(完整版)动能定理习题(附答案)
动能定理专项训练(含解析)

动能定理专项训练一、选择题1.有两个物体甲、乙,它们在同一直线上运动,两物体的质量均为m ,甲速度为v ,动能为E k ;乙速度为-v ,动能为E k ′,那么( )(A )E k ′=-E k(B )E k ′=E k(C )E k ′<E k(D )E k ′>E k2.甲、乙两个物体的质量分别为甲m 和乙m ,并且甲m =2 乙,它们与水平桌面的动摩擦因数相同,当它们以相同的初动能在桌面上滑动时,它们滑行的最大距离之比为( ). (A )1:1(B )2:1(C )1:2(D )2:13.两个物体a 和b ,其质量分别为m a 和m b ,且m a >m b ,它们的初动能相同.若它们分别受到不同的阻力F a 和F b 的作用,经过相等的时间停下来,它们的位移分别为s a 和s b ,则( ). (A )F a >F b ,s a >s b(B )F a >F b ,s a <s b (C )F a <F b ,s a >s b(D )F a <F b ,s a <s b4.一个小球从高处自由落下,则球在下落过程中的动能( ). (A )与它下落的距离成正比 (B )与它下落距离的平方成正比 (C )与它运动的时间成正比(D )与它运动的时间平方成正比5.质量为2kg 的物体以50J 的初动能在粗糙的水平面上滑行,其动能的变化与位移的关系如图所示,则物体在水平面上滑行的时间为( ). A 、5s B 、4s C 、s 22 D 、2s6.以速度v 飞行的子弹先后穿透两块由同种材料制成的平行放置的固定金属板,若子弹穿透两块金属板后的速度分别变为0.8v 和0.6v ,则两块金属板的厚度之比为( ). (A )1:1(B )9:7(C )8:6(D )16:97.质点只受的力F 作用,F 随时间变化的规律如图所示,力的方向始终在一直线上.已知t =0时质点的速度为零.在右图所示的t 1、t 2、t 3和t 4各时刻中,质点动能最大的时刻是( ). (A )t 1(B )t 2(C )t 3(D )t 48.在平直公路上,汽车由静止开始作匀加速运动,当速度达到某一值时,立即关闭发动机后滑行至停止,其v -t 图像如图5—22所示.汽车牵引力为F ,运动过程中所受的摩擦阻力恒为f ,全过程中牵引力所做的功为W 1,克服摩擦阻力所做的功为W 2,则下列关系中正确的是().(A )F :f =1:3 (B )F :f =4:1(C )W 1:W 2=1:1(D )W 1:W 2=1:39.一个物块从斜面底端冲上足够长的斜面后,返回到斜面底端.已知小物块的初动能为E ,它返回斜面底端的速度大小为v ,克服摩擦阻力做功为2E .若小物块冲上斜面的初动能变为2E ,则有( ). (A )返回斜面底端时的动能为E(B )返回斜面底端时的动能为23E(C )返回斜面底端时的速度大小为2v (D )克服摩擦阻力做的功仍为2E10.质量为m 的小球被系在轻绳的一端,在竖直平面内作半径为R 的圆周运动.运动过程中,小球受到空气阻力的作用,在某一时刻小球通过轨道最低点时绳子的拉力为7mg ,此后小球继续作圆周运动,转过半个圆周恰好通过最高点,则此过程中小球克服阻力所做的功为( ).(A )mgR (B )2mgR (C )3mgR (D )4mgR11.一小球用轻绳悬挂在某固定点,现将轻绳水平拉直,然后由静止开始释放小球,考虑小球由静止开始运动到最低位置的过程().(A )小球在水平方向的速度逐渐增大 (B )小球在竖直方向的速度逐渐增大 (C )到达最低位置时小球线速度最大(D )到达最低位置时绳中的拉力等于小球重力12.如图所示,板长为L ,板的B 端静止放有质量为m 的小物体,物体与板的动摩擦因数为μ.开始时板水平,在缓慢转过一个小角度α的过程中,小物体保持与板相对静止,则在这个过程中().(A )摩擦力对小物体做功为μmgLcosα(1-cosα) (B )摩擦力对小物体做功为mgLsinα(1-cosα) (C )弹力对小物体做功为mgLcosαsinα (D )板对小物体做功为mgLsinα13.如图所示,物体自倾角为θ、长为L 的斜面顶端由静止开始滑下,到斜面底端时与固定挡板发生碰撞,设碰撞时无机械能损失.碰后物体又沿斜面上升,若到最后停止时,物体总共滑过的路程为s ,则物体与斜面间的动摩擦因数为( )(A )sLsin θ(B )θssin L (C )sLtan θ(D )θstan L二、填空题14.一个质量是2kg 的物体以3m /s 的速度匀速运动,动能等于______J .15.火车的质量是飞机质量的110倍,而飞机的速度是火车速度的12倍,动能较大的是______. 16.两个物体的质量之比为100:1,速度之比为1:100,这两个物体的动能之比为______.17.一个物体的速度从0增加到v ,再从v 增加到2v ,前后两种情况下,物体动能的增加量之比为______. 18.甲、乙两物体的质量之比为2:1m :m =乙甲,它们分别在相同力的作用下沿光滑水平面从静止开始作匀加速直线运动,当两个物体通过的路程相等时,则甲、乙两物体动能之比为______.19.自由下落的物体,下落1m 和2m 时,物体的动能之比是______;下落1s 和2s 后物体的动能之比是______.20.甲、乙两物体的质量比m 1:m 2=2:1,速度比v 1:v 2=1:2,在相同的阻力作用下滑行至停止时通过的位移大小之比为_____.21.