高一物理7.7动能与动能定理习题及答案[1]

合集下载

第七章7.7 动能定理

第七章7.7 动能定理

二、动能定理
如图所示,质量为m的物体在恒力F的作用下向前运动了一段距
离,速度由v1增加到v2.试求力F对物体做的功.
2 分 析 : W FL, v2 v F ma 2 1 2aL,
1 2 1 2 W mv2 mv1 2 2
动能定理 1.内容:合力在一个过程中对物体所做的功,等于物体在这 个过程中动能的变化量.
1 2 1 mv0 0 mv2 0 2 2 球 在 竖 直 上 抛 过 程 中对 人球 无 作 用 力 , 对 球再 不做 功 1 1 2 动能定理: - mgh fh 0 mv2 mv0 mgh fh, 故 选 AD 0 2 2 解 析 : 人 只 在 刚 开 始球 扔时 对 球 做 功 , 动 能理 定 WF
4.动能定理的实质:功能关系的一种具体体现,物体动能的 改变可由合外力做功来度量. 动能定理:一个过程:一个过程是指做功过程,应明确该过程 各外力所做的总功 两个状态:两个状态是指初末两个状态的动能
三、应用动能定理的优点及解题步骤
1.应用动能定理解题的优点
(1) 动能定理对应的是一个过程,只涉及物体初、末状态的动能
2.应用动能定理解题的一般步骤
(1)选取研究对象(通常是单个物体),明确它的运动过程.
(2)对研究对象进行受力分析,明确各力做功的情况,求出外力
做功的代数和.
(3)明确物体在初、末状态的动能Ek1、Ek2. 求解并验算.
(4)列出动能定理的方程 W= Ek2- Ek1 ,结合其他必要的解题方程,
典例精析 一、对动能和动能定理的理解
四、动能定理求连接体问题 1、如图所示,mA=4kg,mB=1kg,A与桌面间的动摩擦因数μ =0.2,B 与地面间的距离s=0.8m,A、B间绳子足够长,A、B原来静止,求: (g取10m/s2)(1)B落到地面时的速度为多大;(2)B落地后 ,A在桌面上能继续滑行多远才能静止下来

高中物理动能与动能定理专项训练及答案及解析.docx

高中物理动能与动能定理专项训练及答案及解析.docx
(1)由牛顿第三定律得小球Q在B点
Q的速度为
.
,小球
P的速度为
;碰前小球
P
碰后小球
Q在
B点由牛顿第二定律得
:
碰后小球P恰好到C点,由动能定理得:
P、Q对心碰撞,由动量守恒得:
联立解得:
(2)小球Q从B到D的过程中,由动能定理得:
解得
,所以小球
Q能够到达
D点
由平抛运动规律有:
联立解得
(3)
联立解得:
当时x有最大值
线沿竖直方向。现有一质量m=0.1kg的小物块,从A点正上方的P点由静止落下。已知物块与斜面之间的动摩擦因数μ=0.5.取sin37°=0.6.co37°=0.8,g=10m/s2,不计空气阻力。
(1)为保证轨道不会被破坏,求P、A间的最大高度差H及物块能沿斜面上滑的最大距离L;
(2)若P、A间的高度差h=3.6m,求系统最终因摩擦所产生的总热量Q。
BC段上运动的距离以及和当班碰撞的次数。
(1)从A到C段运用动能定理
mgsin
-
AB
mv
2
L =
v=7m/s
(2)从开始到最后停下在BC段所经过的路程为x
mgsinLAB-mgx=0
x=24.9m
=31.1
经过AB的次数为312+1=63次
(3)设小物块平抛时的初速度为V0
H -r=gt2
r+=v0t
刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段
距离l后停下.事故发生后,经测量,卡车刹车时与故障车距离为
L,撞车后共同滑行的距
离l
8L.假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量

高一物理77动能与动能定理习题及答案

高一物理77动能与动能定理习题及答案

高一物理77动能与动能定理习题及答案1. 一物体从静止开始在光滑水平面上滑行,经过一定距离后达到速度v,求它的动能。

答:由动能定理可得,物体的动能等于产生它动能的力的功。

由于在光滑水平面上物体没有受到重力的作用,因此物体产生动能的力是摩擦力(摩擦力的大小与物体的速度成正比),所以物体的动能为:E = Ff × s = (μk × m × g × s) / 2其中,Ff为摩擦力,s为物体的滑行距离,μk为动摩擦因数,m为物体质量,g为重力加速度。

由于物体从静止开始运动,初动能为0。

2. 一名运动员以30m/s的速度向前冲,他的质量为80kg,求他的动能。

答:运动员的动能可以用动能定理计算,即:E = (1/2)mv² = (1/2) × 80kg × (30m/s)² = 36000J所以运动员的动能为36000焦耳。

