无锡市2019小升初数学综合模拟试卷(10套卷)(3-12)及答案详细解析
无锡市2019-2020小学毕业小升初数学试卷附试题详细答案( 3)

置;点C( )表示第( )组第( )
C
个位置。
A
B
( )请在右图中用D标出你现在的座位。我
的座位是第( )组第( )个。
组
一种精密零件长 毫米,画在一幅图上长 厘米,这幅图的比例尺是( )。 一个三位小数保留两位小数后得 ,这个三位小数最小是( )。
的分子加上 ,要使分数大小不变,分母应加( )。
某班男生人数比女生人数多 %,女生人数比男生少( )%。 有一箱桃子,3个3个地数余1个,4个4个地数也余 个,5个5个地数还余1 个,这箱桃子至少有( )个。 下图中有三个不同方位的同一个正方体,朝下的底面的各个数字的乘积是( )。
米重( )克(精确到百分位)。我国约有 亿人口,如果每人每天节约 粒米,全国
人口 天将节约大米( )吨,如果 千克大米可养活一个人一个月,那么每天节约的
大米可供一个人大约吃( )年。
下面是我校五年级二班学生座位图,用(a,b) 表示每位学生的座位位置。
( )点A( , )表示第 组第 个位置;
个Hale Waihona Puke 点B( , )表示第( )组第( )个位
有一串数 , , , , , , , , , , , , , , , ,… 这串数从左开始数第( )个分数是 。
二、选择。(把正确答案的序号填在括号里)( 分)
A,B,C,D四个小朋友玩套圈游戏(点O为所要套的物品),下面的站法中公平的 有( )。
A
D
O
O
B
C
ABCD
把一个长方体的长、宽、高各削去
小学毕业小升初数学试卷(3)
题号
一
二
三
四
五
六
总分
得分
一、填空。(第 小题 分, , , 小题各 分,其余每小题 分,共 分)
无锡市2019小升初数学综合模拟试卷(10套卷)(24-33)及答案详细解析

小升初数学综合模拟试卷24一、填空题:2.将1、2、3、4、5、6、8、9这八个数组成两个四位数,使这两个数的差最小,这个差是______.3.如图,将它折成一个正方体,相交于同一顶点的三个面上的数之和最大是______.4.将1至9这九个数分别填在下面九个方框中,使等式成立:5.如图,平行四边形ABCD的一边AB=8厘米,AB上的高等于3厘米,四边形EFOG的面积等于2平方厘米,则阴影部分的面积与平行四边形的面积之比是______.6.200个连续自然数的和是32300,取出其中所有的第偶数个数(第2个,第4个,……,第200个),将它们相加,则和是______.7.某人从甲地到乙地,如果每分钟走75米,迟到8分,如果每分钟走80米,迟到6分,他应以每分钟走______米的速度走才能准时到达.8.快慢两列火车的长分别是200米、300米,它们相向而行.坐在慢车上的人见快车通过此人窗口的时间是8秒,则坐在快车上的人见慢车通过此人窗口所用的时间是______秒.9.至少有一个数字是0,且能被4整除的四位数有______个.10.如图,九个小正方形内各有一个一位数,并且每行、每列及两条对角线上的三个整数的和相等,那么x=______.二、解答题:2.甲、乙、丙三人,甲每五天去李老师家,乙每四天去李老师家,丙每六天去李老师家。
三人在1997年元旦去了李老师家,下一次三人在李老师家相聚是几月几日?3.编号为1至7的7个盘子,每盘都放有玻璃球,共放有80个,其中第1号盘里放有18个,并且编号相邻的三个盘里的玻璃球数的和相等,问第6个盘中玻璃球最多可能是多少个?已知他骑车每小时行8千米,乘车每小时行16千米,则此人从家到单位的距离是多少千米?答案一、填空题:2.137要使差最小,被减数与减数应该尽量接近.被减数的千位与减数千位的差是1,它们的末三位数,被减数应该最小,是123,减数应该最大,是986,这样得到被减数是5123,减数是4986,差等于137.3.相交于同一顶点三个面上的数之和是13.6+3+4=134.73把4234分解质因数,然后进行计算和调整,有:4234=2×29×73=58×73=29×146所以最大的两位数是73.5.1∶3因为O是AC、BD的中点,所以S△AEF+S△BGE=S△AOB-S四边形EFOG=6-2=4(平方厘米)S阴影=S平ABCD-(S△AEF+S△BGE)=12-4=8(平方厘米)S阴影∶S平ABCD=8∶24=1∶36.16200连续自然数相邻两数之差是1,所以第2个数比第1个数大1,第4个数比第3个数大1,…,第200个数比第199个数大1,100个取出的数比没取出的100个数总共多100,因此所有的第偶数个数之和是(32300+100)÷2=162007.100设从甲地出发准时到达乙地需x分,则75×(x+8)=80×(x+6)80x-75x=600-480x=24甲、乙两地距离是:80×(24+6)=2400(米)从甲地准时到达乙地这人的速度是每分走:2400÷24=100(米)8.坐在慢车上的人见快车通过此人窗口时,两列火车共行了200米,用了8秒,得到两列火车的速度和是200÷8=(25米/秒),坐在快车上的人见慢车通过此人窗口时,两列火车共行了300米,所用时间是:300÷25=12(秒).9.792个一个数能被4整除的特征是末两位数能被4整除.末两位数应是00、04、08、12、16、20、…、92、96,共25个,其中含有数字0的有7个(00、 04、 08、 20、 40、 60、 80),其余 18个末两位都不含有数字0.一个四位数的末两位含有数字0,那么它的千位可以是1至9的任意一个,百位是0至9的任意一个,这个四位数的前两位数字共9×10=90个,则末两位含有数字0且能被4整除的四位数共有:90×7=630(个)如果末两位不含有数字0,那么要求四位数的百位是0,千位是1至9的任意一个,共有9个,则末两位不含数字0,前两位含有数字0,且能被4整除的四位数共有:9×18=162(个)所以至少有一个数字0,且能被4整除的四位数有 630+162=792(个).10. x=5如图所示,a+x+f=9+x+1,有a+f=10;同理d+x+c=9+x+1得d+c=10;所以 a+f+d+c=20又 a+9+d=9+x+1,得a+d=x+1;c+1+f=9+x+1,得c+f==x+9,则 a+d+c+f=2x+10.所以 2x+10=20,x=5.二、解答题:1.厂里现有工人120名所以厂里现有工人120名.2.3月1日[5,4,6]=60,60-(31+28)=1所以下一次三人在李老师家相聚是3月1日.3.第6个盘中的玻璃球最多是12个.由于相邻三个盘中的玻璃球相等,有编号为1、4、7的盘中玻璃球均相等,等于18个,于是2、3盘中的玻璃球数的和与5、6盘中的玻璃球数的和相等,所以5、6盘中玻璃球数之和是:(80-18×3)÷2=13(个)要使第6盘中的玻璃球数最多,第5盘至少是1个(每盘都有玻璃球),所以第6盘最多可能是12个.4.此人家到单位的距离是78千米.设此人家到单位的距离是s千米,他从单位回家用了t小时,则13t=12t+6t=6S=13×6=78(千米)所以此人家到单位的距离是78千米.小升初数学综合模拟试卷25一、填空题:2.三个不同的三位数相加的和是2993,那么这三个加数是______.3.小明在计算有余数的除法时,把被除数472错看成427,结果商比原来小5,但余数恰巧相同.则该题的余数是______.4.在自然数中恰有4个约数的所有两位数的个数是______.5.如图,已知每个小正方形格的面积是1平方厘米,则不规则图形的面积是______.6.现有2克、3克、6克砝码各一个,那么在天平秤上能称出______种不同重量的物体.7.有一个算式:五入的近似值,则算式□中的数依次分别是______.8.某项工作先由甲单独做45天,再由乙单独做18天可以完成,如果甲乙两人合作可30天完成。
无锡市2019小升初数学综合模拟试卷(10套卷)(4-13)及答案详细解析

小升初数学综合模拟试卷4一、填空题:1.41.2×8.1+11×9.25+537×0.19=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?答案一、填空题1.(537.5)原式=412×0.81+537×0.19+11×9.25=412×0.81+(412+125)×0.19+11×9.25=412×(0.81+0.19)+1.25×19+11×(1.25+8)=412+1.25×(19+11)+88=537.52.(5283)从*×9,尾数为7入手依次推进即可.3.(6年)爸爸比小惠大:6×5-6=24(岁),爸爸年龄是小惠的3倍,也就是比她多2倍,则一倍量为:24÷2=12(岁),12-6=6(年).4.(14厘米).2+2+5+5=14(厘米).5.(225,150)因450÷75=6,所以最大公约数为75,最小公倍数450的两整数有75×6,75×1和75×3,75×2两组,经比较后一种差较小,即225和150为所求.6.(45,15)假设60只全是鸡,脚总数为60×2=120.此时兔脚数为0,鸡脚比兔脚多120只,而实际只多30,因此差数比实际多了120-30=90(只).这因为把其中的兔换成了鸡.每把一只兔换成鸡.鸡的脚数将增加2只,兔的脚数减少4只,那么鸡脚与兔脚的差数增加了2+4=6(只),所以换成鸡的兔子有90÷6=15(只),鸡有60-15=45(只).7.(77,92)由师傅产量是徒弟产量的2倍,所以师傅产量数总是偶数.利用整数加法的奇偶性可知标明“77”的筐中的产品是徒弟制造的.利用“和倍问题”方法.徒弟加工零件是(78+94+86+77+92+80)÷(2+1)=169(只)∴169-77=92(只)8.(8分)紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,就是汽车间隔距离.当一辆汽车超过行人时,下一辆汽车要用10分才能追上步行人.即追及距离=(汽车速度-步行速度)×10.对汽车超过骑车人的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的步行速度.即10×4×步行速度÷(5×步行速度)=8(分)9.(44)10.(16)满足条件的偶数和奇数的可能很多,要求的是使两个偶数之和最小的那仍为偶数,所求的这两个偶数之和一定是8的倍数.经试验,和不能是8,二、解答题:EC,则△CDE、△ACE,△ADB的面积比就是2∶3∶5.如图.2.(5)连结AC′,AC,A′C考虑△C′D′D的面积,由已知DA=D′A,所以S△C′D′D=2S△C′AD.同理S△C′D′D=2S△ACD,S△A′B′B=2S△ABC,而S四边形ABCD=S△ACD+S△ABC,所以S△C′D′D+SS△A′B′B=2S四边形ABCD.同样可得S△A′D′A+S△B′C′C=2S四边形ABCD,所以S四边形A′B′C′D′=5S四边形ABCD.3.(14,10,35)用甲齿、乙齿、丙齿代表三个齿轮的齿数.甲乙丙三个齿轮转数比为5∶7∶2,根据齿数与转数成反比例的关系.甲齿∶乙齿=7∶5=14∶10,乙齿∶丙齿=2∶7=10∶35,所以甲齿∶乙齿∶丙齿=14∶10∶35由于14,10,35三个数互质,且齿数需是自然数,所以甲、乙、丙三个齿轮齿数最少应分别是14,10,35.4.(1)三面红色的小方块只能在立方体的角上,故共有8块.两面红色的小方块只能在立方体的棱上(除去八个角),故共有12块.一面红色的小方块只能在立方体的面内(除去靠边的那些小方格),故共有6块.(2)各面都没有颜色的小方块不可能在立方体的各面上.设大立方体被分成n3个小方块,除去位于表面上的(因而必有含红色的面)方块外,共有(n-2)3个各面均是白色的小方块.因为53=125>120,43=64<120,所以n-2=5,从而,n=7,因此,各面至少要切6刀.(3)由于一面为红色的小方块只能在表面上,且要除去边上的那些方块,设立方体被分成n3个小方块,则每一个表面含有n2个小方块,其中仅涂一面红色的小方块有(n-2)2块,6面共6×(n-2)2个仅涂一面红色的小方块.因为6×32=54>53,6×22=24<53,所以n-2=3,即n=5,故各面至少要切4刀.小升初数学综合模拟试卷5一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a 绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E 1 9 9 7B C D E A 9 9 7 1(第一次变动)C D E A B 9 7 1 9(第二次变动)D E A B C 7 1 9 9(第三次变动)……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?答案一、填空题:1.(5)500÷10÷10=52.(1+7=8,9-3=6,4×5=20)首先考虑0只能出现在乘积式中.即分析2×5,4×5,5×6,8×5几种情况.最后得以上结论.3.(56)96÷8=12=3×4,所以两个数为8×3=24,4×8=32,和为32+24=56.5.(210)梯形的总数为:BC上线段总数×BD上线段总数,即(4+3+2+1)×(6+5+4+3+2+1)=2106.(中午12点40分)3千米/小时=0.05千米/分,0.05×50=2.5千米,即每小时她走2.5千米.12÷2.5=4.8,即4小时后她走4×2.5=10千米.(12-10)÷0.05=40(分),最后不许休息,即共用4小时40分.7.(58)画图分析可得22-6=16为甲做题数,所以可得乙10道,丙16×2=32道,一共16+10+32=58(道).8.(36)长方形的宽是“一”与“二”两个正方形的边长之和.长方形的长是“一”、“二”、“三”三个正方形的边长之和.