一颗质量为10g 的子弹,射入土墙后停留在0.5m 深处,若子弹在土墙中受到的平均阻力是6400N .子弹射入土墙前的动能是______J ,它的速度是______m /s .22.质量为m 的物体,作加速度为a 的匀加速直线运动,在运动中连续通过A 、B 、C 三点,如果物体通过AB 段所用时间和通过BC 段所用的时间相等,均为T ,那么物体在BC 段的动能增量和在AB 段的动能增量之差为______.23.质量m =10kg 的物体静止在光滑水平面上,先在水平推力F 1=40N 的作用下移动距离s 1=5m ,然后再给物体加上与F 1反向、大小为F 2=10N 的水平阻力,物体继续向前移动s 2=4m ,此时物体的速度大小为______m /s .24.乌鲁木齐市达坂城地区风力发电网每台风力发电机4张叶片总共的有效迎风面积为s ,空气密度为ρ、平均风速为v .设风力发电机的效率(风的动能转化为电能的百分比)为η,则每台风力发电机的平均功率P =______.25.一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m /s .人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功等于______J (g 取10m /s 2) 三、应用题26.如图所示,一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处与开始运动处的水平距离为s,不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求动摩擦因数μ.27.一颗质量m=10g的子弹,以速度v=600m/s从枪口飞出,子弹飞出枪口时的动能为多大?若测得枪膛长s=0.6m,则火药引爆后产生的高温高压气体在枪膛内对子弹的平均推力多大?28.一辆汽车质量为m,从静止开始起动,沿水平面前进了距离s后,就达到了最大行驶速度v.设汽max车的牵引力功率保持不变,所受阻力为车重的k倍,求:(1)汽车的牵引功率.(2)汽车从静止到开始匀速运动所需的时间.29.如图所示,斜面倾角为θ,滑块质量为m,滑块与斜面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦力,且每次与P碰撞前后的速度大小保持不变,斜面足够长.求滑块从开始运动到最后停止滑行的总路程s30.在光滑水平面上有一静止的物体,现以水平恒力F1推这一物体,作用一段时间后,换成相反方向的水平恒力F2推这一物体.当F2作用时间与F1的作用时间相同时,物体恰好回到出发点,此时物体的动能为32J.求运动过程中F1和F2所做的功.参考答案1、B解析:动能是标量,由可得答案为B。
工程力学——动能定理习题及解答

动能定理习题及解答P314 13-1:已知圆盘半径r=0.5m, m A =3kg, m B =2kg ,力偶矩M=4ϕ, 绳与盘之间无相对滑动; 求:ϕ由0至2π时,力偶M 与物块重力所作功的总和。
解:W=⎰πϕϕ20d 4+ (m A – m B )g • 2πr= 109.7JP314 13-4:已知长为l ,质量为m 的均质杆OA 以球铰链O 固定,并以等角速度ω绕铅直线转动,杆与铅直线的交角为θ; 求:杆的动能。
解:此杆绕铅直轴作定轴转动,杆的转动惯量为J z =θχθχ2222l0sin l 3m d sin l m =⎰杆的动能为 T = 2z J 21ω = θω222sin ml 61P316 13-11: 已知均质杆AB 的质量m=4kg,长l=600mm,均质圆盘B 的质量为6kg ,半径r=100mm,作纯滚 动。
弹簧刚度k=2N/mm,不计套筒A 及弹 簧的质量。
连杆在30º角无初速释放; 求:(1)当AB 杆达水平位置而接触弹簧 时,圆盘与连杆的角速度;(2)弹簧的最大压缩量δmax 。
解:(1)该系统初始静止,动能为0;AB 杆达水平位置时,B 点是AB 杆的速度瞬心,圆盘的角速度ωB =0,设杆的角速度为ωAB ,由动能定理,得2230sin 203121lmg ml AB ⋅=-⋅ω解得连杆的角速度 ωAB = 4.95 rad/s(2)AB 杆达水平位置接触弹簧时,系统的动能为T 1,弹簧达到最大压缩量δmax 的瞬时,系统再次静止,动能T 2=0,由T 2 - T 1 = W 12得22610max2max 22δδωmg k ml AB +-=- 解得 δmax =87.1mmP316 13-12:已知均质轮B 和C 的质量均为m 2,半径均为r,轮B 上的力偶矩M=常量,物A 的质量为m 1;求: 物A 由静止上移距离s 时的速度和加速度。
解:该系统初动能为零,设物A 移动距离s 时速度为υ,有θϕωυsin 0)2121221(122221g sm M r m m -=-⋅⋅⋅+式中r s =ϕ, r υω= (a)解得sm m r gr m M )(sin (2211+-=θυ (b)将式(a)(或式(b ))对时间求一阶导数,注意υ=.s ,解得)(sin 211m m r gr m M a +-=θP317 13-13: 已知动齿轮半径为r ,质量为m 1, 可看成均质园盘;均质曲柄OA 质量为m 2; 定齿轮半径为R 。
高一物理动能定理试题答案及解析

