空穴对,将其转化为电流信号。

在实际应用中,紫外探测器通常与信号放大器、滤波器、数据采集系统等设备结合使用,以提高信号的检测灵敏度和增加探测范围。

信号放大器将探测器输出的微弱电流放大为可测量的电压信号,滤波器则用于进一步滤除噪音和杂散光,数据采集系统则用于记录和分析探测器输出的电信号。

总的来说,紫外探测器的原理是基于光电效应,通过感光材料吸收和转换紫外光的能量,产生电流信号。

感光材料的选择、光透过窗、滤光膜、光敏电极等组件的设计和优化,以及与其他设备的配合使用,都是实现高灵敏度、高准确性紫外光探测的关键。

光电探测器分解课件

光电探测器分解课件

光电探测器的应用领域
总结词
光电探测器广泛应用于各种领域,如科学研究、工业 生产、安全监控等。其应用范围涵盖了光谱分析、辐 射监测、激光雷达、光纤通信等众多领域。
详细描述
光电探测器作为一种重要的光电器件,具有广泛的应用 领域。在科学研究领域,光电探测器可用于光谱分析、 辐射监测等实验中,帮助科学家深入了解物质的性质和 行为。在工业生产领域,光电探测器可用于各种自动化 生产线和设备的控制与监测,提高生产效率和产品质量 。此外,在安全监控、激光雷达、光纤通信等领域,光 电探测器也发挥着重要的作用。通过不断的技术创新和 应用拓展,光电探测器的应用前景将更加广阔。
02
薄膜沉积
在衬底上沉积光电探测器的关键薄膜 材料,如半导体材料、金属材料等。
01
封装与测试
将制造完成的光电探测器进行封装和 性能测试,确保其正常工作。
05
03
光刻与刻蚀
通过光刻技术将薄膜材料加工成所需 的结构和图形,然后进行刻蚀以形成 光电探测器的各个部分。
04
掺杂与欧姆接触
对光电探测器的半导体材料进行掺杂 ,并形成欧姆接触,以实现电流的收 集和传输。
光电探测器输出电压与输入光 功率之比,用于衡量光电探测
器的光转换效率。
带宽
光电探测器的响应速度的量度 ,通常以Hz或MHz为单位。
噪声等效功率
在一定的信噪比下,探测器可 检测到的最小光功率。
线性范围
光电探测器输入光功率与输出 电压呈线性关系的范围。
03
光电探测器的制造工艺
制造工艺流程
衬底准备
选择合适的衬底材料,并进行清洗和 加工,为后续制造过程做准备。
光电探测器的发展趋势
高响应速度

紫外探测器的原理

紫外探测器的原理

紫外探测器的原理
紫外探测器是一种用于检测紫外光信号的器件。

它的工作原理主要基于光电效应。

光电效应是指当光照射到物质表面时,光子能量被传递给物质中的电子,使其获得足够的能量从而跳出原子或分子的束缚,形成自由电子或正空穴。

紫外探测器利用光电效应中光子能量转化为电子能量的特性,将光信号转化为电信号。

在紫外探测器中,通常采用半导体材料作为感光层。

当入射的紫外光照射到感光层时,光子能量被传递给材料中的电子,使电子跃迁至导带中,形成电子-空穴对。

通过施加电场,电子
会被加速移动至电极,形成电流。

为提高电流的灵敏度,通常在感光层和电极之间加入反射层,以增加光吸收效果。

此外,还可以通过引入增益机制(如光电倍增管)来提高探测器的灵敏度。

值得注意的是,紫外探测器对于不同波长的紫外光的灵敏度有所差异。

因此,在设计和选择紫外探测器时,需要根据具体应用需求考虑其灵敏度、响应速度、噪声等性能指标。

总之,紫外探测器通过光电效应将光信号转化为电信号,实现对紫外光的检测。

其原理基于光子能量转化为电子能量的特性,以及半导体材料的光电效应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