长-宽=30-22=8是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22-8×2=6,中间小正方形面积=6×6=36.9.(10∶9)10.(13)考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即10+2+1=13(只).二、解答题:1.(20)由变动规律知,A、B、C、D、E经5次变动重新出现,而1997经过4次即重新出现,故要使ABCDE1997重新出现最少需20次(即4和5的最小公倍数.)3.(15千米)4.(56个)本题可列表解.除终点,我们将车站编号列表:共需座位:14+12+10+8+6+4+2=56(个)小升初数学综合模拟试卷6一、填空题:1.1997+199.7+19.97+1.997=______.3.如图,ABCD是长方形,长(AD)为8.4厘米,宽(AB)为5厘米,ABEF是平行四边形.如果DH长4厘米,那么图中阴影部分面积是______平方厘米.4.将一个三位数的个位数字与百位数字对调位置,得到一个新的三位数.已知这两个三位数的乘积等于52605,那么,这两个三位数的和等于______.5.如果一个整数,与l,2,3这三个数,通过加、减、乘、除运算(可以添加括号)组成算式,能使结果等于24,那么这个整数就称为可用的.在4,7,9,11,17,20,22,25,31,34这十个数中,可用的数有______个.6.将八个数从左到右列成一行,从第三个数开始,每个数都恰好等于它前面两个数之和,如果第7个数和第8个数分别是81,131,那么第一个数是______.7.用1~9这九个数码可以组成362880个没有重复数字的九位数.那么,这些数的最大公约数是______.8.在下面四个算式中,最大的得数是______.9.在右边四个算式的四个方框内,分别填上加、减、乘、除四种运算符号,使得到的四个算式的答数之和尽可能大,那么,这个6□0.3=0和等于______.10.小强从甲地到乙地,每小时走9千米,他先向乙地走1分,又调头反向走3分又调头走5分,再调头走7分,依次下去,如果甲、乙两地相距600米,小强过______.分可到达乙地.二、解答题:1.水结成冰后,体积增大它的十一分之一.问:冰化成水后,体积减少它的几分之几?辆和小卡车5辆一次恰好运完这批货物.问:只用一种卡车运这批货物,小卡车要比大卡车多用几辆?4.在一个神话故事中,有一只小兔子住在一个周长为1千米的神湖旁,A、B两点把这个神湖分成两部分(如图).已知小兔子从B点出发,沿逆休息,那么就会经过特别通道AB滑到B点,从B点继续跳.它每经过一次特别通道,神湖半径就扩大一倍.现知小兔子共休息了1000次,这时,神湖周长是多少千米?答案一、填空题:1.2218.667.2.423.3.31.平行四边形ABEF的底是长方形的宽,平行四边形的高是长方形的长,因此,平行四边形面积=长方形面积=8.4×5=42(平方厘米),三角形ABH的高是HA,它的长度是8.4—4=4.4(厘米),三角形ABH面积=5×4.4÷2=11(平方厘米),阴影部分面积=(平行四边形面积)-(三角形ABH面积)=42-11=31(平方厘米).4.606.所以,105+501=606.5.9.1×2×3×4=24;7×3+(2+1)=24;9×(2+1)-3=24;11×2+3-1=24;1+2×3+17=24;20+2+3-1=24;22+3+1-2=24;(25-1)×(3-2)=24;31-2×3-1=24;但是,1,2,3,34无法组成结果是24的算式.所以,4,7,9,11,17,20,22,25,31这九个数是可用的.由这排数的排列规则知:第8个数=第6个数+第7个数,所以,第6个数=第8个数-第7个数=131-81=50.同理,第5个数=第7个数-第6个数=81-50=31,第4个数=50—31= 19,第3个数=31—19=12,第2个数=19—12=7,第1个数=12—7=5.7.9.1+2+…+9=45,因而9是这些数的公约数,又因123456789和123456798这两个数只差9,这两个数的最大公约数是9.所以9是这些数的最大公约数.现在比较三个括号中的分数的大小.注意这些分数的特点,用同分子的要使四个算式答数尽可能大,除数和减数应取较小的数,乘数和加数应取较大的数.比较(6÷0.3)+(6—0.3)和(6—0.3)+(6÷0.3)的大小知,0.3前10.24.小强每分钟走150米,向乙地方向所走的距离(从甲地算起),依次是:第1分钟走150米;又3分钟反向,5分钟向乙地,其中3分钟向乙地与3分钟反向抵消,实际这8分钟只向乙地走了150×2=300(米),即有前9分钟向乙地走了150+300=450(米);反向走7分钟,只需再向乙地走8分钟,即再走15分钟,就可走完最后150米.二、解答题:2.9辆.3.1997.4.128千米.把周长为1千米的神湖8等分,每一等分算作一段,小兔子休息一次已跳3段,休息4次已跳12段,恰好一周半,第4次休息时正好在A点,于是经过特别通道到B点,此时神湖周长变成2千米;我们再把新的神湖分成16段,现在小兔子休息到8次,共跳了24段才在A点休息,……,如此继续下去,休息到16次,32次,64次,128次,小兔子才在A点休息.参看下表:因为:4+8+16+32+64+128+256=508<10004+8+16+32+64+128+256+512>1000所以小兔子休息1000次,有7次休息恰好在A点,此时神湖周长是128千米.所以休息1000次后,神湖周长是128千米.小升初数学综合模拟试卷7一、填空题:2.将一张正方形的纸如图按竖直中线对折,再将对折纸从它的竖直中线(用虚线表示)处剪开,得到三个矩形纸片:一个大的和两个小的,则一个小矩形的周长与大矩形的周长之比为______.么回来比去时少用______小时.4.7点______分的时候,分针落后时针100度.5.在乘法3145×92653=29139□685中,积的一个数字看不清楚,其他数字都正确,这个看不清的数字是______.7.汽车上有男乘客45人,若女乘客人数减少10%,恰好与男乘客人8.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有______辆.9.甲、乙两人轮流在黑板上写不超过10的自然数,规定每人每次只能写一个数,并禁止写黑板上数的约数,最后不能写者败.若甲先写,并欲胜,则甲的写法是______.10.有6个学生都面向南站成一行,每次只能有5个学生向后转,则最少要做______次能使6个学生都面向北.二、解答题:1.图中,每个小正方形的面积均为1个面积单位,共9个面积单位,则图中阴影部分面积为多少个面积单位?2.设n是一个四位数,它的9倍恰好是其反序数(例如:123的反序数是321),则n 是多少?3.自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;(2)数127应排在上起第几行,左起第几列?4.任意k个自然数,从中是否能找出若干个数(也可以是一个,也可以是多个),使得找出的这些数之和可以被k整除?说明理由.答案一、填空题:1.(1)2.(5∶6)周长的比为5∶6.4.(20)5.(3)根据弃九法计算.3145的弃九数是4,92653的弃九数是7,积的弃九数是1,29139□685,已知8个数的弃九数是7,要使积的弃九数为1,空格内应填3.6.(1/3)7.(30)8.(10)设24辆全是汽车,其轮子数是24×4=96(个),但实际相差96-86=10(个),故(4×24-86)÷(4-3)=10(辆).9.甲先把(4,5),(7,9),(8,10)分组,先写出6,则乙只能写4,5,7,8,9,10中一个,乙写任何组中一个,甲则写另一个.10.(6次)由6个学生向后转的总次数能被每次向后转的总次数整除,可知,6个学生向后转的总次数是5和6的公倍数,即30,60,90,…据题意要求6个学生向后转的总次数是30次,所以至少要做30÷5=6(次).二、解答题:1.(4)由图可知空白部分的面积是规则的,左下角与右上角两空白部分面积和为3个单位,右下为2个单位面积,故阴影:9-3-2=4.2.(1089)9以后,没有向千位进位,从而可知b=0或1,经检验,当b=0时c=8,满足等式;当b=1时,算式无法成立.故所求四位数为1089.3.本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n个数是(n-1)2+1,②第n 行中,以第一个数至第n个数依次递减1;④从第2列起该列中从第一个数至第n个数依次递增1.由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置.4.可以先从两个自然数入手,有偶数,可被2整除,结论成立;当其中无偶数,奇数之和是偶数可被2整除.再推到3个自然数,当其中有3的倍数,选这个数即可;当无3的倍数,若这3个数被3除的余数相等,那么这3个数之和可被3整除,若余数不同,取余1和余2的各一个数和能被3整除,类似断定5个,6个,…,整数成立.利用结论与若干个数之和有关,构造k个和.设k个数是a1,a2,…,ak,考虑,b1,b2,b3,…bk其中b1=a1,b 2=a1+a2,…,bk=a1+a2+a3+…+ak,考虑b1,b2,…,bk被k除后各自的余数,共有b;能被k整除,问题解决.若任一个数被k除余数都不是0,那么至多有余1,2,…,余k-1,所以至少有两个数,它们被k除后余数相同.这时它们的差被k整除,即a1,a2…,ak中存在若干数,它们的和被k整除.小升初数学综合模拟试卷8一、填空题:2.在下列的数字上加上循环点,使不等式能够变正确:0.9195<0.9195<0.9195<0.9195<0.91953.如图,O为△A1A6A12的边A1A12上的一点,分别连结OA2,OA3,…,OA11,图中共有______个三角形.4.今年小宇15岁,小亮12岁,______年前,小宇和小亮的年龄和是15.5.在前三场击球游戏中,王新同学得分分别为139,143,144,为使前4场的平均得分为145,第四场她应得______分.6.有这样的自然数:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是______.7.如图,半圆S1的面积是14.13cm2圆S2的面积是19.625cm2那么长方形(阴影部分)的面积是______cm2.8.直角三角形ABC的三边分别为AC=3,AB=1.8,BC=2.4,ED垂直于AC,且ED=1,正方形的BFEG 边长是______.9.有两个容器,一个容器中的水是另一个容器中水的2倍,如果从每个容器中都倒出8升水,那么一个容器中的水是另一个容器中水的3倍.有较少水的容器原有水______升.10.100名学生要到离校33千米处的少年宫活动.只有一辆能载25人的汽车,为了使全体学生尽快地到达目的地,他们决定采取步行与乘车相结合的办法.已知学生步行速度为每小时5千米,汽车速度为每小时55千米.要保证全体学生都尽快到达目的地,所需时间是______(上、下车所用的时间不计).二、解答题:1.一个四边形的广场,它的四边长分别是60米,72米,96米,84米.现在要在四边上植树,如果四边上每两树的间隔距离都相等,那么至少要种多少棵树?2.一列火车通过一条长1140米的桥梁(车头上桥直至车尾离开桥)用了50秒,火车穿越长1980米的隧道用了80秒,问这列火车的车速和车身长?3.能否把1,1,2,2,3,3,…,50,50这100个数排成一行,使得两个1之间夹着这100个数中的一个数,两个2之间夹着这100个数中的两个数,……两个50之间夹着这100个数中的50个数?并证明你的结论.4.两辆汽车运送每包价值相同的货物通过收税处.押送人没有带足够的税款,就用部分货物充当税款.第一辆车载货120包,交出了10包货物另加240元作为税金;第二辆车载货40包,交给收税处5包货,收到退还款80元,这样也正好付清税金.问每包货物销售价是多少元?答案一、填空题:3.(37)将△A1A6A12分解成以OA6为公共边的两个三角形.△OA1A6共有(5+4+3+2+1=)15个三角形,△OA6A12共有(6+5+4+3+2+1=)21个,所以图中共有(15+21+1=)37个三角形.4.(6年)今年年龄和15+12=27岁,比15岁多27-15=12,两人一年增长的年龄和是2岁,故12÷2=6年.5.(154)145×4-(139+143+144)=154.6.(421)这个数比2,3,4,5,6,7的最小公倍数大1,又2,3,4,5,6,7的最小公倍数为420,所以这个数为421.7.(5)由图示阴影部分的长是圆S2的直径,宽是半圆S1的直径与圆S2的直径9.(16升)由甲容器中的水是乙容器的2倍和它们均倒出8升水后变成3倍关系,设原甲容器中的水量为4份,则因2容器中的水量为2份,按题意画图如下:故较少容器原有水量8×2=16(升).把100名学生分成四组,每组25人.只有每组队员乘车和步行的时间都分别相等,他们才能同时到达目的地,用的时间才最少.如图,设AB=x千米,在第二组队员走完AB的同时,汽车走了由A到E,又由E返回B的路程,这一段路程为11x千米(因为汽车与步行速度比为55∶二、解答题:1.(26棵)要使四边上每两棵树间隔距离都相等,这个间隔距离必须能整除每一边长.要种的树尽可能少(间隔距离尽可能大),就应先求出四边长的最大公约数.60,72,96,84四数的最大公约数是12,种的棵数:(60+72+96+84)÷12=262.(28米/秒,260米)(1980-1140)÷(80-50)=28(米/秒)28×50-1140=260(米)3.不可能.反证法,假设存在某种排列,满足条件.