3. 一个物体以5m/s的速度向右运动,它撞击一个静止的物体,两个物体黏在一起后以4m/s的速度向右运动,求两个物体的动能变化。

答:撞击时,物体1的动能为:E1 = (1/2)mv1² = (1/2) × m × 5m/s² = 12.5mJ物体2的动能为0。

撞击后,两个物体黏在一起,以v2 = 4m/s的速度向右运动,它们的总质量为m1 + m2,所以它们的动能为:E2 = (1/2)(m1 + m2)v2² = (1/2)(m1 + m2) × 4m/s²两个物体的动能变化为:ΔE = E2 - E1 = [ (1/2)(m1 + m2) × 4m/s² ) - (1/2)mv1² ] =(1/2)(m1 + m2) × 4m/s² - (1/2)mv1²4. 如果一个人用力推一个质量为50kg的物体,使它在10m的距离内加速到10m/s,求这个人用力的大小和这个物体的动能。

高一物理必修一动能动能定理习题带答案

高一物理必修一动能动能定理习题带答案

动能定理知识点1:动能的概念1.关于物体的动能,下列说法正确的是()A.质量大的物体,动能一定大B.速度大的物体,动能一定大C.速度方向变化,动能一定变化D.物体的质量不变,速度变为原来的两倍,动能将变为原来的四倍2.改变汽车的质量和速度,都能使汽车的动能发生改变,在下列几种情况下,汽车的动能可以变为原来4倍的是()A.质量不变,速度增大到原来2倍B.速度不变,质量增大到原来2倍C.质量减半,速度增大到原来4倍D.速度减半,质量增大到原来4倍3.某物体做变速直线运动,在t1时刻速率为v,在t2时刻速率为n v,则在t2时刻的动能是t1时刻的()A.n倍B.n/2倍C.n2倍D.n2/4倍知识点2:合外力做功与动能变化的关系4. 子弹以水平速度V射入静止在光滑水平面上的木块M,并留在其中,则()A.子弹克服阻力做功与木块获得的动能相等B.阻力对子弹做功小于子弹动能的减少C.子弹克服阻力做功与子弹对木块做功相等D.子弹克阻力做功大于子弹对木块做功5.下列关于运动物体所受的合外力、外力做功和动能变化的关系中正确的是()A.如果物体受的合外力为零,那么合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下做变速运动,动能一定变化D.物体的动能不变,所受的合外力一定为零6.关于做功和物体动能变化的关系,正确的是()A、只有动力对物体做功时,物体动能可能减少B、物体克服阻力做功时,它的动能一定减少C、动力和阻力都对物体做功,物体的动能一定变化D、外力对物体做功的代数和等于物体的末动能和初动能之差7.用起重机将质量为m的物体匀速地吊起一段距离,那么作用在物体上各力的做功情况应该是下面的哪种说法()A.重力做正功,拉力做负功,合力做功为零B.重力做负功,拉力做正功,合力做正功C.重力做负功,拉力做正功,合力做功为零D.重力不做功,拉力做正功,合力做正功8.若物体在运动过程中受到的合外力不为零,则()A.物体的动能不可能总是不变的B.物体的加速度一定变化C.物体的速度方向一定变化D.物体所受合外力做的功可能为零知识点3:利用动能定理比较力、位移、速度的大小9.质量不等,但具有相同初动能的两个物体,在摩擦系数相同的水平地面上滑行,直到停止,则()A.质量大的物体滑行的距离大B.质量小的物体滑行的距离大C.它们滑行的距离一样大D.它们克服摩擦力所做的功一样多10.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是()A.乙大B.甲大C.一样大D.无法比较11.质量为m的物体静止在粗糙的水平地面上,若物体受水平力F的作用从静止起通过位移s时的动能为E1,当物体受水平力2F作用,从静止开始通过相同位移s,它的动能为E2,则()A. E2=E1B. E2=2 E1C. E2>E1D. E1<E2<2 E1知识点4:利用动能定理计算力、位移、速度的大小12.质量为m,速度为v的子弹,能射入固定的木板L深。

高一物理动能定理试题答案及解析

高一物理动能定理试题答案及解析

高一物理动能定理试题答案及解析1.一子弹以速度v飞行恰好射穿一块铜板,若子弹的速度是原来的3倍,那么可射穿上述铜板的数目为()A.3块B.6块C.9块D.12块【答案】C【解析】子弹以速度v运动时,恰能水平穿透一块固定的木板,根据动能定理有:,设子弹的速度为时,穿过的木板数为n,则有:联立两式并代入数据得:n=9块,C正确。