倍增管和硅基紫外光电管。光电倍增管需要在高电压下工作,而且体
积笨重、易损坏,对于实际应用有一定的局限性。硅基紫外光电管需
要附带滤光片,这无疑会增加制造的复杂性并降低性能。
◆ 在过去十几年中,为了避免使用昂贵的滤光器,实现紫外探测器在太 阳盲区下运行,以材料和外延技术较为成熟的 SiC、GaN为代表的宽 带隙半导体紫外探测器引起世界各国重视。
很多国家都开展了相关材料与器件的研究:
◆ 美国军方十分重视 SiC、GaN器件,美国国防部高级研究计划局 (DARPA) 、ONR、 空军研究实验室(AFRL)、美国弹道导弹防御组织(BMDO)等部门一直把GaN微波
功率器件作为重点支持的领域。
◆ 在美国军方的支持下,CREE公司于2001年已将GaN HEMT器件与相关的外延材 料用航天飞机运载到空间站并将它们安置在空间站的舱外,进行轨道运行试验,
LOGO
二、宽禁带半导体紫外探测器简介
2、宽禁带半导体紫外探测器的结构
根据基本工作方式的不同,宽禁带半导体紫外探测器可以分为 光电导探测器(无结器件)和光生伏特探测器(结型器件),其中 光生伏特探测器又分为肖特基势垒型、金属-半导体-金属(MSM) 型、pn结型、pin结型等。
LOGO
二、宽禁带半导体紫外探测器简介
LOGO
二、宽禁带半导体紫外探测器简介
(3) MSM型紫外探测器
◆ 1985年德国半导体电子研究所率先发明了横向结构叉指状电极的肖特基光电
二极管(MSM-PD),改善了传统光电二极管的性能。
◆ 此结构是用平面线型叉指电极和半导体材料形成“背靠背”的双肖特基势垒。 当 在电极上加上直流偏置电压时,一个势垒正向偏置,另一个势垒则反向偏置, 因此暗电流极小,几乎比同种材料的光电导探测器的暗电流小3-5个数量级。 ◆ MSM型光伏探测器不需要进行p型掺杂,具有响应度高、速度快、随偏压变化 小、制备工艺简单、造价低、易于单片集成等优点,得到人们的普遍关注。 LOGO
(1) 光谱响应特性
◆ 当不同波长的光照射探测器时,只有能量满足一定条件的光子才能激发出光生 载流子从而产生光生电流。 ◆ 对于半导体材料,要发生本征吸收,光子能量必须大于或者等于禁带宽度,即 对应于本征吸收光谱,探测器对光的响应在长波方面存在一个波长界限λ0,根据 发生本征吸收的条件
h h 0 Eg
0 (1 R f ) e ( )d i (1 R f ) e ( )d (1 e ( )W )
LOGO
二、宽禁带半导体紫外探测器概述
2、宽禁带半导体紫外探测器
◆ 宽禁带半导体材料具有卓越的物理化学特性和潜在的技术优势,用它们制作的 器件在高功率、高温、高频和短波长应用方面具有比 Si、GaAs等器件优越得 多的工作特性,使得它们在军用、民用领域有更好的发展前景,一直受到半
导体业界人士的关注。
◆ 但是由于工艺技术上的问题,特别是材料生长和晶片加工的难题,进展一直十 分缓慢。直到20世纪80年代后期至90年代初,SiC单晶生长技术和GaN异质 结外延技术的突破,使得宽禁带半导体器件的研制和应用得到迅速的发展。 ◆ 用SiC、GaN材料制造实用化器件已经在电力电子、射频微波、蓝光激光器、 紫外探测器和MEMS器件等重要领域显示出比硅和GaAs更优异的特性,并开 始取得非常引人注目的进展。 LOGO
少,存在生长设备落后、投入不足、缺少高质量大尺寸的衬底、外延生长 技术不成熟等问题,进展较慢,还处在初步阶段。 ◆ 虽然军事上、民用上都迫切需要高性能、高可靠性的紫外探测器,但目前所 研制的宽禁带半导体紫外探测器还未达到商品化的程度。
◆ 紫外探测器的性能受到多方面因素的影响,要制备性能优越的紫外探测器,
LOGO
二、宽禁带半导体紫外探测器概述
(3) 量子效率
量子效率分为内量子效率和外量子效率: ◆ 内量子效率定义为入射至器件中的每一个光子所产生的电子-空穴对数目,即
i
产生的电子 空穴对个数 入射的光子数
◆ 在实际应用中,入射光的一部分在器件表面被反射掉,在有源层中被吸收部分 的大小又取决于材料的吸收系数和厚度,所以实际上只是部分的Popt能被器件有效 地吸收而转化为光电流。定义外量子效率为
宽禁带半导体紫外 探测器
LOGO
主要内容
一 引言 二 宽禁带半导体紫外探测器概述
三 紫外探测器的应用
LOGO
一、引言
◆ 第一代元素半导体材料Si以及第二代化合物半导体GaAs、InP等材料由于具
有禁带宽度小、器件长波截止波长大、最高工作温度低等特点而使得器件 的特性及使用存在很大局限性,满足不了目前军事系统的要求。 ◆ 第三代宽带隙半导体材料主要包括SiC、GaN、ZnO和金刚石等,同第一、 二代电子材料相比,具有禁带宽度大、电子漂移饱和速度高、介电常数小、 导热性能好等特点,适合于制作抗辐射、高频、大功率和高密度集成的电 子器件;而利用其特有的宽禁带,还可以制作蓝、绿光和紫外光的发光器 件和光探测器件。