我们把这100个数从左向右按1,2,3,…,99,100编号,则任何两个相等的偶数之间要插入偶数个数,则这两个偶数的序号的奇偶性是不同的;而任何两个相等的奇数之间要插入奇数个数,则这两个奇数的序号的奇偶性相同.由此,这100个数中有25对偶数(每对是两个相等的偶数),它们占去25个奇序号和25个偶序号;另外25对相等的奇数,它们中奇序号的个数一定是偶数.而在100个数中奇序号和偶序号各有50个,所以这25对相等的奇数中,奇序号个数只能是25个(因为25对偶数已占去了奇序号).25是奇数,由于奇数≠偶数,所以无法实现.4.(106元)(元).小升初数学综合模拟试卷9一、填空题:1.在下面的四个算式中,最大的得数是______:(1)1994×1999+1999,(2)1995×1998+1998,(3)1996×1997+1997,(4)1997×1996+1996.2.今有1000千克苹果,刚入库时测得含水量为96%;一个月后,测得含水量为95%,则这批苹果的总重量损失了______.3.填写下面的等式:4.任意调换五位数54321的各个数位上的数字位置,所得的五位数中的质数共有______.5.下面式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为______.6.如图,每个小方格的面积是1cm2,那么△ABC的面积是______cm2.7.如图,A1,A2,A3,A4是线段AA5上的分点,则图中以A,A1,A2,A3,A4,A5这六个点为端点的线段共有______条.8.10点15分时,时针和分针的夹角是______.9.一房间中有红、黄、蓝三种灯,当房间中所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红黄灯都亮;第三次拉开关,红黄蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r·p(其中p为正奇数,r为正整数),就拉p次,当100人都走过房间后,房间中灯的情况为______.10.老师带99名同学种树100棵,老师先种一棵,然后对同学们说:“男生每人种两棵,女生每两人合种一棵。
无锡市2019小升初数学综合模拟试卷(10套卷)(2-11)及答案详细解析

小升初数学综合模拟试卷2一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+…+170)-(41+42+…+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.9.在下面16个6之间添上+、-、×、÷(),使下面的算式成立:6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6=1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?答案一、填空题:1.(1/5)2.(44)[1×(1+20%)×(1+20%)-1]÷1×100%=44%3.(偶数)在121+122+…+170中共有奇数(170+1-121)÷2=25(个),所以121+122+…+170是25个奇数之和再加上一些偶数,其和为奇数,同理可求出在41+42+…+98中共有奇数29个,其和为奇数,所以奇数减奇数,其差为偶数.4.(27)(40+7×2)÷2=27(斤)5.(19)淘汰赛每赛一场就要淘汰运动员一名,而且只能淘汰一名.即淘汰掉多少名运动员就恰好进行了多少场比赛.即20名运动员要赛19场.6.(301246)设这六位数是301240+a(a是个一位数),则301240+a=27385×11+(5+a),这个数能被11整除,易知a=6.7.(20)每个小圆的半径未知,但所有小圆直径加起来正好是大圆的直径。
2019年无锡市小升初数学模拟试题(共4套)详细答案3

2019年无锡市小升初数学模拟试题(共4套)详细答案3小升初数学试卷一、填空(每空1分,20分)1、三千六百万八千三百写作________,这个数四舍五入万位约是________万.2、分母是6的最大真分数是________,它的分数单位是________.3、把2:1.75化成最简整数比是________,这个比的比值是________.4、打完一份稿件,甲需要4小时,乙需要6小时,甲、乙二人所用时间的整数比是________,工作效率的最简整数比是________.5、在0.6、、66%和0.67这四个数中,最大的数是________,最小的数是________.6、把一个高是4分米的圆柱体沿着底面直径垂直锯开,平均分成两块,它们的表面积比原来增加了12平方分米,圆柱的底面直径是________.7、4.8181…用循环小数简便写法记作________,保留两位小数约是________.8、一个三角形三个内角度数的比是4:3:2,这个三角形是________三角形,最小的内角是________度.9、1 的分数单位是________,再添上________个这样的分数单位就变成最小的质数.10、12、36和54的最大公约数是________,最小公倍数是________.二、判断.(每题1分,5分)11、植树节,我校植树102棵,全部成活,成活率为102%.________(判断对错)12、甲数比乙数多25%,那么乙数比甲数少.________(判断对错)13、所有的质数都是奇数.________(判断对错)14、如果= 那么x与y中成反比例.________(判断对错)15、2克盐放入100克水中,含盐率为2%.________(判断对错)三、选择正确答案的序号,填在括号内(每题1分,5分)16、把36分解质因数是()A、36=4×9B、36=2×2×3×3C、36=1×2×2×3×317、有无数条对称轴的图形是()A、等边三角形B、正方形C、圆D、不确定18、两个不同质数相乘的积一定是()A、偶数B、质数C、合数19、大卫今年a岁,小顺今年(a﹣3)岁,再过5年他们相差的岁数是()A、aB、3C、a﹣320、一个半圆的半径是r,它的周长是()A、πrB、πr+rC、πr+2r四、计算+ =________ × =________+0.375=________ =________3x+4=5.8x:=60:5.23、计算(能简算的数简算)① × + ×②(+ )×16③ ÷(2﹣÷ )④[2+(54﹣24)× ]× .24、列式计算(1)某数除以7的商比7大7,求某数.(方程解)(2)3减去2除以6的商,再加上结果是多少?25、求阴影部分的面积.(单位:厘米)五、应用题.26、造纸厂去年计划造纸1600吨,实际造纸1800吨,实际超产百分之几?27、小明读一本课外书,前6天每天读25页,以后每天多读15页,又经过4天正好读完,这本课外书有多少页?28、一个长方形操场,周长是180m,长与宽的比是5:4,这个操场的面积是多少平方米?29、化工车间有男工人56名,女工人42名,这个车间的工人总数正好是全厂工人总数的,全厂共有多少名工人?30、一个正方体的原材料,它的棱长是10厘米.现要截成一个体积最大的圆柱体零件,那么,截去部分的体积是多少立方厘米?六、推理.31、甲、乙、丙、丁四位同学进行国际象棋比赛,并决出一、二、三、四名.已知:①甲比乙的名次靠前.②丙、丁都爱踢足球.③第一、三名在这次比赛时才认识.④第二名不会骑自行车,也不爱踢足球.⑤乙、丁每天一起骑自行车上学.请你判断出各自的名次.答案解析部分一、<b >填空(每空1</b><b >分,20</b><b>分)</b>1、【答案】3600 8300;3601【考点】整数的读法和写法,整数的改写和近似数【解析】【解答】解:三千六百万八千三百写作:3600 8300;3600 8300≈3601万.故答案为:3600 8300,3601.【分析】根据整数的写法,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0,即可写出此数;省略“万”后面的尾数求它的近似数,要把万位的下一位千位上的数进行四舍五入,再在数的后面带上“万”字.2、【答案】;【考点】分数的意义、读写及分类【解析】【解答】解:分母是6的最大真分数是,它的分数单位是.故答案为:,.【分析】分子小于分母的分数是真分数,一个分数的分母是几,它的分数单位就是几分之一.3、【答案】8:7①【考点】求比值和化简比【解析】【解答】解:(1)2:1.75=(2×4):(1.75×4)=8:7;(2)2:1.75=2÷1.75= ;故答案为:8:7;.【分析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.4、【答案】2:3;3:2【考点】简单的工程问题【解析】【解答】解:(1)4:6=2:3答:甲、乙二人所用时间的整数比是2:3.(2):=3:2答:工作效率的最简整数比是3:2故答案为:2:3,3:2.【分析】(1)依据求两个数的比的方法即可解答,(2)把这份稿件字数看作单位“1”,先表示出两人是工作效率,再根据求两个数的比的方法,以及比的基本性质即可解答.5、【答案】0.67;0.6【考点】小数大小的比较,小数、分数和百分数之间的关系及其转化【解析】【解答】解:=0.6,66%=0.66;0.6<0.66<0.67,所以最大数为0.67,最小数为0.6.故答案为:0.67;0.6.【分析】先把分数、百分数化成小数,再进行比较,进一步还原为原数,即可解决问题.6、【答案】1.5分米【考点】简单的立方体切拼问题,圆柱的侧面积、表面积和体积【解析】【解答】解:12÷2÷4=1.5(分米),答:圆柱的底面直径是1.5分米.故答案为:1.5分米.【分析】“圆柱体沿着底面直径垂直锯开,平均分成两块”则表面积比原来增加了两个以圆柱的底面直径和高为边长的长方形的面积,已知高是4分米,利用长方形的面积公式可以求出圆柱的底面直径.7、【答案】4. ;4.82【考点】小数的读写、意义及分类,近似数及其求法【解析】【解答】解:4.8181…用循环小数简便写法记作4. ,保留两位小数约是4.82;故答案为:4. ,4.82.【分析】4.8181…是循环小数,循环节是81,简记法:在循环节的首位和末位的上面各记一个小圆点;将此数保留两位小数,就是精确到百分位,看千分位上的数是否满5,再运用“四舍五入”的方法求出近似数即可.8、【答案】锐角;40【考点】按比例分配应用题,三角形的内角和【解析】【解答】解:2+3+4=9,最大的角是:180°×=80°所以这个三角形三个内角度数都小于90度,此三角形是锐角三角形;最小的角是:180°× =40°,故答案为:锐角,40°.【分析】三角形的内角和为180°,进一步直接利用按比例分配求得份数最大和最小的角即可得出结论.9、【答案】;2【考点】分数的意义、读写及分类,合数与质数【解析】【解答】解:的分数单位是.2﹣= ,再添上2个这样的分数单位就变成最小的质数.故答案为:;2.【分析】(1)一个分数的分数单位看分母,分母是几,分数单位就是几分之一,分子是几,它就含有几个这样的单位.(2)最小的质数是2,用2减去原分数的结果,再看有几个分数单位即可解答.10、【答案】6;108【考点】求几个数的最大公因数的方法,求几个数的最小公倍数的方法【解析】【解答】解:12=2×2×336=2×2×3×354=2×3×3×3最大公约数是2×3=6,最小公倍数是2×2×3×3×3=108.故答案为:6,108.【分析】求最大公约数也就是这几个数的公有质因数的连乘积,最小公倍数是共有质因数与独有质因数的连乘积,对于三个数来说:三个数的公有质因数连乘积是最大公约数,三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可.二、<b >判断.(每题1</b><b >分,5</b><b>分)</b>11、【答案】错误【考点】百分率应用题【解析】【解答】解:102÷102×100%=100%答:成活率是100%.故答案为:错误.【分析】成活率是指成活的棵数占总棵数的百分比,计算方法是:成活的棵数÷植树总棵数×100%=成活率,代入数据求解即可.12、【答案】错误【考点】百分数的加减乘除运算【解析】【解答】解:25%÷(1+25%)=25%÷125%=答:乙数比甲数少.故答案为:错误.【分析】根据“甲数比乙数多25%,”知道是把乙数看作单位“1”,即甲数是乙数的(1+25%),然后用25%除以甲数即得乙数比甲数少几分之几,即可求解.13、【答案】错误【考点】奇数与偶数的初步认识,合数与质数【解析】【解答】解:根据质数和奇数的定义,2是质数,但不是奇数,“所有的质数都是奇数”的说法是错误的.故答案为:错误.【分析】只有1和它本身两个因数的自然数为质数.不能被2整除的数为奇数,也就是说,奇数除了没有因数2外,可以有其它因数.14、【答案】错误【考点】辨识成正比例的量与成反比例的量【解析】【解答】解:如果= ,则x:y== ,是比值一定,所以,如果= ,那么x与y成正比例.故答案为:错误.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.15、【答案】错误【考点】百分率应用题【解析】【解答】解:×100%≈0.0196×100%=1.96%答:盐水的含盐率约是1.96%.故答案为:错误.【分析】含盐率,即盐水中盐的重量占盐水重量的百分之几,计算公式为:×100%,由此解答即可.三、<b >选择正确答案的序号,填在括号内(每题1</b><b>分,5</b><b>分)</b>16、【答案】B【考点】合数分解质因数【解析】【解答】解:A,36=4×9,4和9都是合数,所以不正确;B,36=2×2×3×3;符合要求,所以正确;C,36=1×2×2×3×3,其中1既不是质数,也不是合数,所以不正确;故选B.