【考点】考查了动能定理的应用2.在一次试车实验中,汽车在平直的公路上由静止开始做匀加速运动,当速度达到v时,立刻关闭发动机让其滑行,直至停止。

其v-t图象如图所示。

则下列说法中正确的是()A.全程牵引力做功和克服阻力做功之比为1:1B.全程牵引力做功和克服阻力做功之比为2:1C.牵引力和阻力之比为2:1D.牵引力和阻力之比为3:1【答案】AD【解析】试题解析:由于物体初始的速度为零,最后的速度也为零,故物体的动能没有变化,即动能的增量为零,根据动能定理可知,物体受到的合外力也为零,即全程牵引力做功和克服阻力做功相等,故它们的比值为1:1,A正确,B错误;由图像可知,1s前物体在牵引力的作用下运动,其位移为x,则后2s内物体的位移为2x,故由动能定理可得:Fx=f(x+2x),所以牵引力F和阻力f之比为3:1,D正确,C错误。

【考点】动能定理。

3.甲、乙两物体质量之比m1∶m2=1∶2,它们与水平桌面间的动摩擦因数相同,若它们以相同的初动能在水平桌面上运动,则运动位移之比为.【答案】2:1。

【解析】根据动能定理得可知,对于甲物体:m1gμ×x1=Ek,对于乙物体:m2gμ×x2=Ek,联立以上两式解之得x1:x2=m2:m1=2:1,故位移之比为2:1。

【考点】动能定理。

4.一根用绝缘材料制成的轻弹簧,劲度系数为k,一端固定,另一端与质量为m、带电量为+q的小球相连,静止在光滑绝缘的水平面上,当施加一水平向右的匀强电场E后(如图所示),小球开始作简谐运动,关于小球运动有如下说法中正确的是A.球的速度为零时,弹簧伸长qE/kB.球做简谐运动的振幅为qE/kC.运动过程中,小球的机械能守恒D.运动过程中,小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零【答案】BD【解析】球的平衡位置为Eq=kx,解得x= qE/k,在此位置球的速度最大,选项A 错误;球做简谐运动的振幅为qE/k,选项B正确;运动过程中,由于电场力和弹力做功,故小球的机械能不守恒,选项C 错误;运动过程中,由于电场力和弹力做功,所以小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零,选项D 正确。