高一物理动能定理试题答案及解析1.一子弹以速度v飞行恰好射穿一块铜板,若子弹的速度是原来的3倍,那么可射穿上述铜板的数目为()A.3块B.6块C.9块D.12块【答案】C【解析】子弹以速度v运动时,恰能水平穿透一块固定的木板,根据动能定理有:,设子弹的速度为时,穿过的木板数为n,则有:联立两式并代入数据得:n=9块,C正确。
【考点】考查了动能定理的应用2.在一次试车实验中,汽车在平直的公路上由静止开始做匀加速运动,当速度达到v时,立刻关闭发动机让其滑行,直至停止。
其v-t图象如图所示。
则下列说法中正确的是()A.全程牵引力做功和克服阻力做功之比为1:1B.全程牵引力做功和克服阻力做功之比为2:1C.牵引力和阻力之比为2:1D.牵引力和阻力之比为3:1【答案】AD【解析】试题解析:由于物体初始的速度为零,最后的速度也为零,故物体的动能没有变化,即动能的增量为零,根据动能定理可知,物体受到的合外力也为零,即全程牵引力做功和克服阻力做功相等,故它们的比值为1:1,A正确,B错误;由图像可知,1s前物体在牵引力的作用下运动,其位移为x,则后2s内物体的位移为2x,故由动能定理可得:Fx=f(x+2x),所以牵引力F和阻力f之比为3:1,D正确,C错误。
【考点】动能定理。
3.甲、乙两物体质量之比m1∶m2=1∶2,它们与水平桌面间的动摩擦因数相同,若它们以相同的初动能在水平桌面上运动,则运动位移之比为.【答案】2:1。
【解析】根据动能定理得可知,对于甲物体:m1gμ×x1=Ek,对于乙物体:m2gμ×x2=Ek,联立以上两式解之得x1:x2=m2:m1=2:1,故位移之比为2:1。
【考点】动能定理。
4.一根用绝缘材料制成的轻弹簧,劲度系数为k,一端固定,另一端与质量为m、带电量为+q的小球相连,静止在光滑绝缘的水平面上,当施加一水平向右的匀强电场E后(如图所示),小球开始作简谐运动,关于小球运动有如下说法中正确的是A.球的速度为零时,弹簧伸长qE/kB.球做简谐运动的振幅为qE/kC.运动过程中,小球的机械能守恒D.运动过程中,小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零【答案】BD【解析】球的平衡位置为Eq=kx,解得x= qE/k,在此位置球的速度最大,选项A 错误;球做简谐运动的振幅为qE/k,选项B正确;运动过程中,由于电场力和弹力做功,故小球的机械能不守恒,选项C 错误;运动过程中,由于电场力和弹力做功,所以小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零,选项D 正确。
动能与动能定理经典习题及答案(免费》

1.关于做功和物体动能变化的关系,不正确的是().A.只有动力对物体做功时,物体的动能增加B.只有物体克服阻力做功时,它的功能减少C.外力对物体做功的代数和等于物体的末动能和初动能之差D.动力和阻力都对物体做功,物体的动能一定变化2.下列关于运动物体所受的合外力、合外力做功和动能变化的关系正确的是().A.如果物体所受的合外力为零,那么合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下作变速运动,动能一定变化D.物体的动能不变,所受的合外力必定为零3.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是().A.乙大B.甲大C.一样大D.无法比较4.一个物体沿着高低不平的自由面做匀速率运动,在下面几种说法中,正确的是().A.动力做的功为零B.动力做的功不为零C.动力做功与阻力做功的代数和为零D.合力做的功为零5.放在水平面上的物体在一对水平方向的平衡力作用下做匀速直线运动,当撤去一个力后,下列说法中错误的是().A.物体的动能可能减少B.物体的动能可能增加C.没有撤去的这个力一定不再做功D.没有撤去的这个力一定还做功平面上做匀速圆周运动,拉力为某个值F时,转动半径为B,当拉力逐渐减小到了F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功大小是().A、FR/4B、3FR/4C、5FR/2D、零7. 一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。
从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为()A. 0B. 8JC. 16JD. 32J8.质量为5×105kg的机车,以恒定的功率沿平直轨道行驶,在3minl内行驶了1450m,其速度从10m/s增加到最大速度15m/s.若阻力保持不变,求机车的功率和所受阻力的数值.9. 一小球从高出地面Hm 处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对球的平均阻力是其重力的多少倍。
动能定理功能关系练习题142题含答案

动能定理练习稳固根底一、不定项选择题〔每题至少有一个选项〕1.以下关于运动物体所受合外力做功和动能变化的关系,以下说法中正确的选项是〔〕A.如果物体所受合外力为零,那么合外力对物体所的功一定为零;B.如果合外力对物体所做的功为零,那么合外力一定为零;C.物体在合外力作用下做变速运动,动能一定发生变化;D.物体的动能不变,所受合力一定为零。
2.以下说法正确的选项是〔〕A.某过程中外力的总功等于各力做功的代数之和;B.外力对物体做的总功等于物体动能的变化;C.在物体动能不变的过程中,动能定理不适用;D.动能定理只适用于物体受恒力作用而做加速运动的过程。