【分析】分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.17、【答案】C【考点】确定轴对称图形的对称轴条数及位置【解析】【解答】解:等边三角形有3条对称轴,正方形有4条对称轴,圆有无数条对称轴,故选:C.【分析】根据图形的性质结合轴对称的定义即可作出判断.18、【答案】C【考点】奇数与偶数的初步认识,合数与质数【解析】【解答】解:两个不同的质数的乘积除了1和它们本身外,还有这两个不同的质数的积,所以它是合数.故选:C.【分析】根据质数与合数的意义,质数只有1和它本身两个因数,合数除了1和它本身还有别的因数.两个不同的质数的乘积除了1和它们本身外,还有这两个不同的质数的积,所以它是合数.19、【答案】B【考点】年龄问题【解析】【解答】解:(a+5)﹣(a﹣3+5),=a﹣a+5﹣5+3,=3(岁).故选:B.【分析】据题意可知,大卫比小顺大:a﹣(a﹣3)=3岁,再过再过5年他们同时增长了5岁,所以再过5年他们相差的岁数是仍是3岁.20、【答案】C【考点】圆、圆环的周长【解析】【解答】解:已知半径是r,所在圆的周长=2πr,半圆面的周长:2πr÷2+2r=πr+2r,故选:C.【分析】根据圆的周长公式C=2πr,先求出圆周长的一半,再加直径,就是半圆的周长.四、<b >计算</b>21、【答案】4.97;12;210;;;0.1;0.5;8;14【考点】分数的加法和减法,小数乘法,小数除法【解析】【分析】根据小数和分数加减乘除法的计算方法进行计算.15﹣﹣根据减法的性质进行简算.22、【答案】解:①3x+4=5.83x+4﹣4=5.8﹣43x=1.8x=0.6②x:=60:55x= ×605x=405x÷5=40÷5x=8【考点】方程的解和解方程,解比例【解析】【分析】①依据等式的性质,方程两边同时减去4,再同时除以3即可求解.②根据比例的性质两个内项之积等于两个外项之积进行化简方程,再依据等式的性质,方程两边同时除以5即可.23、【答案】解:① × + ×= += ;②(+ )×16= ×16+ ×16=2.5+2=4.5;③ ÷(2﹣÷ )= ÷(2﹣1)= ÷1= ;④[2+(54﹣24)× ]×=[2+30× ]×=[2+20]×=22×=10.【考点】整数、分数、小数、百分数四则混合运算【解析】【分析】①先算乘法,再算加法;②运用乘法的分配律进行简算;③先算小括号里的除法,再算减法,最后算括号外的除法;④先算小括号里的减法,再算中括号里的乘法,然后算中括号里的加法,最后算括号外的乘法.24、【答案】(1)解:设某数是x,x÷7﹣7=7x÷7﹣7+7=7+7x÷7=14x÷7×7=14×7x=98答:这个数是98.(2)(3﹣2÷6)+=3﹣+=+=【考点】方程的解和解方程【解析】【分析】(1)设某数是x,根据题意可得x÷7﹣7=7,然后解方程即可求解;(2)2除以6的商为2÷6,3减去2除以6的商的差为3﹣2÷6,则它们的差再加上计算25、【答案】解:①3.14×(12÷2)2÷2,=3.14×36÷2,=56.52(平方厘米),答:阴影部分的面积是56.52平方厘米.②3×2﹣3.14×(2÷2)2,=6﹣3.14,=2.86(平方厘米),答:阴影部分的面积是2.86平方厘米.【考点】组合图形的面积【解析】【分析】(1)阴影部分的面积等于直径12厘米的半圆面积与底12厘米,高6厘米的三角形的面积之差,据此即可解答;(2)阴影部分的面积等于长宽分别是3厘米、2厘米的长方形的面积与半径2厘米的圆的面积之差,据此即可解答.五、<b >应用题.</b>26、【答案】解:(1800﹣1600)÷1600=200÷1600,=12.5%.答:实际超产12.5%【考点】百分数的实际应用【解析】【分析】计划造纸1600吨,实际造纸1800吨,则实际比计划多造纸1800﹣1600吨,根据分数除法的意义,用超产的部分除以计划产量即得超产百分之几.27、【答案】解:25×6+(25+15)×4=150+40×4=150+160=310(页)答:这本书共有310页【考点】整数四则混合运算【解析】【分析】前6天每天读25页,根据乘法的意义,前6天读了25×6页,又以后每天多读15页,则以后每天读25+15页,又读了4天读完,则后四天读了(25+15)×4页,根据加法的意义,将前6天与后4天读的页数相加,即得这本书共有多少页.28、【答案】解:180÷2=90(米)90×=50(米)90×=40(米)50×40=2000(平方米)答:这个操场的面积是2000平方米【考点】按比例分配应用题,长方形、正方形的面积【解析】【分析】已知长方形操场的周长是180m,那么长和宽的和为180÷2=90(米),根据长与宽的比是5:4,求出长和宽,根据长方形面积公式,求出面积即可.29、【答案】解:(56+42)=98× ,=343(人);答:全厂共有343人【考点】分数除法应用题【解析】【分析】化工车间有男工人56名,女工人42名,则共有工人56+42人,由于这个车间的工人总数正好是全厂工人总数的,根据分数除法的意义可知,全厂共有(56+42)÷人.30、【答案】解:103﹣3.14×()2×10=1000﹣3.14×25×10=1000﹣785=215(立方厘米)答:截去部分的体积是215立方厘米【考点】圆柱的侧面积、表面积和体积【解析】【分析】这个圆柱与的底面直径和高都等于这个正方体的棱长时,体积最大,用这个正方体的体积减去圆柱的体积就是截取部分的体积.根据圆柱的体积计算公式“V=πr2h”及正方体的体积计算公式“V=a3”即可分别求出圆柱、正方体的体积.六、<b >推理.</b>31、【答案】解:因为丙、丁都爱踢足球,乙、丁每天一起骑自行车上学,第二名不会骑自行车,也不爱踢足球,所以甲是第二名;根据第一、三名在这次比赛时才认识.且甲是第二名,而丁和丙乙都很熟,所以一三名只能是丙和乙,再根据第一条可知乙是第三,则丙是第一,那么剩下的丁是第四;答:甲第二,乙第三,丙第一,丁第四【考点】逻辑推理【解析】【分析】根据①甲比乙的名次靠前,那么甲只能是第一,二,三名中的一个;根据②丙、丁都爱踢足球,⑤乙、丁每天一起骑自行车上学,④第二名不会骑自行车,也不爱踢足球,所以甲是第二名;根据③第一、三名在这次比赛时才认识.且甲是第二名,而丁和丙乙都很熟,所以一三名只能是丙和乙,再根据第一条可知乙是第三,则丙是第一,那么剩下的丁是第四;据此解答即可.小升初数学试卷一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。
2019年小升初数学考试模拟卷10(含解析) 新 版人教 版

2019年小升初数学考试模拟卷一、填空题1.我国森林面积的公顷数是由2个亿、3个千万、7个十万、和2个万组成的,我国的森林面积有________公顷,改写成以“亿公顷”为单位的数是________亿公顷。
2.________ =________:64=3 4=________折=________%=________(填小数)3.小时=________时________分 1m350dm3=________dm34.右图中,空白部分与阴影部分的最简整数比是________。
5.淘气玩摸球游戏,每次摸一个球,一共摸了30次。
其中白球摸到24次,黑球摸到6次。
由此推测,袋子中可能________球多,摸第31次时,摸到________球的可能性更大。
6.一个果园今年春天种了2000棵桔树,成活1960棵,成活率是________;照这样计算,如要成活2450棵,需要种________棵。
7.张老师去商店买足球和排球各3个。
已知每个足球a元,比排球贵x元,请你用含有字母的式子表示买3个排球的钱________;3(2a-x)表示________。
8.右图:它是由若干个小正方体搭成,数一数它共有________个这样的小正方体;若从左边看,它的形状是________。
(画一画)9.从1、3、4、5四张牌中,任意摸出两张,积是质数的可能性是________;积是5的倍数的可能性是________。
10.一个长方体它的所有棱长之和为4.8m,它的长、宽、高的比是3:2:1。
现在把这个长方体截成两个小长方体,表面积最多可增加________m2。
二、判断题11.0.654÷0.25商的最高位是百分位。
()12.一个长8cm,宽5cm的长方形,拉成平行四边形后.它的形状变了,面积不变。
()13.医生要记录一位发烧病人体温变化情况.选择折线统计图比较合适。
()14.如x的50%等于y的,那么x<y。
2019年无锡市小升初数学模拟试题(共7套)详细答案3
2019年无锡市小升初数学模拟试题(共7套)详细答案3小升初数学综合模拟试卷一、填空题:1.1997+1996-1995—1994+1993+1992—1991—1990+…+9+8—7—6+5+4—3—2+1=______.3.在图中的七个圆圈内各填一个数,要求每一条直线上的三个数中,当中的数是两边两个数的平均数,现在已经填好两个数,那么,x=______4.把1、2、3、4、5填入下面算式的方格内,使得运算结果最大:□+□-□×□÷□那么这个最大结果是_______.5.设上题答数为a,a的个位数字为b,2×b的个位数字为c.如图,积的比是______.6.要把A、B、C、D四本书放到书架上,但是,A不能放在第一层,B不能放在第二层,C不能放在第三层,D不能放在第四层,那么,不同的放法共有______种.7.从一张长2109毫米,宽627毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形,按照上面的过程,不断地重复,最后剪得的正方形的边长是______毫米.8.龟兔赛跑,全程5.4千米.兔子每小时跑25千米,乌龟每小时跑4千米,乌龟不停地跑,但兔子却边跑边玩,它先跑1分,然后玩15分,又跑2分,玩15分.再跑3分,玩15分,……,那么先到达终点的比后到达终点的快______分.9.从1,2,3,4,5中选出四个数,填入图中的方格内,使得右边的数比左边的数大,下面的数比上面的数大,那么,共有______种填法.比女生少人.二、解答题:1.小明从甲地到乙地,去时每小时走5千米,回来时每小时走7千米,来回共用4小时,小明去时用了多长时间?2.有一个长方体,它的正面和上面的面积之和是119,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?3.在400米环形跑道上,A、B两点相距100米(如图),甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么,甲追上乙需要多少秒?4.五年级三班有26个男生,某次考试全班有30人超过85分,那么女生中超过85分的比男生中未超过85分的多几人?答案,仅供参考。
小升初数学模拟试卷及答案解析-分班冲刺强化训练试题(10套)
2019年小升初数学模拟试卷(一)一、填空题(每题5分,共60分) 1.6.3÷2.2=( )。
2.3.6×27+1819×47+419×17=( )。
3.=⨯+⋯⋯+⨯+⨯+⨯2002200114313212111( )。
4.已知a +324=a ×324,那么a =( )。
5.把三个完全相等的正方体拼成一个长方体,这个长方体的表面积是350平方厘米,每个正方体的表面积是( )平方厘米。
6.某市奥林匹克学校进行速算比赛,共出了1000道题,甲每分可算出30道题,乙每算出50道题比甲算同样多的题少用3秒,乙做完1000题,甲还有( )题没有做出。
7.有一个分数约成最简分数是511,约分前分子分母的和等于48,约分前的分数是( )。
8.甲、乙两人加工同一种零件,甲加工的零件个数比乙少20%,乙加工的时间比甲少16,乙的工作效率是甲的( )%。
9.10000千克葡萄在新疆测得含水量是99%,运抵太原后测得含水量为98%,问葡萄运抵太原后还剩( )千克。
(途中损失不计)10.有两根长短粗细不同的蚊香,短的一根可燃8小时,长的一根可燃的时间是短的12,同时点燃两根蚊香,经过3小时,它们的长短正好相等,未点燃之前,短蚊香比长蚊香短( )。
11.如图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是( )厘米。
(保留两位小数)12.一个直圆锥的体积是120立方厘米,将圆锥体沿高的1处横截成圆台,将这个圆台放入圆3柱形纸盒,纸盒的容积至少是()立方厘米。
二、应用题(写出主要的解答过程或推理过程,每题10分,共60分)1.小明看一本故事书,第一天看了20页,第二天看了余下的2,这时,未看的与已看的页数5相等,这本书共有多少页?(至少用3种方法)2.修一条公路,将总任务按5:6的比例分配给甲、乙两个工程队,甲队先修了630米,完成了分配任务的70%,后来甲队调走,余下的任务由乙队修完,乙队一共修了多少米?打了14个包还多35 3.有一批书要打包后邮寄,要求每包内所装书的册数相同,用这批书的712本,余下的书连同第一次多的零头刚好又打了11包,这批书共有多少本?1少10千克,4.水果商店运来桔子、苹果和梨共410千克,其中桔子是梨的2倍,梨比苹果的2三种水果各多少千克?5.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有310的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。
无锡市2019小升初数学综合模拟试卷(10套卷)(54-63)及答案详细解析