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)一

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)一

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)(1)一、高中物理精讲专题测试动能与动能定理1.如图所示,AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R .一个质量为m 的物体(可以看作质点)从直轨道上与圆弧的圆心O 等高的P 点由静止释放,结果它能在两轨道间做往返运动.已知物体与轨道AB 间的动摩擦因数为μ,重力加速度为g .试求:(1)物体释放后,第一次到达B 处的速度大小,并求出物体做往返运动的整个过程中在AB 轨道上通过的总路程s ;(2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力的大小;(3)为使物体能顺利到达圆弧轨道的最高点D (E 、O 、D 为同一条竖直直径上的3个点),释放点距B 点的距离L 应满足什么条件.【答案】(1)2(sincos )tanBgR v ;RL(2)(32cos )N F mg ;(3)(32cos )2(sincos )R L …【解析】【分析】【详解】(1)设物体释放后,第一次到达B 处的速度为1v ,根据动能定理可知:21cos 1coscossin2R mgR mg mv解得:2(sincos )tanBgR v 物体每完成一次往返运动,在AB 斜面上能上升的高度都减少一些,最终当它达B 点时,速度变为零,对物体从P 到B 全过程用动能定理,有coscos 0mgR mgL 得物体在AB 轨道上通过的总路程为RL(2)最终物体以B 为最高点在圆弧轨道底部做往返运动,设物体从B 运动到E 时速度为2v v ,由动能定理知:221(1cos )2v mgR m 在E 点,由牛顿第二定律有22Nmv F mgR解得物体受到的支持力(32cos )NF mg 根据牛顿第三定律,物体对轨道的压力大小为(32cos )NNF F mg ,方向竖直向下.(3)设物体刚好到达D 点时的速度为D v 此时有2DmvmgR 解得:Dv gR设物体恰好通过D 点时释放点距B 点的距离为0L ,有动能定理可知:2001[sin(1cos )]cos 2D mg L R mg L mv 联立解得:(32cos )2(sin cos )R L 则:(32cos )2(sin cos )R L …答案:(1)2(sincos )tanBgR v ;RL(2)(32cos )N F mg ;(3)(32cos )2(sincos )R L …2.光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C 点再落回到水平面,重力加速度为g.求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C点时mg=m则联立知:EP≥mgR.综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为EP≤mgR 或EP≥mgR.3.在粗糙的水平桌面上有两个静止的木块A 和B ,两者相距为d .现给A 一初速度,使A与B 发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d .已知两木块与桌面之间的动摩擦因数均为μ.B 的质量为A 的2倍,重力加速度大小为g .求A 的初速度的大小.【答案】185gd【解析】【详解】设在发生碰撞前的瞬间,木块A 的速度大小为v 0;在碰撞后的瞬间,A 和B 的速度分别为v 1和v 2.在碰撞过程中,由能量守恒定律和动量守恒定律,得222121112222mv mv mv 0122mv mv mv ,式中,以碰撞前木块A 的速度方向为正,联立解得:013v v ,2023v v 设碰撞后A 和B 运动的距离分别为d 1和d 2,由动能定理得21112mgd mv,2221222m gd mv ().按题意有:21d d d .联立解得:0185v gd=4.质量为M 的小车固定在地面上,质量为m 的小物体(可视为质点)以v 0的水平速度从小车一端滑上小车,小物体从小车另一端滑离小车时速度减为02v ,已知物块与小车之间的动摩擦因数为.求:(1)此过程中小物块和小车之间因摩擦产生的热Q 以及小车的长度L.(2)若把同一小车放在光滑的水平地面上,让这个物体仍以水平速度v 0从小车一端滑上小车.a. 欲使小物体能滑离小车,小车的质量M 和小物体质量m 应满足什么关系?b. 当M =4m 时,小物块和小车的最终速度分别是多少?【答案】(1)2038Q mv ,238v Lg(2)a. M>3m ;b.025v ,320v 【解析】【详解】(1) 小车固定在地面时,物体与小车间的滑动摩擦力为fmg ,物块滑离的过程由动能定理220011()222v fLm mv ①解得:238v Lg物块相对小车滑行的位移为L ,摩擦力做负功使得系统生热,Q fL可得:238Qmv (2)a.把小车放在光滑水平地面上时,小物体与小车间的滑动摩擦力仍为f .设小物体相对小车滑行距离为L时,跟小车相对静止(未能滑离小车)共同速度为v ,由动量守恒定律:mv 0=(M +m)v②设这过程小车向前滑行距离为s.对小车运用动能定理有:212fsMv③对小物体运用动能定理有:22011()22f Ls mvmv④联立②③④可得220011()()22mv fLmvM m Mm⑤物块相对滑离需满足LL 且2038fLmv联立可得:3M m ,即小物体能滑离小车的质量条件为3Mmb.当M=4m 时满足3M m ,则物块最终从小车右端滑离,设物块和车的速度分别为1v 、2v .由动量守恒:012mv mv Mv由能量守恒定律:222012111()222fLmvmv Mv 联立各式解得:1025v v ,20320v v 5.雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关,雨滴间无相互作用且雨滴质量不变,重力加速度为g ;(1)质量为m 的雨滴由静止开始,下落高度h 时速度为u ,求这一过程中空气阻力所做的功W .