3.在光滑的地板上,用水平拉力分别使两个物体由静止获得一样的动能,那么可以肯定〔〕A.水平拉力相等 B.两物块质量相等C.两物块速度变化相等 D.水平拉力对两物块做功相等4.质点在恒力作用下从静止开场做直线运动,那么此质点任一时刻的动能〔〕A.与它通过的位移s成正比B.与它通过的位移s的平方成正比C.与它运动的时间t成正比D.与它运动的时间的平方成正比5.一子弹以水平速度v射入一树干中,射入深度为s,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v/2的速度射入此树干中,射入深度为〔〕A.s B.s/2 C.2/s D.s/4 6.两个物体A、B的质量之比m A∶m B=2∶1,二者动能一样,它们和水平桌面的动摩擦因数一样,那么二者在桌面上滑行到停顿所经过的距离之比为〔〕A.s A∶s B=2∶1 B.s A∶s B=1∶2 C.s A∶s B=4∶1 D.s A∶s B=1∶47.质量为m的金属块,当初速度为v0时,在水平桌面上滑行的最大距离为L,如果将金属块的质量增加到2m,初速度增大到2v0,在同一水平面上该金属块最多能滑行的距离为〔〕A.L B.2L C.4L D.8.一个人站在阳台上,从阳台边缘以一样的速率v0,分别把三个质量一样的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,那么比拟三球落地时的动能〔〕A.上抛球最大 B.下抛球最大 C.平抛球最大 D.三球一样大9.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,当它落到地面时速度为v,用g表示重力加速度,那么此过程中物块克制空气阻力所做的功等于〔 〕A .2022121mv mv mgh --B .mgh mv mv --2022121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,那么物体刚被抛出时,其重力势能与动能之比为〔 〕A .sin 2θB .cos 2θC .tan 2θD .cot 2θ11.将质量为1kg 的物体以20m/s 的速度竖直向上抛出。
高考物理动能与动能定理题20套(带答案)含解析

高考物理动能与动能定理题20套(带答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s =的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v=5 m/s对滑块有:(x+L)=vt-12μ1gt2对木板有:x=12at2解得:t=1 s或t=73s(不合题意,舍去)故本题答案是:(1)70 N (2)1 m/s2(3)1 s【点睛】分析受力找到运动状态,结合运动学公式求解即可.3.如图所示,在娱乐节目中,一质量为m=60 kg的选手以v0=7 m/s的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A时速度刚好水平,并在传送带上滑行,传送带以v=2 m/s匀速向右运动.已知绳子的悬挂点到抓手的距离为L=6 m,传送带两端点A、B间的距离s=7 m,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小;(2)选手在传送带上从A运动到B的时间;(3)选手在传送带上克服摩擦力做的功.【答案】(1)5 m/s (2)3 s (3)360 J【解析】试题分析:(1)设选手放开抓手时的速度为v1,则-mg(L-Lcosθ)=mv12-mv02,v1=5m/s(2)设选手放开抓手时的水平速度为v2,v2=v1cosθ①选手在传送带上减速过程中 a=-μg② v=v2+at1③④匀速运动的时间t2,s-x1=vt2⑤选手在传送带上的运动时间t=t1+t2⑥联立①②③④⑤⑥得:t=3s(3)由动能定理得W f=mv2-mv22,解得:W f=-360J故克服摩擦力做功为360J.考点:动能定理的应用4.如图所示,一质量为M 、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧相连,弹簧的另一端固定在墙上.平板上有一质量为m 的小物块以速度v 0向右运动,且在本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为μ,弹簧弹性势能E p 与弹簧形变量x 的平方成正比,重力加速度为g.求:(1)当弹簧第一次伸长量达最大时,弹簧的弹性势能为E pm ,小物块速度大小为03v 求该过程中小物块相对平板运动的位移大小; (2)平板速度最大时弹簧的弹力大小;(3)已知上述过程中平板向右运动的最大速度为v.若换用同种材料,质量为2m的小物块重复上述过程,则平板向右运动的最大速度为多大?【答案】(1)2049pm E v g mg μμ-;(2)mg μ;(3)2v 【解析】 【分析】(1)对系统由能量守恒求解小物块相对平板运动的位移;(2)平板速度最大时,处于平衡状态,弹力等于摩擦力;(3)平板向右运动时,位移大小等于弹簧伸长量,当木板速度最大时弹力等于摩擦力,结合能量转化关系解答. 