小升初数学试卷54一、用心思考,正确填写.(每空1分,共23分)1、气温从﹣3℃上升到10℃,温度上升了________℃.2、九亿九千零五万四千写作________,把这个数改写成用“万”作单位是________,省略亿位后面的尾数约是________.3、 21:________=________÷20=________=________%=七折.4、 3 的分数单位是________,去掉________个这样的单位后等于最小的质数.5、 3时15分=________时480平方米=________公顷.比例②照这样的速度,行1800千米需要________小时.7、已知数a和15是互质数,它们的最大公约数是________,最小公倍数是________.8、用小棒按照如下的方式摆图形,摆一个六边形需要6根小棒,摆4个需要________根小棒,摆n个需要________根小棒.9、如图,把三角形ABC的边BC延长到点D.已知∠2=41°,∠4=79°,那么∠1=________°.10、客车和货车分别从A、B两地同时相对开出,当客车行了全程的时,货车行了48千米;当客车到达B地时,货车行了全程的.A、B两地相距________千米.二、选择题(共5小题,每小题1分,满分5分)11、一袋上好佳薯片的外包装上写着50g±2g,这袋薯片最多或最少重()g.A、50,48C、52,48D、49,5212、两个大小不同的圆.如果这两个圆的半径都增加3厘米,那么,它们周长增加的部分相比()A、大圆增加的多B、小圆增加的多C、增加的同样多D、无法比较13、一个圆锥和一个圆柱体积和底面积都相等,圆锥的高是9cm,圆柱的高是()A、3cmB、9cmC、18cmD、27cm14、下面4个算式中,结果一定等于的是()(其中□=2△,△≠0)A、(□+□)÷△B、□×(△﹣△)C、△÷(□+□)D、□×(△+△)15、下列说法正确的是()A、一条射线长30米B、8个球队淘汰赛,至少要经过7场比赛才能赛出冠军C、一个三角形三条边分别为3cm、9cm、5cmD、所有的偶数都是合数三、一丝不苟,巧妙计算.(共26分)6÷+ )﹣+ =________45×(+ ﹣)1 ÷(+2.5×)(3.75+4+2.35)×9.9[ ﹣(﹣)]÷.18、求未知数x.x﹣=x+ x=x:2.1=0.4:0.9.四、解答题(共1小题,满分16分)19、动手操作,实践应用.(1)用数对表示A、B、C的位置,A________,B________,C________.(2)以AB为直径,画一个经过C点的半圆.(3)把半圆绕B点按逆时针旋转90°,画出旋转后的图形.(4)画出图中平行四边形向右平移5格后的图形.(5)画出图中小旗按2:1放大后的图形.(6)小明家在学校南偏西________°方向________米处.(7)书店在学校的北偏东30°方向300米处,请在右下图中表示出书店的位置.五、活用知识,解决问题.(每小题6分,共30分)20、某品牌的运动装搞促销活动,在中心商城按“满100元减40元”的方式销售,在丹尼斯商城打六折销售.妈妈准备给小美买一套标价320元的这种品牌运动装.在中心商城、丹尼斯商城两个商城买,各应付多少钱?你认为在哪个商城买合算?21、一列快车和一列慢车同时分别从相距630千米的两地相对开出,4.5小时相遇,快车每小时行78千米,慢车每小时行多少千米?22、一个圆柱形铁皮水桶,底面直径4分米,高5分米.(1)做这个水桶至少需要多少平方分米的铁皮?(2)这个水桶里最多能盛水多少升?(铁皮的厚度忽略不计)23、绿化队用三周完成了一条路的绿化任务.第一周绿化了这条路的20%,第二周绿化了400米,第二周与第三周绿化的长度比是5:6.这条路长多少米?24、某校为研究学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图),请你根据图中提供的信息解答下列问题:①这次调研,一共调查了________ 人.②有阅读兴趣的学生占被调查学生总数________ %.③有“其它”爱好的学生共________ 人?④补全折线统计图________ .答案解析部分一、<b >用心思考,正确填写.(每空1</b><b>分,共23</b><b>分)</b>1、【答案】13【考点】正、负数的运算【解析】【解答】解:根据题意得:10﹣(﹣3)=13(℃),故答案为:13℃.【分析】根据题意可得:现在的温度﹣原来的气温=上升的气温.2、【答案】990054000;99005.4万;10亿【考点】整数的读法和写法,整数的改写和近似数【解析】【解答】解:九亿九千零五万四千写作:9 9005 4000;9 9005 4000=9 9005.4万;9 9005 4000≈10亿.故答案为:9 9005 4000,10亿.【分析】根据整数的写法,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0,即可写出此数;改写成用“万”作单位的数,就是在万位数的右下角点上小数点,然后把小数末尾的0去掉,再在数的后面写上“万”字;省略“亿”后面的尾数就是四舍五入到亿位,就是把亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字.3、【答案】30①14②③70【考点】比与分数、除法的关系【解析】【解答】解:21:30=14÷20==70%=七折.故答案为:30,14,,70.【分析】根据折扣的意义七折就是70%;把70%化成分数并化简是;根据比与分数的关系=7:10,再根据比的基本性质比的前、后项都乘3就是21:30;根据分数与除法的有关系=7÷10,再根据商不变的性质被除数、除数都乘2就是14÷20.4、【答案】;7【考点】分数的意义、读写及分类,合数与质数【解析】【解答】解:的分数单位是;﹣2=,里面含有7个,即再去掉 7个这样的单位后等于最小的质数.故答案为:、7.【分析】将单位“1”平均分成若干份,表示其中这样一份的数为分数单位.由此可知,的分数单位是;最小的质数是2,﹣2=,里面含有7个,即再去掉 7个这样的单位后等于最小的质数.5、【答案】3.25;0.048【考点】时、分、秒及其关系、单位换算与计算,面积单位间的进率及单位换算【解析】【解答】解:3时15分=3.25时480平方米=0.048公顷;故答案为:3.25,0.048.【分析】把3小时15分换算为小时,先把15分换算为小时数,用15除以进率60,然后加上3;把480平方米换算为公顷,用480除以进率10000.6、【答案】正;4【考点】正比例和反比例的意义【解析】【解答】解:(1)因为图中是一条直线,所以这列动车行驶的时间和路程成正比例.(2)设这列动车行驶了1800千米所用的时间是x小时,由题意得:1800:x=200:1200x=1800×1200x=1800x=9驶了1小时的路程是200千米,据此设行驶了800千米所用的时间是x小时,列出比例式解答即可.【分析】(1)根据图象是一条过原点的直线,可知这列动车行驶的时间和路程成正比例,也7、【答案】1;15a【考点】求几个数的最大公因数的方法,求几个数的最小公倍数的方法【解析】【解答】解:数a和15是互质数,它们的最大公约数是1,最小公倍数是15a;故答案为:1,15a.【分析】根据互质数的意义,互质数的最大公因数是1,最小公倍数是它们的乘积,据此解答.8、【答案】21;5n+1【考点】数与形结合的规律【解析】【解答】解:摆一个六边形需要6根小棒,以后每增加一个六边形,就增加5根小棒,所以摆成n个六边形就需要5n+1根小棒;摆4个需要5×4+1=21(根)即摆4个需要21根小棒,摆n个需要5n+1根小棒.【分析】摆一个六边形需要6根小棒,以后每增加一个六边形,就增加5根小棒,所以摆成n个六边形就需要:6+5(n﹣1)=5n+1根小棒,据此即可解答.9、【答案】38【考点】三角形的内角和【解析】【解答】解:∠3和∠4拼成的是平角∠3═180°﹣∠4=180°﹣79°=101°∠1=180°﹣(∠2+∠3)=180°﹣(41°+101°)=180°﹣142°=38°答:∠1等于38°.故答案为:38°.【分析】根据平角的含义可知,等于180°的角是平角,所以∠3和∠4组成平角;用180°减去∠4的度数,即可求出∠3的度数,再根据三角形的内角和等于180°,用180°减去∠3和∠2的度数和,即可求出∠1的度数,列式解答即可.10、【答案】160【考点】分数四则复合应用题【解析】【解答】解:[(1﹣)÷×48+48]÷=[×48+48]÷=112×=160(千米)答:A、B两地相距160千米.故答案为:160.【分析】当客车行完全程时,客车又行了全程的1﹣=,这时,货车应该又行了÷×48=64千米,货车一共行了全程的,实际行了64+48=112千米,进而求出A、B两地相距:112÷=160千米;由此解答即可.二、<b >选择题(共5</b><b >小题,每小题1</b><b>分,满分5</b><b>分)</b>11、【答案】C【考点】负数的意义及其应用【解析】【解答】解:50克+2克表示比50克多2克,是52克,50克﹣2克表示比50克少2克,是48克.故选:C.【分析】正负数用来表示一组意义相反的数,50克+2克表示比50克多2克,是52克,50克﹣2克表示比50克少2克,是48克.【考点】圆、圆环的周长【解析】【解答】解:圆的周长=2πr,半径增加3cm,则周长为:2π(r+3)=2πr+6π,所以,半径增加3cm,则它们的周长都是增加2π厘米,增加的一样多.所以它们的周长增加的一样多.故选:C.【分析】圆的周长=2πr,半径增加3cm后,周长为:2π(r+3)=2πr+6π,由此可得,半径增加3cm,则它们的周长就增加了6π厘米,由此即可选择.13、【答案】A【考点】圆柱的侧面积、表面积和体积【解析】【解答】解:设圆柱和圆锥的体积相等为V,底面积相等为S,则:圆柱的高为:;圆锥的高为:;所以圆柱的高与圆锥的高的比是::=1:3,因为圆锥的高是9厘米,所以圆柱的高为:9÷3=3(厘米).答:圆柱的高是3厘米.故选:A.【分析】设圆柱和圆锥的体积相等为V,底面积相等为S,由此利用圆柱和圆锥的体积公式推理得出它们的高的比,即可解答此类问题.14、【答案】C【考点】代换问题【解析】【解答】解:A,(□+□)÷△=(2△+2△)÷△,=4△÷△,=4;不符合要求.B,□×(△﹣△)=2△×(△﹣△),=2△×0,=0;不符合要求.C,△÷(□+□)=△÷(2△+2△),=△÷4△,=;符合要求.D,□×(△+△)=2△×2△=4△;不一定等于,不符合要求.故选:C.【考点】奇数与偶数的初步认识,直线、线段和射线的认识,三角形的特性,握手问题【解析】【解答】解:A、射线不能计算长度,所以题干的说法是错误的;B、由于是淘汰赛比赛的场次最少,最后留下的冠军只有一个,所以需要淘汰另外7个队,所以至少赛7场,所以题干的说法是正确的;C、3+5<9,所以题干的说法是错误的;D、偶数是能被2整除的数,合数是除了1和它本身以外还有别的约数,2只有1和它本身两个约数,2是偶数但不是合数,所以题干的说法是错误的.故选:B.【分析】(1)射线只有一个端点,可以向一方无限延长,据此判断即可;(2)由于是淘汰赛比赛的场次最少,最后留下的冠军只有一个,所以需要淘汰另外7个队,所以至少赛7场;(3)根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可;(4)明确偶数和合数的定义,根据它们的定义即可解答.三、<b >一丝不苟,巧妙计算.(共26</b><b>分)</b>16、【答案】490;99;995;0.8;7;;100;【考点】整数四则混合运算,分数的四则混合运算【解析】【分析】(1)按照从左到右的顺序计算;(2)根据除法的性质简算;(3)根据凑整法简算;(4)根据小数除法的计算方法求解;(5)根据乘法分配律简算;(6)根据加法交换律简算;(7)按照从左到右的顺序计算;(8)先同时计算两个除法,再算减法.17、【答案】解:①45×(+ ﹣)=45×+45×﹣45×=35+12﹣27=47﹣27=20;②)1 ÷(+2.5×)=1 ÷(+2)=1 ÷2= ;③(3.75+4+2.35)×9.9=(7.75+2.35)×9.9=10.1×9.9=(10+0.1)×9.9=10×9.9+0.1×9.9=99+0.99④[ ﹣(﹣)]÷=[ ﹣+ ]÷=[ + ﹣]÷=[1﹣]÷= ÷= .【考点】运算定律与简便运算,分数的四则混合运算【解析】【分析】(1)根据乘法分配律进行简算;(2)先算小括号里面的乘法,再算小括号里面的加法,最后算除法;(3)小括号里面按照从左向右的顺序计算,然后再根据乘法分配律进行简算;(4)中括号里面根据减法的性质进行简算,最后算除法.18、【答案】解:①x﹣=x﹣+ = +x=x×4= ×4x=2②x+ x=x=x×= ×x=③x:2.1=0.4:0.90.9x=2.1×0.40.9x=0.840.9x÷0.9=0.84÷0.9x=【考点】方程的解和解方程【解析】【分析】(1)根据等式的性质,方程两边同时加上,再同时乘4求解;(2)先化简方程得x=,再根据等式的性质,在方程两边同时乘求解;(3)先根据比例的基本性质,把原式转化为0.9x=2.1×0.4,然后根据等式的性质,在方程两边同时除以0.9求解.四、<b >解答题(共1</b><b >小题,满分16</b><b>分)</b>19、【答案】(1)(2,6);(6,6);(4,8)(2)以AB为直径,画一个经过C点的半圆(下图红色部分)(3)把半圆绕B点按逆时针旋转90°,画出旋转后的图形(下图绿色部分)(4)画出图中平行四边形向右平移5格后的图形(下图黄色部分)(5)画出图中小旗按2:1放大后的图形(下图蓝色部分)(6)45;400(7)300÷200=1.5(厘米)即书店在学校的北偏东30°方向1.5厘米处(画图如下)(8)兴国路过P点并和淮海路平行.