(2)研究小组同学观察发现,下雨时雨滴的速度跟雨滴大小有关,较大的雨滴落地速度较快,若将雨滴看作密度为ρ的球体,设其竖直落向地面的过程中所受空气阻力大小为f=kr 2v 2,其中v 是雨滴的速度,k 是比例常数,r 是球体半径.a. 某次下雨时,研究小组成员测得雨滴落地时的速度约为v 0,试计算本场雨中雨滴半径r的大小;b. 如果不受空气阻力,雨滴自由落向地面时的速度会非常大,其v-t 图线如图所示,请在图中画出雨滴受空气阻力无初速下落的v -t 图线.(3)为进一步研究这个问题,研究小组同学提出下述想法:将空气中的气体分子看成是空间中均匀分布的、静止的弹性质点,将雨滴的下落看成是一个面积为S 的水平圆盘在上述弹性质点中竖直向下运动的过程.已知空气的密度为ρ0,试求出以速度v 运动的雨滴所受空气阻力f 的大小.(最后结果用本问中的字母表示)【答案】(1)212Wmumgh (2)234kv rg,(3)22f Sv【解析】【详解】(1)由动能定理:212mgh Wmu解得:212Wmu mgh(2)a. 雨滴匀速运动时满足:322043r gkr v ,解得2034kv rgb. 雨滴下落时,做加速度逐渐减小的加速运动,最后匀速下落,图像如图.(3)设空气分子与圆盘发生弹性碰撞.在极短时间t 内,圆盘迎面碰上的气体质点总质量为:m S v t以F 表示圆盘对气体分子的作用力,对气体根据动量定理有:F ·t =m ·2v解得:22FSv由牛顿第三定律可知,圆盘所受空气阻力22F F Sv6.如图所示,AB 为倾角37的斜面轨道,BP 为半径R=1m 的竖直光滑圆弧轨道,O为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为=0.25,现有一质量m=2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的 1.5倍,sin370.6,37cos 0.8,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ;(2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m .【答案】(1)5m/s P v (2)v C =9m/s (3)6m/smv 【解析】【详解】(1)在P 点,根据牛顿第二定律:2PPvmgN mR解得: 2.55m/sP v gR(2)由几何关系可知BP 间的高度差(1cos37)BPh R 物块C 至P 过程中,根据动能定理:2211sin37cos37=22BPPC mgL mgh mgL mv mv 联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点,物块C 至E 过程中根据动能定理:21cos37sin37sin 53=02m mgL mgL mgR mv 解得:6m/smv7.如图1所示是某游乐场的过山车,现将其简化为如图2所示的模型:倾角θ=37°、L=60cm 的直轨道AB 与半径R=10cm 的光滑圆弧轨道BCDEF 在B 处平滑连接,C 、F 为圆轨道最低点,D 点与圆心等高,E 为圆轨道最高点;圆轨道在F 点与水平轨道FG 平滑连接,整条轨道宽度不计,其正视图如图3所示.现将一质量m=50g 的滑块(可视为质点)从A端由静止释放.已知滑块与AB 段的动摩擦因数μ1=0.25,与FG 段的动摩擦因数μ2=0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10m/s 2.(1)求滑块到达E 点时对轨道的压力大小F N ;(2)若要滑块能在水平轨道FG 上停下,求FG 长度的最小值x ;(3)若改变释放滑块的位置,使滑块第一次运动到D 点时速度刚好为零,求滑块从释放到它第5次返回轨道AB 上离B 点最远时,它在AB 轨道上运动的总路程s .【答案】(1)F N =0.1N (2)x=0.52m (3)93m160s 【解析】【详解】(1)滑块从A 到E ,由动能定理得:211sin 1cos2cos2Emg L R RmgL mv代入数据得:30m/s 5Ev 滑块到达E 点:2NEvmgF m R代入已知得:F N =0.1N (2)滑块从A 下滑到停在水平轨道FG 上,有12sin 1coscos 0mg L R mgL mgx 代入已知得:x=0.52m (3)若从距B 点L 0处释放,则从释放到刚好运动到D 点过程有:010sin +(1cos )]cos 0mg L R R mgL [代入数据解得:L 0=0.2m从释放到第一次返回最高点过程,若在轨道AB 上上滑距离为L 1,则:111sincosmg L L mg L L 解得:111sin cos 1sincos2L L L 同理,第二次返回最高点过程,若在斜轨上上滑距离为L 2,有:212111sin cos 11sincos22L L L L 故第5次返回最高点过程,若在斜轨上上滑距离为L 5,有:5512L L 所以第5次返回轨道AB 上离B 点最远时,它在AB 轨道上运动的总路程012345932222m160L L L L L L s8.如图所示,在粗糙水平轨道OO 1上的O 点静止放置一质量m=0.25kg 的小物块(可视为质点),它与水平轨道间的动摩擦因数μ=0.4,OO 1的距离s=4m .在O 1右侧固定了一半径R=0.32m 的光滑的竖直半圆弧,现用F=2N 的水平恒力拉动小物块,一段时间后撤去拉力.(g=10m/s 2)求:(1)为使小物块到达O 1,求拉力F 作用的最小距离;(2)若将拉力变为F 1,使小物块从O 点由静止开始运动至OO 1的中点时撤去拉力,恰能使小物块经过半圆弧的最高点,求F 1的大小.【答案】(1)2m (2)3N 【解析】【分析】【详解】(1)为使小物块到达O 1,设拉力作用的最小距离为x根据动能定理知:00Fx mgs 解得:0.40.25104m2m2mgs xF(2)当小物块恰好过最高点时:2vmg mR从O 点运动到最高点的过程由动能定理得:2112022s F mgs mg R mv解得:13F N9.如图所示,光滑轨道槽ABCD 与粗糙轨道槽GH 通过光滑圆轨道EF 平滑连接(D 、G 处在同一高度),组成一套完整的轨道,整个装置位于竖直平面内。