【详解】(1)弹簧伸长最长时平板速度为零,设相对位移大小为s ,对系统由能量守恒12mv 02=12m(03v)2+E pm +μmgs 解得s =2049pm E v g mgμμ- (2)平板速度最大时,处于平衡状态,f =μmg 即F =f =μmg.(3)平板向右运动时,位移大小等于弹簧伸长量,当木板速度最大时 μmg =kx对木板由动能定理得μmgx =E p 1+12Mv 2 同理,当m′=12m ,平板达最大速度v′时,2mg μ=kx′12μmgx′=E p 2+12Mv′2 由题可知E p ∝x 2,即E p 2=14E p 1解得v′=12v.5.夏天到了,水上滑梯是人们很喜欢的一个项目,它可简化成如图所示的模型:倾角为θ=37°斜滑道AB 和水平滑道BC 平滑连接(设经过B 点前后速度大小不变),起点A 距水面的高度H =7.0m ,BC 长d =2.0m ,端点C 距水面的高度h =1.0m .一质量m =60kg 的人从滑道起点A 点无初速地自由滑下,人与AB 、BC 间的动摩擦因数均为μ=0.2.(取重力加速度g =10m/s 2,sin 37°=0.6,cos 37°=0.8,人在运动过程中可视为质点),求: (1)人从A 滑到C 的过程中克服摩擦力所做的功W 和到达C 点时速度的大小υ; (2)保持水平滑道端点在同一竖直线上,调节水平滑道高度h 和长度d 到图中B ′C′位置时,人从滑梯平抛到水面的水平位移最大,则此时滑道B′C′距水面的高度h ′.【答案】(1) 1200J ;45当h '=2.5m 时,水平位移最大 【解析】 【详解】(1)运动员从A 滑到C 的过程中,克服摩擦力做功为:11W f s mgd μ=+ f 1=μmg cos θ s 1=sin H hθ- 解得W =1200J mg (H -h )-W =12mv 2 得运动员滑到C 点时速度的大小v =45(2)在从C 点滑出至落到水面的过程中,运动员做平抛运动的时间为t ,h '=12gt 2 下滑过程中克服摩擦做功保持不变W =1200J 根据动能定理得:mg (H -h ')-W =12mv 02运动员在水平方向的位移:x =v 0t x当h '=2.5m 时,水平位移最大.6.下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为L ,撞车后共同滑行的距离825l L =.假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量M 为故障车质量m 的4倍.(1)设卡车与故障车相撞前的速度为v 1两车相撞后的速度变为v 2,求12v v(2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生. 【答案】(1)1254v v = (2)32L L '=【解析】(1)由碰撞过程动量守恒12)Mv M m v +=( 则1254v v =① (2)设卡车刹车前速度为v 0,轮胎与雪地之间的动摩擦因数为μ 两车相撞前卡车动能变化22011122Mv Mv MgL μ-= ② 碰撞后两车共同向前滑动,动能变化221()0()2M m v M m gl μ+-=+ ③ 由②式22012v v gL μ-=由③式222v gL μ=又因825l L =可得203v gL μ= 如果卡车滑到故障车前就停止,由2010'2Mv MgL μ-= ④ 故3'2L L =这意味着卡车司机在距故障车至少32L 处紧急刹车,事故就能够免于发生.7.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6 m/s 的速度运动,运动方向如图所示.一个质量为2 kg 的物体(物体可以视为质点),从h=3.2 m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,物体向左最多能滑到传送带左右两端AB的中点处,重力加速度g=10 m/s2,求:(1)物体由静止沿斜面下滑到斜面末端需要多长时间;(2)传送带左右两端AB间的距离l至少为多少;(3)上述过程中物体与传送带组成的系统产生的摩擦热为多少;(4)物体随传送带向右运动,最后沿斜面上滑的最大高度h′为多少?【答案】(1)1.6s (2)12.8m (3)160J (4)h′=1.8m【解析】(1)mgsinθ=ma, h/sinθ=,可得t="1.6" s.(2)由能的转化和守恒得:mgh=μmgl/2,l="12.8" m.(3)在此过程中,物体与传送带间的相对位移:x相=l/2+v带·t,又l/2=,而摩擦热Q=μmg·x相,以上三式可联立得Q="160" J.(4)物体随传送带向右匀加速,当速度为v带="6" m/s时向右的位移为x,则μmgx=,x="3.6" m<l/2,即物体在到达A点前速度与传送带相等,最后以v带="6" m/s的速度冲上斜面,由=mgh′,得h′="1.8" m.滑块沿斜面下滑时由重力沿斜面向下的分力提供加速度,先求出加速度大小,再由运动学公式求得运动时间,由B点到最高点,由动能定理,克服重力做功等于摩擦力做功,由此可求得AB间距离,产生的内能由相互作用力乘以相对位移求得8.如图所示,在方向竖直向上、大小为E=1×106V/m的匀强电场中,固定一个穿有A、B 两个小球(均视为质点)的光滑绝缘圆环,圆环在竖直平面内,圆心为O、半径为R=0.2m.A、B用一根绝缘轻杆相连,A带的电荷量为q=+7×10﹣7C,B不带电,质量分别为m A=0.01kg、m B=0.08kg.