在图中画出兴国路所在的直线(下图)【考点】作平移后的图形,作旋转一定角度后的图形,画圆,图形的放大与缩小,数对与位置,在平面图上标出物体的位置,根据方向和距离确定物体的位置【解析】【解答】解:(1)用数对表示A、B、C的位置,A(2,6),B(6,6),C (4,8)(2)200×2=400(米)答:小明家在学校南偏西45°方向400米处【分析】(1)根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,即可用数对表示A、B、C各点的位置.(2)以AB的中心为圆心所画的半圆就经过点C.(3)根据旋转的特征,半圆绕点B逆时针旋转90°后,点B的位置不动,其余各部分均绕此点按相同方向旋转相同的度数,即可画出旋转后的图形.(4)根据平移的特征,把平行四边形的四个顶点分别向右平移5格,首尾连结即可得到平移后的图形.(5)根据图形放大与缩小的意义,把图中小旗子的各对应线段扩大到原来的2倍,就是按2:1放大后的图形.(6)根据地图上的方向,上北下南,左西右东,以学校为观测点即可确定小明的方向,再根据图中的所标注的线段比例尺及小明定与学校的图上距离,即可求出学校与小家的实际距离.(7)以学校为观测点即可确定书店的方向,根据书店与学校的实际距离及图中的线段比例尺即可求出图上距离,进而画出书店的位置.(8)根据过直线外一点作已知直线平行线的方法,即可画出兴国路.五、<b >活用知识,解决问题.(每小题6</b><b>分,共30</b><b>分)</b>20、【答案】解:中心商城:320﹣40×3=320﹣120=200(元)丹尼斯商城:320×60%=198(元)200元>198元.所以丹尼斯商城比较合算.答:中心商城需要200元,丹尼斯商城需要198元;到丹尼斯商城买比较合算. 【考点】最优化问题【解析】【分析】根据中心商城的优惠,已经满300元,可以减去40×3=120元;丹尼斯商城打六折,就是售价是原价的60%,用原价乘60%即可;再比较大小即可解答.21、【答案】解:630÷4.5﹣78=140﹣78=62(千米)答:慢车每小时行62千米.【考点】简单的行程问题【解析】【分析】先依据速度=路程÷时间,求出两车的速度和,再依据慢车速度=两车速度和﹣快车速度即可解答.22、【答案】(1)解:3.14×4×5+3.14×(4÷2)2=62.8+3.14×4=62.8+12.56=75.36(平方分米)答:做这个水桶至少需要75.36平方分米的铁皮(2)解:3.14×(4÷2)2×5=3.14×4×5=62.8(立方分米)=62.8(升)答:这个水桶里最多能盛水62.8升【考点】关于圆柱的应用题【解析】【分析】(1)首先分清一个没有盖的圆柱形铁皮水桶,需要计算几个面的面积:侧面面积与底面圆的面积,由圆柱体侧面积和圆的面积计算方法列式解答即可.(2)求这个水桶最多能盛水多少升是求它的容积,根据V=sh进行计算即可.23、【答案】解:(400×+400)÷(1﹣20%)=(480+400)÷80%=880÷80%=1100(米)答:这段路全长为1100米【考点】比的应用【解析】【分析】第二周与第三周绿化的长度比是5:6,则第三周修了400×=480米,第二周与第三周共修了400+480=880米,由于后两周修的占全长的1﹣20%=80%.所以这段路全长为880÷80%=1100(米).24、【答案】200;30;20;【考点】扇形统计图【解析】【解答】解:①40÷20%=200(人)答:这次调研,一共调查了200人.②60÷200=30%答:有阅读兴趣的学生占被调查学生总数的30%.③1﹣20%﹣40%﹣30%=10%200×10%=20(人)答:有“其它”爱好的学生共20人.④200×40%=80(人)爱好娱乐的80人,“其它”爱好的20人,补全折线统计图如下:【分析】①由折线统计图可以看出爱好运动的人数是40人,由扇形统计图看出爱好运动的人数占抽样人数的20%,根据百分数除法的意义,用爱好运动的数除以所占的百分率就是被抽样调查的人数.②用有阅读兴趣的学生数(从折线统计图可以看出)除以被调查总人数(①已求出)).③把被调查的总人数看作单位“1”,用1减去有阅读兴趣、运动兴趣、娱乐兴趣人数所的百分率就是其它兴趣学生人数所占的百分率;根据百分数乘法的意义,用总人数乘其它爱好人数所占的百分率就是有“其它”爱好的学生人数.④根据百分数乘法的意义,用总人数乘爱好娱乐人数所占的百分率求出爱好娱乐人数,即可补全折线统计图.小升初数学试卷一、填空(每空1分,20分)1、三千六百万八千三百写作________,这个数四舍五入万位约是________万.2、分母是6的最大真分数是________,它的分数单位是________.3、把2:1.75化成最简整数比是________,这个比的比值是________.4、打完一份稿件,甲需要4小时,乙需要6小时,甲、乙二人所用时间的整数比是________,工作效率的最简整数比是________.5、在0.6、、66%和0.67这四个数中,最大的数是________,最小的数是________.6、把一个高是4分米的圆柱体沿着底面直径垂直锯开,平均分成两块,它们的表面积比原来增加了12平方分米,圆柱的底面直径是________.7、4.8181…用循环小数简便写法记作________,保留两位小数约是________.8、一个三角形三个内角度数的比是4:3:2,这个三角形是________三角形,最小的内角是________度.9、1 的分数单位是________,再添上________个这样的分数单位就变成最小的质数.10、12、36和54的最大公约数是________,最小公倍数是________.二、判断.(每题1分,5分)11、植树节,我校植树102棵,全部成活,成活率为102%.________(判断对错)12、甲数比乙数多25%,那么乙数比甲数少. ________(判断对错)13、所有的质数都是奇数.________(判断对错)14、如果= 那么x与y中成反比例.________(判断对错)15、2克盐放入100克水中,含盐率为2%.________(判断对错)三、选择正确答案的序号,填在括号内(每题1分,5分)16、把36分解质因数是()A、36=4×9B、36=2×2×3×3C、36=1×2×2×3×317、有无数条对称轴的图形是()A、等边三角形B、正方形C、圆D、不确定18、两个不同质数相乘的积一定是()A、偶数B、质数C、合数19、大卫今年a岁,小顺今年(a﹣3)岁,再过5年他们相差的岁数是()A、aB、3C、a﹣320、一个半圆的半径是r,它的周长是()A、πrB、πr+rC、πr+2r四、计算+ =________ ×=________15﹣﹣+0.375=________ =________22、求x的值.3x+4=5.8x:=60:5.23、计算(能简算的数简算)①×+ ×②(+ )×16③÷(2﹣÷)④[2+(54﹣24)×]×.24、列式计算(1)某数除以7的商比7大7,求某数.(方程解)(2)3减去2除以6的商,再加上结果是多少?25、求阴影部分的面积.(单位:厘米)五、应用题.26、造纸厂去年计划造纸1600吨,实际造纸1800吨,实际超产百分之几?27、小明读一本课外书,前6天每天读25页,以后每天多读15页,又经过4天正好读完,这本课外书有多少页?28、一个长方形操场,周长是180m,长与宽的比是5:4,这个操场的面积是多少平方米?29、化工车间有男工人56名,女工人42名,这个车间的工人总数正好是全厂工人总数的,全厂共有多少名工人?30、一个正方体的原材料,它的棱长是10厘米.现要截成一个体积最大的圆柱体零件,那么,截去部分的体积是多少立方厘米?六、推理.31、甲、乙、丙、丁四位同学进行国际象棋比赛,并决出一、二、三、四名.已知:①甲比乙的名次靠前.②丙、丁都爱踢足球.③第一、三名在这次比赛时才认识.④第二名不会骑自行车,也不爱踢足球.⑤乙、丁每天一起骑自行车上学.请你判断出各自的名次.答案解析部分一、<b >填空(每空1</b><b >分,20</b><b>分)</b>1、【答案】3600 8300;3601【考点】整数的读法和写法,整数的改写和近似数【解析】【解答】解:三千六百万八千三百写作:3600 8300;3600 8300≈3601万.故答案为:3600 8300,3601.【分析】根据整数的写法,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0,即可写出此数;省略“万”后面的尾数求它的近似数,要把万位的下一位千位上的数进行四舍五入,再在数的后面带上“万”字.2、【答案】;【考点】分数的意义、读写及分类【解析】【解答】解:分母是6的最大真分数是,它的分数单位是.故答案为:,.【分析】分子小于分母的分数是真分数,一个分数的分母是几,它的分数单位就是几分之一.3、【答案】8:7①【考点】求比值和化简比【解析】【解答】解:(1)2:1.75=(2×4):(1.75×4)=8:7;(2)2:1.75=2÷1.75= ;故答案为:8:7;.【分析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.4、【答案】2:3;3:2【考点】简单的工程问题【解析】【解答】解:(1)4:6=2:3答:甲、乙二人所用时间的整数比是2:3.(2):=3:2答:工作效率的最简整数比是3:2故答案为:2:3,3:2.【分析】(1)依据求两个数的比的方法即可解答,(2)把这份稿件字数看作单位“1”,先表示出两人是工作效率,再根据求两个数的比的方法,以及比的基本性质即可解答.5、【答案】0.67;0.6【考点】小数大小的比较,小数、分数和百分数之间的关系及其转化【解析】【解答】解:=0.6,66%=0.66;0.6<0.66<0.67,所以最大数为0.67,最小数为0.6.故答案为:0.67;0.6.【分析】先把分数、百分数化成小数,再进行比较,进一步还原为原数,即可解决问题.6、【答案】1.5分米【考点】简单的立方体切拼问题,圆柱的侧面积、表面积和体积【解析】【解答】解:12÷2÷4=1.5(分米),答:圆柱的底面直径是1.5分米.故答案为:1.5分米.【分析】“圆柱体沿着底面直径垂直锯开,平均分成两块”则表面积比原来增加了两个以圆柱的底面直径和高为边长的长方形的面积,已知高是4分米,利用长方形的面积公式可以求出圆柱的底面直径.7、【答案】4. ;4.82【考点】小数的读写、意义及分类,近似数及其求法【解析】【解答】解:4.8181…用循环小数简便写法记作4. ,保留两位小数约是4.82;故答案为:4. ,4.82.【分析】4.8181…是循环小数,循环节是81,简记法:在循环节的首位和末位的上面各记一个小圆点;将此数保留两位小数,就是精确到百分位,看千分位上的数是否满5,再运用“四舍五入”的方法求出近似数即可.8、【答案】锐角;40【考点】按比例分配应用题,三角形的内角和【解析】【解答】解:2+3+4=9,最大的角是:180°×=80°所以这个三角形三个内角度数都小于90度,此三角形是锐角三角形;最小的角是:180°×=40°,故答案为:锐角,40°.【分析】三角形的内角和为180°,进一步直接利用按比例分配求得份数最大和最小的角即可得出结论.9、【答案】;2【考点】分数的意义、读写及分类,合数与质数【解析】【解答】解:的分数单位是.2﹣= ,再添上2个这样的分数单位就变成最小的质数.故答案为:;2.【分析】(1)一个分数的分数单位看分母,分母是几,分数单位就是几分之一,分子是几,它就含有几个这样的单位.(2)最小的质数是2,用2减去原分数的结果,再看有几个分数单位即可解答.10、【答案】6;108【考点】求几个数的最大公因数的方法,求几个数的最小公倍数的方法【解析】【解答】解:12=2×2×336=2×2×3×354=2×3×3×3最大公约数是2×3=6,最小公倍数是2×2×3×3×3=108.故答案为:6,108.【分析】求最大公约数也就是这几个数的公有质因数的连乘积,最小公倍数是共有质因数与独有质因数的连乘积,对于三个数来说:三个数的公有质因数连乘积是最大公约数,三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可.二、<b >判断.(每题1</b><b >分,5</b><b>分)</b>11、【答案】错误【考点】百分率应用题【解析】【解答】解:102÷102×100%=100%答:成活率是100%.故答案为:错误.【分析】成活率是指成活的棵数占总棵数的百分比,计算方法是:成活的棵数÷植树总棵数×100%=成活率,代入数据求解即可.12、【答案】错误【考点】百分数的加减乘除运算【解析】【解答】解:25%÷(1+25%)=25%÷125%=答:乙数比甲数少.故答案为:错误.【分析】根据“甲数比乙数多25%,”知道是把乙数看作单位“1”,即甲数是乙数的(1+25%),然后用25%除以甲数即得乙数比甲数少几分之几,即可求解.13、【答案】错误【考点】奇数与偶数的初步认识,合数与质数【解析】【解答】解:根据质数和奇数的定义,2是质数,但不是奇数,“所有的质数都是奇数”的说法是错误的.故答案为:错误.【分析】只有1和它本身两个因数的自然数为质数.不能被2整除的数为奇数,也就是说,奇数除了没有因数2外,可以有其它因数.14、【答案】错误【考点】辨识成正比例的量与成反比例的量【解析】【解答】解:如果= ,则x:y== ,是比值一定,所以,如果= ,那么x与y成正比例.故答案为:错误.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.15、【答案】错误【考点】百分率应用题【解析】【解答】解:×100%≈0.0196×100%=1.96%答:盐水的含盐率约是1.96%.故答案为:错误.【分析】含盐率,即盐水中盐的重量占盐水重量的百分之几,计算公式为:×100%,由此解答即可.三、<b >选择正确答案的序号,填在括号内(每题1</b><b>分,5</b><b>分)</b>16、【答案】B【考点】合数分解质因数【解析】【解答】解:A,36=4×9,4和9都是合数,所以不正确;B,36=2×2×3×3;符合要求,所以正确;C,36=1×2×2×3×3,其中1既不是质数,也不是合数,所以不正确;故选B.【分析】分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.17、【答案】C【考点】确定轴对称图形的对称轴条数及位置【解析】【解答】解:等边三角形有3条对称轴,正方形有4条对称轴,圆有无数条对称轴,故选:C.【分析】根据图形的性质结合轴对称的定义即可作出判断.18、【答案】C【考点】奇数与偶数的初步认识,合数与质数【解析】【解答】解:两个不同的质数的乘积除了1和它们本身外,还有这两个不同的质数的积,所以它是合数.故选:C.【分析】根据质数与合数的意义,质数只有1和它本身两个因数,合数除了1和它本身还有别的因数.两个不同的质数的乘积除了1和它们本身外,还有这两个不同的质数的积,所以它是合数.19、。