(物理)动能与动能定理练习题含答案含解析

(物理)动能与动能定理练习题含答案含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

7.7动能与动能定理练习1(b4版本)

高一物理动能与动能定理练习凉风习习卷班级姓名1、下列关于动能的说法中,正确的是( )A、动能的大小由物体的质量和速率决定,与物体的运动方向无关B、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同。

因为它在这两种情况下所受的合力不同、运动性质也不同C、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大D、物体所受的合外力越大,其动能就越大2、一质量为2kg的滑块,以4m/s的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( )A、0B、8JC、16JD、32J3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( )A、质量大的物体滑行距离小B、它们滑行的距离一样大C、质量大的物体滑行时间短D、它们克服摩擦力所做的功一样多4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min速度达到10m/s.那么该列车在这段时间内行的距离( )A、一定大于600mB、一定小于600mC、一定等于600mD、可能等于1200m5、质量为1.0kg的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s2)( )A、物体与水平面间的动摩擦因数为0.30B、物体与水平面间的动摩擦因数为0.25C、物体滑行的总时间是2.0sD、物体滑行的总时间是4.0s6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E,则有( )A、返回斜面底端的动能为EB、返回斜面底端时的动能为3E/2C、返回斜面底端的速度大小为2υD、返回斜面底端的速度大小为2υ7、以初速度v0急速竖直上抛一个质量为m的小球,小球运动过程中所受阻力f大小不变,上升最大高度为h,则抛出过程中,人手对小球做的功()A.1202mv B. mgh C.1202mv mgh+ D. mgh fh+8、质量为m的物体静止在粗糙的水平地面上,若物体受水平力F的作用从静止起通过位移s时的动能为E1,当物体受水平力2F作用,从静止开始通过相同位移s,它的动能为E2,则:A、E2=E1B、E2=2E1C、E2>2E1D、E1<E2<2E19、用拉力F使一个质量为m的木箱由静止开始在水平冰道上移动了s,拉力F跟木箱前进的方向的夹角为a,木箱与冰道间的动摩擦因素为u,求木箱获得的速度。

动能定理

亭湖高级中学高一物理作业7.7动能和动能定理(1)强化训练1.对于做匀速圆周运动的物体,下面说法中正确的是( )A.速度在改变,动能也在改变B.速度改变,动能不变C.速度不变,动能改变D.动能、速度都不变2.关于动能定理下列说法正确的是( )A.某过程中外力的总功等于各力功的绝对值之和B. 物体所受合外力做的功不为零时,其动能一定发生变化C.在物体动能不改变的过程中,动能定理不适用D.动能定理只适用于受恒力作用而加速运动的过程3.关于功和物体动能变化的关系,不正确的是( )A .只要有动力对物体做功,物体的动能就增加。

B .只要物体克服阻力做功,它的动能就减少。

C .外力对物体做功的代数和等于物体的末动能与初动能之差。

D .动力和阻力都对物体做功,物体的动能一定变化。

4.一物体在水平恒力F 的作用下移动距离l ,第一次在有摩擦的水平地面上,第二次在光滑的水平面上。

那么,在两次移动中( )A.第一次力F 做的功多B.两次力F 做的功一样多C.第一次物体获得的动能大D.两次物体获得的动能一样大5.足球运动员踢球时,能使足球由静止以10m/s 的速度水平飞出设足球的质量为1kg ,踢球的平均作用力为200N ,球在水平方向滚动了20m ,则人对球做功( )A.50JB.200JC.4000JD.6000J6、一质量为2 kg 的滑块,以4 m/s 的速度在光滑的水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力,经过一段时间,滑块的速度方向变为向右,大小为4 m/s ,在这段时间里水平力做的功为( )A .0B .8 JC .16 JD .32 J7.一辆汽车以v 1=6m/s 的速度沿水平面行驶时,急刹车后能滑行l 1=3.6m 如果以v 2=8m/s 的速度行驶,在同样的路面上急刹车后滑行的距离l 2应为( )A .6.4m B. 5.6m C. 7.2m D.10.8 m8.有两个物体a 和b ,其质量分别为m a 和m b ,且m a >m b ,它们的动能相同,若a 和b 分别受到不变的阻力F a 和F b 的作用,经过相同的时间停下来,它们的位移分别为s a 和s b ,则( )A .F a >F b 且s a <s bB .F a >F b 且s a >s bC .F a <F b 且s a >s bD .F a <F b 且s a <s b9. 关于运动物体所受合外力、合外力做功和动能的变化,下列说法正确的是( )A .如果物体所受合外力为零,那么物体的动能一定不变B .如果合外力对物体做的功为零,那么合外力一定为零C .物体在合外力作用下做变速运动,物体的动能一定变化D .物体的动能保持不变,该物体所受合外力不一定为零10.如图所示,某人从12.5m 高的楼房阳台上向上抛出一个小球,不计阻力,小球脱手时的速度为5m/s ,小球的质量为0.6kg ,则人对小球做功为_________J.11.质量为m 的物体,以初动能E k 在动摩擦因数为μ的水平面上运动的最大距离为_____。

高一物理同步练习题解析 7.7 动能和动能定理 (人教版必修2)

7.7 动能和动能定理 同步练习题解析(人教版必修2)1.一质量为1 kg 的物体被人用手由静止开始向上提升1 m ,这时物体的速度是2 m/s ,则下列结论中不正确的是( )。

A .手对物体做功12 JB .合外力对物体做功12 JC .合外力对物体做功2 JD .物体克服重力做功10 J2.一质量为0.1 kg 的小球,以5 m/s 的速度在光滑水平面上匀速运动,与竖直墙壁碰撞后以原速率反弹,若以弹回的速度方向为正方向,则小球碰墙过程中的速度变化和动能变化分别是( )。