将两小球从圆环上的图示位置(A与圆心O等高,B在圆心O的正下方)由静止释放,两小球开始沿逆时针方向转动.重力加速度大小为g=10m/s2.(1)通过计算判断,小球A 能否到达圆环的最高点C ? (2)求小球A 的最大速度值.(3)求小球A 从图示位置逆时针转动的过程中,其电势能变化的最大值. 【答案】(1)A 不能到达圆环最高点 (2)223m/s (3)0.1344J 【解析】 【分析】 【详解】试题分析:A 、B 在转动过程中,分别对A 、B 由动能定理列方程求解速度大小,由此判断A 能不能到达圆环最高点; A 、B 做圆周运动的半径和角速度均相同,对A 、B 分别由动能定理列方程联立求解最大速度;A 、B 从图示位置逆时针转动过程中,当两球速度为0时,根据电势能的减少与电场力做功关系求解.(1)设A 、B 在转动过程中,轻杆对A 、B 做的功分别为W T 和T W ', 根据题意有:0T T W W +'=设A 、B 到达圆环最高点的动能分别为E KA 、E KB 对A 根据动能定理:qER ﹣m A gR +W T1=E KA 对B 根据动能定理:1T B W m gR E '-= 联立解得:E KA +E KB =﹣0.04J由此可知:A 在圆环最高点时,系统动能为负值,故A 不能到达圆环最高点 (2)设B 转过α角时,A 、B 的速度大小分别为v A 、v B , 因A 、B 做圆周运动的半径和角速度均相同,故:v A =v B 对A 根据动能定理:221sin sin 2A T A A qER m gR W m v αα-+= 对B 根据动能定理:()2211cos 2T B B B W m gR m v α='-- 联立解得: ()283sin 4cos 49A v αα=⨯+- 由此可得:当3tan 4α=时,A 、B 的最大速度均为max 22/v s = (3)A 、B 从图示位置逆时针转动过程中,当两球速度为零时,电场力做功最多,电势能减少最多,由上可式得:3sinα+4cosα﹣4=0解得:24sin 25α=或sinα=0(舍去) 所以A 的电势能减少:84sin 0.1344625P E qER J J α=== 点睛:本题主要考查了带电粒子在匀强电场中的运动,应用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的速度和位移等;根据电场力对带电粒子做功,引起带电粒子的能量发生变化,利用动能定理进行解答,属于复杂题.9.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.10.如图所示,光滑轨道槽ABCD 与粗糙轨道槽GH 通过光滑圆轨道EF 平滑连接(D 、G 处在同一高度),组成一套完整的轨道,整个装置位于竖直平面内。
高考物理动能与动能定理题20套(带答案)及解析

高考物理动能与动能定理题20套(带答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块第一次通过C 点时的速度大小v C .(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】(1)BC 长度tan 530.4m l R ==o ,由动能定理可得21()sin 372B mg L l mv -=o代入数据的32m/s B v =物块在BC 部分所受的摩擦力大小为cos370.60N f mg μ==o所受合力为sin 370F mg f =-=o故32m/s C B v v ==(2)设物块第一次通过D 点的速度为D v ,由动能定理得2211(1cos37)22D C mgR mv mv -=-o有牛顿第二定律得2D D v F mg m R-= 联立解得7.4N D F =(3)物块每次通过BC 所损失的机械能为0.24J E fl ∆==物块在B 点的动能为212kB B E mv =解得0.9J kB E = 物块经过BC 次数0.9J=3.750.24Jn =设物块最终停在距离C 点x 处,可得()sin 37(3+)0mg L x f l x --=o代入数据可得0.35m x =2.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s =的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得: -μ1mgL =12mv 2-1220mv解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2 解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.3.如图所示,固定的粗糙弧形轨道下端B 点水平,上端A 与B 点的高度差为h 1=0.3 m ,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C 点到B 点的高度差为h 2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m =1 kg 的滑块(可看作质点)从轨道的A 点由静止滑下,然后从B 点抛出,恰好以平行于传送带的速度从C 点落到传送带上,传送带逆时针传动,速度大小为v =0.5 m/s ,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g =10 m/s 2,试求:(1).滑块运动至C 点时的速度v C 大小;(2).滑块由A 到B 运动过程中克服摩擦力做的功W f ; (3).滑块在传送带上运动时与传送带摩擦产生的热量Q . 【答案】(1)2.5 m/s (2)1 J (3)32 J【解析】本题考查运动的合成与分解、动能定理及传送带上物体的运动规律等知识。