2、宽禁带半导体紫外探测器的结构
几种不同类型宽禁带半导体紫外探测器结构示意图
LOGO
二、宽禁带半导体紫外探测器简介
(1) 光导型紫外探测器
◆ 光电导探测器,简称PC探测器,是利用光电导效应制作的光探测器。
◆ 一块半导体体材料和两个欧姆接触即可构成光导型结构的紫外探测器。
◆ 光导型紫外探测器具有结构简单、工艺容易和内部增益高等优点,但不足之 处是响应速度慢、暗电流大。
外延技术的突破,使得宽禁带半导体器件的研制和应用得到迅速的发展。 ◆ 用SiC、GaN材料制造实用化器件已经在电力电子、射频微波、蓝光激光器、紫 外探测器和MEMS器件等重要领域显示出比硅和GaAs更优异的特性,并开始取 得非常引人注目的进展。
LOGO
一、引言
由于SiC、GaN等宽禁带半导体材料在军事领域具有巨大的应用潜力,
LOGO
二、宽禁带半导体紫外探测器简介
(2) 肖特基势垒紫外探测器
◆ 实际上就是一个肖特基势垒二极管,可集高的响应度与低的暗电流于一身,具 有响应时间短、量子效率高、势垒高度高、回避p型等优点。 ◆ 但它存在一些问题:
1)由于光照射半导体时必须通过金属电极入射或者通过透明的衬底背面入射,因而入射光 会受到较大损失。但是因为大多数半导体在紫外波段都吸收很厉害,吸收系数一般较大, 所以使用良好的抗反射层,使大部分光吸收在表面结附近是完全可以实现的; 2)金属-半导体接触所形成的结比较浅,主要在半导体表面附近; 3)肖特基结构受表面态影响严重,表面态由很多深能级组成,可加剧光生电子-空穴对的复 合,从而降低器件的量子效率。要消除表面态是非常困难的,这在一定程度上制约了肖 特基结构器件的发展。
可得到本征吸收长波限的公式为
0
hc 1.24 ( m) E g E g (eV )
LOGO
二、宽禁带半导体紫外探测器概述
(1) 光谱响应特性
根据半导体材料的禁带宽度,可以算出相应的本征吸收长波限。
★ 对于GaN材料而言,Eg=3.4eV,则GaN探测器的长波限λ0≈365nm。
★ 对于4H-SiC材料,Eg=3.26eV,则其长波限λ0≈380nm 。 从计算结果可以看出,GaN、4H-SiC材料的本征吸收长波限都在紫外区。
LOGO
一、引言
表1 Si、GaAs和宽带隙半导体材料的特性对比
材料 带隙类型 禁带宽度(eV) 熔点(℃) 热导率(W/cm•K) 电子迁移率(cm2/V•s) 介电常数
Si和GaAs Si 间接 1.119 1420 1.40 1350 11.9 GaAs 直接 1.428 1238 0.54 8000 13.18 SiC 间接 2.994 2830 4.9 1000 9.7
提高薄膜质量,也易于实现掺杂。
◆ ZnO薄膜所具有的这些优异特性,使其在紫外光探测、表面声波器件、太阳能电 池、可变电阻等诸多领域得到了广泛应用。
◆ ZnO薄膜传感器具有响应速度快、集成化程度高、功率低、灵敏度高、选择性好、
原料低廉易得等优点。 LOGO
二、宽禁带半导体紫外探测器简介
(4) 金刚石紫外探测器
以便真实地评估器件的可靠性和抗辐照能力。
◆ 为了进一步推进宽禁带半导体器件的发展,美国国防部在2001年启动宽禁带半导 体技术创新计划 (WBSTI) ,重点解决材料质量和器件制造技术问题,促进此类器
件工程化应用的进展。
LOGO
一、引言
◆ 相比之下,我国对宽禁带半导体材料与器件的研究起步晚,而且研究单位较
可以从以下几个问题入手: 1)宽禁带半导体材料的生长技术; 2)宽禁带 半导体紫外探测器的关键工艺技术;3)探测器结构的设计与优化。
LOGO
二、宽禁带半导体紫外探测器概述
1、紫外探测器的性能参数
紫外探测器的主要参数包括暗电流、光电流、响应度、量子效
率和响应时间等。
LOGO
二、宽禁带导体紫外探测器概述
宽带隙半导体材料 金刚石 间接 5.5 4000 20 2200 5.5 GaN 直接 3.36 1700 1.5 900 8.9 ZnO 直接 3.37 1975 -
饱和速率(cm/s)
LOGO
1×107
2×107
2×107
2.7×107
2.5×107
-
一、引言
◆ 在紫外探测器方面,目前已投入商业和军事应用的比较常见的是光电
◆ 金刚石是禁带宽度为5.45eV的宽带隙半导体材料,具有高的载流子迁移率、高 的击穿电压、高的热导率、高掺杂性和化学惰性,是非常适合于制备探测器 件的材料。 ◆ 由于金刚石膜的禁带宽度比GaN大,在短于230nm的紫外光部分,金刚石膜探 测器有很大的光谱响应,且具有很强的可见光盲性,它的光生电流比Si探测器 高得多,信噪比及信号稳定性也比Si的强。
相关文档
最新文档