A .Δv =10 m/sB .Δv =0C .ΔE k =1 JD .ΔE k =03.如图所示,在水平桌面上的A 点有一个质量为m 的物体以初速度v 。

被抛出,不计空气阻力,当它到达B 点时,其动能为( )。

A .12m v 02+mgHB .12m v 02+mgh C .mgH -mgh D .12m v 02+mg (H -h ) 4.一质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平拉力F 作用下,从平衡位置P 点缓慢地移动到Q 点,如图所示,则力F 所做的功为( )。

A .mgL cos θB .mgL (1-cos θ)C .FL sin θD .FL tan θ5.如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连线处都是一段与BC 相切的圆弧,BC 段水平,d=0.50 m ,盆边缘的高度为h=0.30 m 。

在A 处放一个质量为m 的小物块并让其从静止开始下滑。

已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10。

小物块在盆内来回滑动。

最后停下来,则停的地点到B 的距离为( )。

A .0B .0.25 mC .0.10 mD .0.50 m6.在平直公路上,汽车由静止开始做匀加速运动,当速度达到v max 后,立即关闭发动机直至静止,v-t图象如图所示,设汽车的牵引力为F,摩擦力为f,全程中牵引力做功为W1,克服摩擦力做功为W2,则()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一物理7-3-3第七章第7节动能与动能定理习题及答案
1.关于做功和物体动能变化的关系,不正确的是().
A.只有动力对物体做功时,物体的动能增加
B.只有物体克服阻力做功时,它的功能减少
C.外力对物体做功的代数和等于物体的末动能和初动能之差
D.动力和阻力都对物体做功,物体的动能一定变化
2.两个具有相等动量的物体,质量分别为m1和m2,且m1>m2,比较它们的动能,则()
A、m2的动能较大
B、m1的动能较大C.动能相等D.不能确定
3.下列关于运动物体所受的合外力、合外力做功和动能变化的关系正确的是().A.如果物体所受的合外力为零,那么会外力对物体做的功一定为零
B.如果合外力对物体所做的功为零,则合外力一定为零
C.物体在合外力作用下作变速运动,动能一定变化
D.物体的动能不变,所受的合外力必定为零
4.关于动能和动量的关系正确的是().
A.物体的动能改变,其动量也一定改变B.物体的动量改变,则其功能一定改变C.动能是矢量,动量是标量D.物体的速度不变,则动量不变,动能也不变5.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是().
A.乙大B.甲大C.一样大D.无法比较
6.一个物体沿着高低不平的自由面做匀速率运动,在下面几种说法中,正确的是().A.动力做的功为零B.动力做的功不为零
C.动力做功与阻力做功的代数和为零D.合力做的功为零
7.放在水平面上的物体在一对水平方向的平衡力作用下做匀速直线运动,当撤去一个力后,下列说法中错误的是().
A.物体的动能可能减少B.物体的动能可能增加
C.没有撤去的这个力一定不再做功D.没有撤去的这个力一定还做功
8.如图所示,质量为m的物体用细绳经过光滑小孔牵引在光滑水
平面上做匀速圆周运动,拉力为某个值F时,转动半径为B,当
拉力逐渐减小到了F/4时,物体仍做匀速圆周运动,半径为2R,
则外力对物体所做的功大小是().
A、FR/4
B、3FR/4
C、5FR/2
D、零
9. 一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。

从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为()
A. 0
B. 8J
C. 16J
D. 32J
10.质量为5×105kg的机车,以恒定的功率沿平直轨道行驶,在3minl内行驶了1450m,其速度从10m/s增加到最大速度15m/s.若阻力保持不变,求机车的功率和所受阻力的数值.
11. 一小球从高出地面Hm处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对球的平均阻力是其重力的多少倍。

12. 飞行子弹打入放在光滑水平面上的木块中深入2cm ,未穿出同时木块滑动了1cm ,则子弹动能的变化、木块获得的动能、由于摩擦增加的内能的比是多少。

S d
13. 质量为M 、厚度为d 的方木块,静置在光滑的水平面上,如图所示,一子弹以初速度0v 水平射穿木块,子弹的质量为m ,木块对子弹的阻力为f F 且始终不变,在子弹射穿木块的过程中,木块发生的位移为L 。

求子弹射穿木块后,子弹和木块的速度各为多少?
v 0L d
14. 物体质量为10kg ,在平行于斜面的拉力F 作用下沿斜面向上运动,斜面与物体间的动摩擦因数为1.0=μ,当物体运动到斜面中点时,去掉拉力F ,物体刚好能运动到斜面顶端停下,斜面倾角为30°,求拉力F 多大?(2/10s m g =)
15. 质量为4t 的汽车,以恒定功率沿平直公路行驶,在一段时间内前进了100m ,其速度从36km/h 增加到54km/h 。