完整版)高中物理动能定理典型练习题(含答案)

完整版)高中物理动能定理典型练习题(含答案)1.正确答案是D。
对于一个物体来说,只有在速度大小(速率)发生变化时,它的动能才会改变。
速度的变化是一个矢量,它可以完全由于速度方向的变化而引起,例如匀速圆周运动。
速度变化的快慢是指加速度,加速度大小与速度大小之间没有必然的联系。
2.一个物体从高度为H的地方自由落体,落到高度为h的沙坑中停止。
假设物体的质量为m,重力加速度为g,根据动能定理,当物体速度为v时,mgH = 1/2mv^2,因此v =sqrt(2gH)。
在沙坑中,重力做正功,阻力做负功,根据动能定理,1/2mv^2 - Fh = mgh,其中F为物体在沙坑中受到的平均阻力。
解方程得到F = (H + h)mg / (gh)。
3.一个物体沿一曲面从A点无初速度滑下,滑至曲面的最低点B时,下滑高度为5m,物体质量为1kg,速度为6m/s。
假设物体在滑行过程中克服了摩擦力,设摩擦力为F,根据动能定理,mgh - W = 1/2mv^2,其中W为物体克服阻力所做的功。
解方程得到W = 32J。
课后创新演练:1.滑块的质量为1kg,初速度为4m/s,水平力方向向左,大小未知。
在一段时间内,水平力方向变为向右,大小不变为未知。
根据动能定理,水平力所做的功等于滑块动能的变化量,即1/2mv^2 - 1/2mu^2,其中v和u分别为滑块在水平力作用下的末速度和初速度。
根据题意,v = u = 4m/s,解方程得到水平力所做的功为16J。
2.两个物体的质量之比为1:3,高度之比也为1:3.根据动能定理,物体的动能等于1/2mv^2,其中v为物体的速度。
假设两个物体在落地时的速度分别为v1和v2,则v1 : v2 =sqrt(h1) : sqrt(h2),其中h1和h2分别为两个物体的高度。
因此,v1^2 : v2^2 = h1 : h2 = 1 : 9,即它们落地时的动能之比为1:9.3.物体沿长为L的光滑斜面下滑,速度达到末速度的一半时,物体沿斜面下滑的距离为L。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m: C 点竖直上抛,根据动能定理:
12 mgh 0 mv2
2 ∴ h=2.5 R ∴ H=h +R=3.5 R
(2) 物块从 H 返回 A 点,根据动能定理:
mgH -μ mg=s0-0 ∴ s=14 R
小物块最终停在 B 右侧 14R 处
13 也可以整体求解,解法如下:
m: B→ C,根据动能定理: F 2R f 2R mgH 0 0
解: (1) m 由 A 到 B:根据动能定理: mgh 1 mv2 2
1 mv02 2
v 20m/s
m v0
(2) m 由 A 到 B,根据动能定理 3:
1 21 2
mgh W mvt mv0
2
2
W 1.95J
3a、运动员踢球的平均作用力为 200N,把一个静止的质量为
在水平面上运动 60m 后停下 . 求运动员对球做的功?
4、在距离地面高为 H 处,将质量为 m 的小钢球以初速度 v0竖直下抛,落地后,小钢球陷入泥 土中的深度为 h 求:
(1) 求钢球落地时的速度大小 v.
(2) 泥土对小钢球的阻力是恒力还是变力 ?
(3) 求泥土阻力对小钢球所做的功 . (4) 求泥土对小钢球的平均阻力大小 .
解: (1) m 由 A 到 B:根据动能定理:
WF f l cos180o 1 mvm2 0 2
l 800m
11. AB 是竖直平面内的四分之一圆弧轨道,在下端 B与水平直轨道相切,如图所示。一小球自
A 点起由静止开始沿轨道下滑。已知圆轨道半径为
R,小球的质量为 m ,不计各处摩擦。求
(1) 小球运动到 B点时的动能;
(2) 小球经过圆弧轨道的 B 点和水平轨道的 C点时,所受轨道支持力 N B、 N C各是多大 ?
(3) m 由 A 到 B: W WG WF
WF 12J
2m/s ,求: v
Bm
h N
A mg
2、一个人站在距地面高 h = 15m 处,将一个质量为 m = 100g 的石块以 v0 = 10m/s 的速度斜向 上抛出 . (1) 若不计空气阻力,求石块落地时的速度 v.
(2) 若石块落地时速度的大小为 vt = 19m/s ,求石块克服空气阻力做的功 W.
(2) 如果水平轨道 AB 足够长,试确定小物块最终停在何处?
解:
(1) 13 m: P→ B ,根据动能定理:
12 F f 2R mv1 0
2
其中: F =2 mg , f= μ mg
∴
v
2 1
=7
Rg
C
O
R
B
P A
m: B→ C,根据动能定理:
mgR 1 mv22 2
∴
v
2 2
=5
Rg
1 mv12 2
冰车受到的摩擦力是它对冰面压力的
0. 01 倍 ,当冰车前进了 s1=30m 后 ,撤去推力 F ,冰车又前
进了一段距离后停止 . 取 g = 10m/s2. 求:
(1) 撤去推力 F 时的速度大小 . 程 s.