2019年无锡市小升初数学模拟试题(共4套)详细答案8
2019年无锡市小升初数学模拟试题(共4套)详细答案8小升初数学综合模拟试卷一、填空题:1.1997+1996-1995—1994+1993+1992—1991—1990+…+9+8—7—6+5+4—3—2+1=______.3.在图中的七个圆圈内各填一个数,要求每一条直线上的三个数中,当中的数是两边两个数的平均数,现在已经填好两个数,那么,x=______4.把1、2、3、4、5填入下面算式的方格内,使得运算结果最大:□+□-□×□÷□那么这个最大结果是_______.5.设上题答数为a,a的个位数字为b,2×b的个位数字为c.如图,积的比是______.6.要把A、B、C、D四本书放到书架上,但是,A不能放在第一层,B不能放在第二层,C不能放在第三层,D不能放在第四层,那么,不同的放法共有______种.7.从一张长2109毫米,宽627毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形,按照上面的过程,不断地重复,最后剪得的正方形的边长是______毫米.8.龟兔赛跑,全程5.4千米.兔子每小时跑25千米,乌龟每小时跑4千米,乌龟不停地跑,但兔子却边跑边玩,它先跑1分,然后玩15分,又跑2分,玩15分.再跑3分,玩15分,……,那么先到达终点的比后到达终点的快______分.9.从1,2,3,4,5中选出四个数,填入图中的方格内,使得右边的数比左边的数大,下面的数比上面的数大,那么,共有______种填法.比女生少人.二、解答题:1.小明从甲地到乙地,去时每小时走5千米,回来时每小时走7千米,来回共用4小时,小明去时用了多长时间?2.有一个长方体,它的正面和上面的面积之和是119,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?3.在400米环形跑道上,A、B两点相距100米(如图),甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么,甲追上乙需要多少秒?4.五年级三班有26个男生,某次考试全班有30人超过85分,那么女生中超过85分的比男生中未超过85分的多几人?答案,仅供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学综合模拟试卷3一、填空题:1.用简便方法计算下列各题:(2)1997×19961996-1996×19971997=______;(3)100+99-98-97+…+4+3-2-1=______.2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.5.在乘积1×2×3×…×98×99×100中,末尾有______个零.6.如图中,能看到的方砖有______块,看不到的方砖有______块.7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若P点在岸上,则A点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.答案一、填空题:1.(1)(24)(2)(0)原式=1997×(19960000+1996)-1996×(19970000+1997)=1997×19960000+1997×1996-1996×19970000-1996×1997=0(3)(100)原式=(100-98)+(99-97)+…+(4-2)+(3-1)=2×50=1002.(1、0、9、8)由于被减数的千位是A,而减数与差的千位是0,所以A=1,“ABCD”至少是“ABC”的10倍,所以“CDC”至少是ABC的9倍.于是C=9.再从个位数字看出D=8,十位数字B=0.3.(28)(65-9)÷2=284.(50、150)40O÷8=50,8÷2-1=33×50=1505.(24)由2×5=10,所以要计算末尾的零只需数清前100个自然数中含质因数2和5的个数,而其中2的个数远远大于5的个数,所以含5的因数个数等于末尾零的个数.6.(36,55)由图观察发现:第一层能看到:1块,第二层能看到:2×2-1=3块,第三层:3×2-1=5块.上面六层共能看到方砖:1+3+5+7+9+11=36块.而上面六层共有:1+4+9+16+25+36=91块,所以看不到的方砖有91-36=55块.7.(25)8.(5)考虑已失分情况。
要使平均成绩达到95分以上,也就是每次平均失分不多于5分.(100-90)×4÷5=8(次)8-4=4次,即再考4次满分平均分可达到95,要达到95以上即需4+1=5次.9.(280)第一堆中钱数必为5+2=7元的倍数;第二堆钱必为20元的倍数(因至少需5个贰元与2个伍元才能有相等的钱数).但两堆钱数相等,所以两堆钱数都应是7×20=140元的倍数.所以至少有2×140=280元.10.(25)转换一个角度思考:当甲、乙相会时,甲、乙和狗走路的时间都是一样的.30÷(3.5+2.5)=5(小时)5×5=25(千米)二、解答题:1.(1)在水中.连结AP,与曲线交点数是奇数.(2)在岸上.从水中经过一次岸进到水中,脱鞋与穿鞋次数和为2.由于A点在水中,所以不管怎么走,走在水中时,穿鞋、脱鞋次数和为偶数,则B点必在岸上.2.1997不可能,2160不可能.2142能.这样框出的九个数的和一定是被框出的九个数的中间的那个数的9倍,即九个数的和能被9整除.但1997数字和不能被9整除,所以(1)不可能.又左右两边两列的数不能作为框出的九个数的中间一个数,即能被15整除或被15除余数是1的数,不能作为中间一个数.2160÷9=240,又240÷15=16,余数是零.所以(2)不可能.3.(0场)四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场.若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以只可能是甲、乙、丙各胜2场,此时丁三场全败.也就是胜0场.4.只切两刀,分成三块重新拼合即可.正方形面积为(2R)2=(2×3)2=36(cm2)小升初数学综合模拟试卷4一、填空题:1.41.2×8.1+11×9.25+537×0.19=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?答案一、填空题1.(537.5)原式=412×0.81+537×0.19+11×9.25=412×0.81+(412+125)×0.19+11×9.25=412×(0.81+0.19)+1.25×19+11×(1.25+8)=412+1.25×(19+11)+88=537.52.(5283)从*×9,尾数为7入手依次推进即可.3.(6年)爸爸比小惠大:6×5-6=24(岁),爸爸年龄是小惠的3倍,也就是比她多2倍,则一倍量为:24÷2=12(岁),12-6=6(年).4.(14厘米).2+2+5+5=14(厘米).5.(225,150)因450÷75=6,所以最大公约数为75,最小公倍数450的两整数有75×6,75×1和75×3,75×2两组,经比较后一种差较小,即225和150为所求.6.(45,15)假设60只全是鸡,脚总数为60×2=120.此时兔脚数为0,鸡脚比兔脚多120只,而实际只多30,因此差数比实际多了120-30=90(只).这因为把其中的兔换成了鸡.每把一只兔换成鸡.鸡的脚数将增加2只,兔的脚数减少4只,那么鸡脚与兔脚的差数增加了2+4=6(只),所以换成鸡的兔子有90÷6=15(只),鸡有60-15=45(只).7.(77,92)由师傅产量是徒弟产量的2倍,所以师傅产量数总是偶数.利用整数加法的奇偶性可知标明“77”的筐中的产品是徒弟制造的.利用“和倍问题”方法.徒弟加工零件是(78+94+86+77+92+80)÷(2+1)=169(只)∴169-77=92(只)8.(8分)紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,就是汽车间隔距离.当一辆汽车超过行人时,下一辆汽车要用10分才能追上步行人.即追及距离=(汽车速度-步行速度)×10.对汽车超过骑车人的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的步行速度.即10×4×步行速度÷(5×步行速度)=8(分)9.(44)10.(16)满足条件的偶数和奇数的可能很多,要求的是使两个偶数之和最小的那仍为偶数,所求的这两个偶数之和一定是8的倍数.经试验,和不能是8,二、解答题:EC,则△CDE、△ACE,△ADB的面积比就是2∶3∶5.如图.2.(5)连结AC′,AC,A′C考虑△C′D′D的面积,由已知DA=D′A,所以S△C′D′D=2S△C′AD.同理S△C′D′D=2S△ACD,S△A′B′B=2S△ABC,而S四边形ABCD=S△ACD+S△ABC,所以S△C′D′D+SS△A′B′B=2S四边形ABCD.同样可得S△A′D′A+S△B′C′C=2S四边形ABCD,所以S四边形A′B′C′D′=5S四边形ABCD.3.(14,10,35)用甲齿、乙齿、丙齿代表三个齿轮的齿数.甲乙丙三个齿轮转数比为5∶7∶2,根据齿数与转数成反比例的关系.甲齿∶乙齿=7∶5=14∶10,乙齿∶丙齿=2∶7=10∶35,所以甲齿∶乙齿∶丙齿=14∶10∶35由于14,10,35三个数互质,且齿数需是自然数,所以甲、乙、丙三个齿轮齿数最少应分别是14,10,35.4.(1)三面红色的小方块只能在立方体的角上,故共有8块.两面红色的小方块只能在立方体的棱上(除去八个角),故共有12块.一面红色的小方块只能在立方体的面内(除去靠边的那些小方格),故共有6块.(2)各面都没有颜色的小方块不可能在立方体的各面上.设大立方体被分成n3个小方块,除去位于表面上的(因而必有含红色的面)方块外,共有(n-2)3个各面均是白色的小方块.因为53=125>120,43=64<120,所以n-2=5,从而,n=7,因此,各面至少要切6刀.(3)由于一面为红色的小方块只能在表面上,且要除去边上的那些方块,设立方体被分成n3个小方块,则每一个表面含有n2个小方块,其中仅涂一面红色的小方块有(n-2)2块,6面共6×(n-2)2个仅涂一面红色的小方块.因为6×32=54>53,6×22=24<53,所以n-2=3,即n=5,故各面至少要切4刀.小升初数学综合模拟试卷5一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a 绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E 1 9 9 7B C D E A 9 9 7 1(第一次变动)C D E A B 9 7 1 9(第二次变动)D E A B C 7 1 9 9(第三次变动)……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?答案一、填空题:1.(5)500÷10÷10=52.(1+7=8,9-3=6,4×5=20)首先考虑0只能出现在乘积式中.即分析2×5,4×5,5×6,8×5几种情况.最后得以上结论.3.(56)96÷8=12=3×4,所以两个数为8×3=24,4×8=32,和为32+24=56.5.(210)梯形的总数为:BC上线段总数×BD上线段总数,即(4+3+2+1)×(6+5+4+3+2+1)=2106.(中午12点40分)3千米/小时=0.05千米/分,0.05×50=2.5千米,即每小时她走2.5千米.12÷2.5=4.8,即4小时后她走4×2.5=10千米.(12-10)÷0.05=40(分),最后不许休息,即共用4小时40分.7.(58)画图分析可得22-6=16为甲做题数,所以可得乙10道,丙16×2=32道,一共16+10+32=58(道).8.(36)长方形的宽是“一”与“二”两个正方形的边长之和.长方形的长是“一”、“二”、“三”三个正方形的边长之和.长-宽=30-22=8是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22-8×2=6,中间小正方形面积=6×6=36.9.(10∶9)10.(13)考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即10+2+1=13(只).二、解答题:1.(20)由变动规律知,A、B、C、D、E经5次变动重新出现,而1997经过4次即重新出现,故要使ABCDE1997重新出现最少需20次(即4和5的最小公倍数.)3.