若车受到的阻力恒定,且阻力因数为0.02,求这段时间内汽车所做的功。

(2/10s m g =)
16. 子弹以某速度击中静止在光滑水平面上的木块,当子弹进入木块深度为x 时,木块相对水平面移动距离
2
x ,求木块获得的动能1k E ∆和子弹损失的动能2k E ∆之比。

高一物理7-3-3答案
1.D 2.A 3.A 4. A 、D 5. A 6. C 、D 7. C 8. A 9. A
9. 错解:J mv mv W F 32)44(22
1)21(2122202=+⨯=--+= 选D 诊断:错在认为动能有方向,向左的16J 动能与向右的16J 动能不同。

实际上动能是标量,没有方向,且是恒正的一个量,由动能定理得:02121202=-=
∆=mv mv E W k F 答案:A 10.3.75×105W 、2.5×104N 提示:选机车为研究对象,它受到的重力
mg 、支持力F 2、阻力F 1和牵引力F 的作用,受力如图,在机车速度从10m/s
增加到15m/s 的过程中,重力和支持力不做功,牵引力F 对机车做正功,
阻力对机车做负功根据动能定理可得:Pt-F 1s=ΔE K 注意到上述过程中的
末状态速度为最大速度,这时有F =F 1,故P =F 1v 2 ,联立上面两式解得:)
(2)(222122s t v v v v m P --==3.75×105
W ,01v P F ==2.5×104N 11. 解:小球由A 落到B 只有重力作用,由B 到C 受沙坑阻力f 、重力作用。

在A 点动能为零,在C 动能为零,0)(=-+h f h H mg mg h h H f += f 为重力的h
H +1倍(大于重力) 12. 解析:子弹打入木块直到一起运动为止,子弹与木块间有 摩擦力设为f 。

设木块质量M ,末速为v ,动能22
1Mv E K =木 子弹质量为m ,飞行速度0v ,飞行时动能2021mv E K =
弹 对木块221Mv fS = ① 对子弹2202
121)(mv mv d S f -=+ ② ①代入②得2202220)(2
121212121v M m mv mv Mv mv fd +-=--= 等号右边就是子弹打入木块过程中系统动能损失,即为内能增加值。

2
1=fd fS 由能量守恒知220)(2121v M m fd mv ++= ∴ 2
32121220=-fd mv mv 子弹动能减少量、木块动能、增加的内能比为2:1:3 13. 解析:子弹受力如左图所示,由题知子弹的初速度为0v ,位移为d L s +=,阻力为f F 。

子弹射穿木块的过程由动能定理得 ()2022121mv mv d l F f -=+- 解得m d L F v v f )(220+-= C B
A
f H h m
g mg v 0F N
F f N
F ′F N F f
木块受力如右图所示,由题知木块的初速度为0,发生的位移L s =,f F 为动力,子弹
射穿木块的过程由动能定理得212
1Mv L F f = 解得M L F v f 21= 14. 解析:木块受力如图4所示,设斜面的长度为s 。

木块受到的摩擦力︒==30cos mg F F N f μμN N 7.82310101.0=⨯
⨯⨯= 木块从开始运动到静止由动能定理得030sin 2
=︒--mgs s F s F f 解得N N mg F F f 4.117)10102
17.8(2)30sin (2=⨯⨯+⨯=︒+= 15. 解析:以汽车为研究对象,在水平方向受牵引力F 和阻力f F 的作用。

因为汽车的功率恒定,汽车的速度小时牵引力大,速度大时牵引力小,所以,此过程牵引力为变力,汽车的运动也是变速运动。

此题用动能定理求解非常方便。

由动能定理,可得21222
121mv mv W W f -=+ 又kmgs s F W f f -=-= 其中s m h km v /10/361==,h km v /542=s m /15=
解得kmgs v v m W +-=)(2
12122 J J 1001010402.0)1015(1042
13223⨯⨯⨯⨯+-⨯⨯⨯= J 5103.3⨯=
动能定理内涵丰富,解决问题简洁、实用,是其他物理规律和定理无法比拟的,应熟练掌握。

16. 错解:设子弹在木块中运动时,受到木块摩擦阻力大小为f F ,则由动能定理:
对子弹:2k k k f E E E x F ∆-=-=⋅-初末 即x F E f k ⋅=∆2
对木块:12k f E x F ∆= 所以21221=⋅⋅
=∆∆x F x F E E f f k k 诊断及正解:错在使用动能定理时,乱用参考系,没有统一确定。

以地面为参考系,木块的位移为2x ,子弹的位移为x x x 2321=+ 故3123221=⋅⋅
=∆∆x F x F E E f f k k 子弹损失的动能大于木块获得的动能,这表明子弹损失的动能中一大部分已转化为克服阻力做功而产生的热,使子弹和木块构成的系统内能增加。

F F N F f mg。

相关文档
最新文档