(2) 冰车运动的总路
解: (1) m 由 1 状态到 2 状态:根据动能定理 7:
Fs1 cos0o
h 多大;
(2) 要求物块能通过圆轨道最高点, 且在最高点与轨道间的压力不能超过 5mg。求物块初始位
置相对于圆形轨道底部的高度 h 的取值范围。
Am
解:
(1) m: A→ B→ C 过程:根据动能定理:
C
mg(h 2R) 1 mv2 0
①
2
h
R
物块能通过最高点,轨道压力 N=0
B
∵ 牛顿第二定律
v2
B、C
分别是两个圆形轨道的最低点,半径
R1=2.0m 、 R2=1.4m 。一个质量为 m =1.0kg 的质点小球,
从轨道的左侧 A 点以 v0=12.0m/s 的初速度沿轨道向右运动, A、 B 间距 L 1=6.0m 。小球与水平
轨道间的动摩擦因数 μ=0.2。两个圆形轨道是光滑的, 重力加速度 g=10m/s2。(计算结果小数点
Wf mgR 8J
A
RO
mg N
x
f
B mg
C
(2) m 由 B 到 C: Wf mg x cos180o
0.2
7、粗糙的 1/4 圆弧的半径为 0.45m ,有一质量为 0.2kg 的物体自最高点 A 从静止开始下滑到圆 弧最低点 B 时,然后沿水平面前进 0.4m 到达 C 点停止 . 设物体与轨道间的动摩擦因数为 0.5 ( g
mg m
②
R
∴ h=2.5R
(2) 若在 C 点对轨道压力达最大值,则
m: A’→ B→ C 过程:根据动能定理:
mghmax 2mgR mv 2
③
物块在最高点 C,轨道压力 N=5mg, ∵ 牛顿第二定律
v2
mg N m
④
R
∴ h=5R
∴ h 的取值范围是: 2.5R h 5R
15.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的两个圆形轨道组成,
1、 一质量为 1kg 的物体被人用手由静止向上提高 (1) 物体克服重力做功 . (2)合外力对物体做功 .
1m ,这时物体的速度是 (3)手对物体做功 .
解: (1) m 由 A 到 B: WG mgh 10J
克服重力做功 1 W克G WG 10J
(2) m 由 A 到 B,根据动能定理 2:
W 1 mv2 0 2J 2
又 Q l cos s1 、 s s1 s2
则 11: h s 0
即:
h
s
s1 ,在水平面上运动的位移
N1
f1
A
C
N2
l mg
h
B f2
s2
mg s1
9 也可以分段计算,计算过程略 .
s
10 题目里没有提到或给出,而在计算过程中需要用到的物理量,应在解题之前给出解释。
11 具体计算过程如下:由 l cos s1,得:
= 10m/s 2),求:
(1) 物体到达 B 点时的速度大小 .
(2) 物体在圆弧轨道上克服摩擦力所做的功 .
f
解: (1) m 由 B 到 C:根据动能定理:
o
1 2A
mg l cos180 0 mvB
2
RO mg N
l
vB 2m/s
f
(2) m 由 A 到 B:根据动能定理: mgR Wf 1 mvB2 0
3 此处写 W 的原因是题目已明确说明 W 是克服空气阻力所做的功 .
4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功
.
5 结果为 0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,
然后其他形式的能又转化为动能,而前后动能相等 .
-1-
s
s Wf 1 mv02 mgh
2
12 克服摩擦力做功 W克f Wf mgh mv0
2
10、汽车质量为 m = 2 × 103kg,沿平直的路面以恒定功率 20kW 由静止出发,经过 60s,汽车
达到最大速度 20m/s. 设汽车受到的阻力恒定 . 求:
(1) 阻力的大小 .
(2) 这一过程牵引力所做的功 .Βιβλιοθήκη 0,当小球在泥土中减速时,
泥土对小球的力必大于重力 mg,而当小球在泥土中静止时, 泥土对小球的力又恰等于重力 mg. 因此可以推知,
泥土对小球的力为变力 .
8 也可以用第二段来算 s2 ,然后将两段位移加起来
m 由 2 状态到 3 状态:根据动能定理:
mgs2 cos180o
0
12 mv
2
s2 70m
mgh mg s1 cos180o mgs2 cos180o 0 0
mgh mg s1 s2 0
由 s s1 s2 ,得: mgh mgs 0
-3-
证毕 .
9、质量为 m 的物体从高为 h 的斜面顶端自静止开始滑下,最后停在平面上的
B 点 . 若该物体
从斜面的顶端以初速度 克服摩擦力做的功 .
v0 沿斜面滑下, 则停在平面上的 C 点 . 已知 AB = BC ,求物体在斜面上 f1 O N1
W mv mv 0
2
2
v0 0 v0 m
OA
OA N
F mg
v0
B AB
N
f mg
1 不能写成: WG mgh 10J . 在没有特别说明的情况下, WG 默认解释为重力所做的功,而在这个过程中重
力所做的功为负 .
2 也可以简写成: “ m: A B : Q W Ek ”,其中 W Ek 表示动能定理 .
(3) 小球下滑到距水平轨道的高度为
1 R 时速度的大小和方向; 2
m
A
O
解: (1) m:A→ B 过程: ∵动能定理 mgR
12 mvB
0
2
m
R
O
B
C
即: h s 0
D
R
RA/2
12 由于种种原因,此题给出的数据并不合适,但并不妨碍使用动能定理对其进行求v解D B .
C
-4-
EKB
1 2
mvB2
v0
解:设斜面长为 l , AB 和 BC 之间的距离均为 s,物体在斜面上摩擦力做功为 Wf .
m 由 O 到 B:根据动能定理: mgh Wf f2 s cos180o 0 0
mg l h
N2
f2
A
B
C
m 由 O 到 C:根据动能定理: mgh Wf