(15千米)4.(56个)本题可列表解.除终点,我们将车站编号列表:共需座位:14+12+10+8+6+4+2=56(个)小升初数学综合模拟试卷6一、填空题:1.1997+199.7+19.97+1.997=______.3.如图,ABCD是长方形,长(AD)为8.4厘米,宽(AB)为5厘米,ABEF是平行四边形.如果DH长4厘米,那么图中阴影部分面积是______平方厘米.4.将一个三位数的个位数字与百位数字对调位置,得到一个新的三位数.已知这两个三位数的乘积等于52605,那么,这两个三位数的和等于______.5.如果一个整数,与l,2,3这三个数,通过加、减、乘、除运算(可以添加括号)组成算式,能使结果等于24,那么这个整数就称为可用的.在4,7,9,11,17,20,22,25,31,34这十个数中,可用的数有______个.6.将八个数从左到右列成一行,从第三个数开始,每个数都恰好等于它前面两个数之和,如果第7个数和第8个数分别是81,131,那么第一个数是______.7.用1~9这九个数码可以组成362880个没有重复数字的九位数.那么,这些数的最大公约数是______.8.在下面四个算式中,最大的得数是______.9.在右边四个算式的四个方框内,分别填上加、减、乘、除四种运算符号,使得到的四个算式的答数之和尽可能大,那么,这个6□0.3=0和等于______.10.小强从甲地到乙地,每小时走9千米,他先向乙地走1分,又调头反向走3分又调头走5分,再调头走7分,依次下去,如果甲、乙两地相距600米,小强过______.分可到达乙地.二、解答题:1.水结成冰后,体积增大它的十一分之一.问:冰化成水后,体积减少它的几分之几?辆和小卡车5辆一次恰好运完这批货物.问:只用一种卡车运这批货物,小卡车要比大卡车多用几辆?4.在一个神话故事中,有一只小兔子住在一个周长为1千米的神湖旁,A、B两点把这个神湖分成两部分(如图).已知小兔子从B点出发,沿逆休息,那么就会经过特别通道AB滑到B点,从B点继续跳.它每经过一次特别通道,神湖半径就扩大一倍.现知小兔子共休息了1000次,这时,神湖周长是多少千米?答案一、填空题:1.2218.667.2.423.3.31.平行四边形ABEF的底是长方形的宽,平行四边形的高是长方形的长,因此,平行四边形面积=长方形面积=8.4×5=42(平方厘米),三角形ABH的高是HA,它的长度是8.4—4=4.4(厘米),三角形ABH面积=5×4.4÷2=11(平方厘米),阴影部分面积=(平行四边形面积)-(三角形ABH面积)=42-11=31(平方厘米).4.606.所以,105+501=606.5.9.1×2×3×4=24;7×3+(2+1)=24;9×(2+1)-3=24;11×2+3-1=24;1+2×3+17=24;20+2+3-1=24;22+3+1-2=24;(25-1)×(3-2)=24;31-2×3-1=24;但是,1,2,3,34无法组成结果是24的算式.所以,4,7,9,11,17,20,22,25,31这九个数是可用的.由这排数的排列规则知:第8个数=第6个数+第7个数,所以,第6个数=第8个数-第7个数=131-81=50.同理,第5个数=第7个数-第6个数=81-50=31,第4个数=50—31= 19,第3个数=31—19=12,第2个数=19—12=7,第1个数=12—7=5.7.9.1+2+…+9=45,因而9是这些数的公约数,又因123456789和123456798这两个数只差9,这两个数的最大公约数是9.所以9是这些数的最大公约数.现在比较三个括号中的分数的大小.注意这些分数的特点,用同分子的要使四个算式答数尽可能大,除数和减数应取较小的数,乘数和加数应取较大的数.比较(6÷0.3)+(6—0.3)和(6—0.3)+(6÷0.3)的大小知,0.3前10.24.小强每分钟走150米,向乙地方向所走的距离(从甲地算起),依次是:第1分钟走150米;又3分钟反向,5分钟向乙地,其中3分钟向乙地与3分钟反向抵消,实际这8分钟只向乙地走了150×2=300(米),即有前9分钟向乙地走了150+300=450(米);反向走7分钟,只需再向乙地走8分钟,即再走15分钟,就可走完最后150米.二、解答题:2.9辆.3.1997.4.128千米.把周长为1千米的神湖8等分,每一等分算作一段,小兔子休息一次已跳3段,休息4次已跳12段,恰好一周半,第4次休息时正好在A点,于是经过特别通道到B点,此时神湖周长变成2千米;我们再把新的神湖分成16段,现在小兔子休息到8次,共跳了24段才在A点休息,……,如此继续下去,休息到16次,32次,64次,128次,小兔子才在A点休息.参看下表:因为:4+8+16+32+64+128+256=508<10004+8+16+32+64+128+256+512>1000所以小兔子休息1000次,有7次休息恰好在A点,此时神湖周长是128千米.所以休息1000次后,神湖周长是128千米.小升初数学综合模拟试卷7一、填空题:2.将一张正方形的纸如图按竖直中线对折,再将对折纸从它的竖直中线(用虚线表示)处剪开,得到三个矩形纸片:一个大的和两个小的,则一个小矩形的周长与大矩形的周长之比为______.么回来比去时少用______小时.4.7点______分的时候,分针落后时针100度.5.在乘法3145×92653=29139□685中,积的一个数字看不清楚,其他数字都正确,这个看不清的数字是______.7.汽车上有男乘客45人,若女乘客人数减少10%,恰好与男乘客人8.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有______辆.9.甲、乙两人轮流在黑板上写不超过10的自然数,规定每人每次只能写一个数,并禁止写黑板上数的约数,最后不能写者败.若甲先写,并欲胜,则甲的写法是______.10.有6个学生都面向南站成一行,每次只能有5个学生向后转,则最少要做______次能使6个学生都面向北.二、解答题:1.图中,每个小正方形的面积均为1个面积单位,共9个面积单位,则图中阴影部分面积为多少个面积单位?2.设n是一个四位数,它的9倍恰好是其反序数(例如:123的反序数是321),则n 是多少?3.自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;(2)数127应排在上起第几行,左起第几列?4.任意k个自然数,从中是否能找出若干个数(也可以是一个,也可以是多个),使得找出的这些数之和可以被k整除?说明理由.答案一、填空题:1.(1)2.(5∶6)周长的比为5∶6.4.(20)5.(3)根据弃九法计算.3145的弃九数是4,92653的弃九数是7,积的弃九数是1,29139□685,已知8个数的弃九数是7,要使积的弃九数为1,空格内应填3.6.(1/3)7.(30)8.(10)设24辆全是汽车,其轮子数是24×4=96(个),但实际相差96-86=10(个),故(4×24-86)÷(4-3)=10(辆).9.甲先把(4,5),(7,9),(8,10)分组,先写出6,则乙只能写4,5,7,8,9,10中一个,乙写任何组中一个,甲则写另一个.10.(6次)由6个学生向后转的总次数能被每次向后转的总次数整除,可知,6个学生向后转的总次数是5和6的公倍数,即30,60,90,…据题意要求6个学生向后转的总次数是30次,所以至少要做30÷5=6(次).二、解答题:1.(4)由图可知空白部分的面积是规则的,左下角与右上角两空白部分面积和为3个单位,右下为2个单位面积,故阴影:9-3-2=4.2.(1089)9以后,没有向千位进位,从而可知b=0或1,经检验,当b=0时c=8,满足等式;当b=1时,算式无法成立.故所求四位数为1089.3.本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n个数是(n-1)2+1,②第n 行中,以第一个数至第n个数依次递减1;④从第2列起该列中从第一个数至第n个数依次递增1.由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置.4.可以先从两个自然数入手,有偶数,可被2整除,结论成立;当其中无偶数,奇数之和是偶数可被2整除.再推到3个自然数,当其中有3的倍数,选这个数即可;当无3的倍数,若这3个数被3除的余数相等,那么这3个数之和可被3整除,若余数不同,取余1和余2的各一个数和能被3整除,类似断定5个,6个,…,整数成立.利用结论与若干个数之和有关,构造k个和.设k个数是a1,a2,…,ak,考虑,b1,b2,b3,…bk其中b1=a1,b 2=a1+a2,…,bk=a1+a2+a3+…+ak,考虑b1,b2,…,bk被k除后各自的余数,共有b;能被k整除,问题解决.若任一个数被k除余数都不是0,那么至多有余1,2,…,余k-1,所以至少有两个数,它们被k除后余数相同.这时它们的差被k整除,即a1,a2…,ak中存在若干数,它们的和被k整除.小升初数学综合模拟试卷8一、填空题:2.在下列的数字上加上循环点,使不等式能够变正确:0.9195<0.9195<0.9195<0.9195<0.91953.如图,O为△A1A6A12的边A1A12上的一点,分别连结OA2,OA3,…,OA11,图中共有______个三角形.4.今年小宇15岁,小亮12岁,______年前,小宇和小亮的年龄和是15.5.在前三场击球游戏中,王新同学得分分别为139,143,144,为使前4场的平均得分为145,第四场她应得______分.6.有这样的自然数:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是______.7.如图,半圆S1的面积是14.13cm2圆S2的面积是19.625cm2那么长方形(阴影部分)的面积是______cm2.8.直角三角形ABC的三边分别为AC=3,AB=1.8,BC=2.4,ED垂直于AC,且ED=1,正方形的BFEG 边长是______.9.有两个容器,一个容器中的水是另一个容器中水的2倍,如果从每个容器中都倒出8升水,那么一个容器中的水是另一个容器中水的3倍.有较少水的容器原有水______升.10.100名学生要到离校33千米处的少年宫活动.只有一辆能载25人的汽车,为了使全体学生尽快地到达目的地,他们决定采取步行与乘车相结合的办法.已知学生步行速度为每小时5千米,汽车速度为每小时55千米.要保证全体学生都尽快到达目的地,所需时间是______(上、下车所用的时间不计).二、解答题:1.一个四边形的广场,它的四边长分别是60米,72米,96米,84米.现在要在四边上植树,如果四边上每两树的间隔距离都相等,那么至少要种多少棵树?2.一列火车通过一条长1140米的桥梁(车头上桥直至车尾离开桥)用了50秒,火车穿越长1980米的隧道用了80秒,问这列火车的车速和车身长?3.能否把1,1,2,2,3,3,…,50,50这100个数排成一行,使得两个1之间夹着这100个数中的一个数,两个2之间夹着这100个数中的两个数,……两个50之间夹着这100个数中的50个数?并证明你的结论.4.两辆汽车运送每包价值相同的货物通过收税处.押送人没有带足够的税款,就用部分货物充当税款.第一辆车载货120包,交出了10包货物另加240元作为税金;第二辆车载货40包,交给收税处5包货,收到退还款80元,这样也正好付清税金.问每包货物销售价是多少元?答案一、填空题:3.(37)将△A1A6A12分解成以OA6为公共边的两个三角形.△OA1A6共有(5+4+3+2+1=)15个三角形,△OA6A12共有(6+5+4+3+2+1=)21个,所以图中共有(15+21+1=)37个三角形.4.(6年)今年年龄和15+12=27岁,比15岁多27-15=12,两人一年增长的年龄和是2岁,故12÷2=6年.5.(154)145×4-(139+143+144)=154.6.(421)这个数比2,3,4,5,6,7的最小公倍数大1,又2,3,4,5,6,7的最小公倍数为420,所以这个数为421.7.(5)由图示阴影部分的长是圆S2的直径,宽是半圆S1的直径与圆S2的直径9.(16升)由甲容器中的水是乙容器的2倍和它们均倒出8升水后变成3倍关系,设原甲容器中的水量为4份,则因2容器中的水量为2份,按题意画图如下:故较少容器原有水量8×2=16(升).把100名学生分成四组,每组25人.只有每组队员乘车和步行的时间都分别相等,他们才能同时到达目的地,用的时间才最少.如图,设AB=x千米,在第二组队员走完AB的同时,汽车走了由A到E,又由E返回B的路程,这一段路程为11x千米(因为汽车与步行速度比为55∶二、解答题:1.(26棵)要使四边上每两棵树间隔距离都相等,这个间隔距离必须能整除每一边长.要种的树尽可能少(间隔距离尽可能大),就应先求出四边长的最大公约数.60,72,96,84四数的最大公约数是12,种的棵数:(60+72+96+84)÷12=262.(28米/秒,260米)(1980-1140)÷(80-50)=28(米/秒)28×50-1140=260(米)3.不可能.反证法,假设存在某种排列,满足条件.我们把这100个数从左向右按1,2,3,…,99,100编号,则任何两个相等的偶数之间要插入偶数个数,则这两个偶数的序号的奇偶性是不同的;而任何两个相等的奇数之间要插入奇数个数,则这两个奇数的序号的奇偶性相同.由此,这100个数中有25对偶数(每对是两个相等的偶数),它们占去25个奇序号和25个偶序号;另外25对相等的奇数,它们中奇序号的个数一定是偶数.而在100个数中奇序号和偶序号各有50个,所以这25对相等的奇数中,奇序号个数只能是25个(因为25对偶数已占去了奇序号).25是奇数,由于奇数≠偶数,所以无法实现.4.(106元)(元).。