Portable mixed abrasive water jet equipment for rescue in high gas mine shaft
2019年北京市科学技术奖提名公示内容(公告栏)

2019年北京市科学技术奖提名公示内容(公告栏)一、项目名称非常规油气水力喷射安全高效完井增产技术及应用二、候选单位1、中国石油大学(北京);2、中国石油天然气股份有限公司西南油气田分公司页岩气研究院;3、重庆地质矿产研究院;4、中石化重庆涪陵页岩气勘探开发有限公司;5、四川长宁天然气开发有限责任公司三、候选人1、田守嶒;2、盛茂;3、李根生;4、陆朝晖;5、张鉴;6、黄中伟;7、王海柱;8、宋先知;9、徐泉;10、张永春;11、陈满;12、史怀忠;13、肖勇军;14、杨睿月;15、耿黎东四、项目简介非常规油气资源开采改变了全球传统能源格局。
高效开采非常规油气、向“磨刀石”里要油气,被国际石油界公认为二十一世纪重要发展方向和世界性难题,其技术先进性成为衡量一个国家油气开采水平的重要标志。
在几千米井深的非常规油气储层里通过水力压裂技术制造出复杂人工立体裂缝系统、有效沟通和覆盖全储层是非常规油气安全高效采出的核心关键。
然而,低本高效环保压裂方法与精细化压裂完井参数设计理论及技术的缺乏成为制约非常规油气精准压裂、高效增产的瓶颈。
项目组历时8年,率先提出“水力喷射、无限级、绿色无/少水”压裂完井增产原理,在国家自然科学基金、国家重大专项、北京市科委、中石油、中石化等项目持续支持下,坚持“创新原理-研制工具-设计参数-矿场试验-推广应用”研究思路,形成了非常规油气水力喷射立体改造特色技术,取得了非常规安全高效精准压裂增产技术的突破。
主要创新性成果如下:1)发明了水力喷射压裂完井增产系列方法及井下核心装置,形成了水力喷射非常规油气立体改造特色技术,解决非常规油气压裂完井作业成本高、压裂改造针对性差的突出难题。
2)创新提出了将超临界CO2作为压裂液体的喷射压裂原理方法,发明了超临界CO2喷射压裂技术,解决了不下封隔器即可实现超临界CO2分段压裂的难题,取得了水力喷射分段绿色“无水”压裂技术突破。
3)系统揭示了非常规页岩气储层气体赋存环境、微纳尺度流动机理,创建了基质孔-人工缝耦合的非常规油气完井参数优化设计方法,入编了《页岩气开发方案编制技术规范》国家标准,实现了非常规油气压裂完井增产的精细化设计。
基于FLUENT的非淹没式纯水射流喷嘴内部流场仿真

提高水射流效率及降低能耗的目的 。
然而, 有关水喷嘴内部流场, 尤其是混合室和混合 管内部流场特性的仿真研究少有报道。 本文用 Flunet 仿真了水喷嘴内部流场, 混合室与混合管内部流场, 以 及收敛角对流场的影响, 并进行了相关的实验验证。 假设高压水中不含空气, 在水射流的喷射过程中, 根据水喷嘴的结构特点, 可以假设它的内部一直充满 水; 而混合室与混合管的直径相比射流直径要大得多 , 并且在初始状态充满空气, 所以在整个射流过程中, 它 们内部既有水也存在空气。 根据以上分析, 把喷嘴分 为两个部分进行仿真: 水喷嘴单相流稳态仿真和混合 室与混合管的多相流瞬态仿真。
[6 ]
vj ' =
W 2 πr0 t
( 2)
r0 = 4 × 10 - 5 m, W 为水的体积, m3 。 式中, 将仿真值与实验值进行比较, 如表 1 所示, 可以看 出, 仿真值与实验值之间存在差异, 可能的原因: 一方 面是实际的水喷嘴内壁不够光滑, 导致了射流能量的 损失; 另一方面是仿真模型的网格数量较少 , 网格尺寸 较大。尽管如此, 实验测得的射流速度与仿真模型预 测值的平均误差是 7. 9% , 最大误差为 16% , 而且预测 该仿真过程能 的射流速度的变化规律和实测值相似, 较好地预测射流速度。
1
水喷嘴内部流场仿真及实验验证
喷嘴是影响磨料水射流切割性能的关键的部分之 一, 其中水喷嘴对射流速度影响很大 , 因此仿真分析水 喷嘴内部流场状态十分必要。 1 . 1 仿真模型的建立与计算 Fluent 是目前 比 较 流 行 的 一 种 流 体 力 学 分 析 软 , 本文用该软件分析了 14 种入口压力水平下的流 场状态。以入口压力为 10 MPa 为例, 进行水喷嘴内部 件 的纯水三维稳态仿真。模型几何尺寸均为水喷嘴的实 际尺寸, 其中锥段处上表面和下表面的直径分 别 为 3. 5 mm 和 3. 1 mm, 高度为 2. 1 mm; 下端圆柱半径 r0 为 0. 04 mm, 高度为 0. 4 mm; 水为不可压缩液体, 密度 ρ w 为 10 kg / m ; 由于水喷嘴内部的流场呈轴对称分 布, 在划分网格和求解计算时, 把整个模型沿着对称面 进行切割, 只对其 1 /4 进行仿真, 如图 2 所示。共划分 28 200 个六边形网格, 中心部分加密。
文献翻译-非传统的加工工艺

外文资料翻译NON-CONVETIONAL MACHININGNon-conventional machining has been well known in ceramics processing due to their high productivity and cost effectiveness. In the past,many researchers have studied machining of advanced ceramics conducted by chemical machining(CM), electrical discharge machining(EDM),laser beam machining(LBM) and ultrasonic machining(USM).Non—conventional machining utilizes other forms of energy different from mechanical energy. The energies used in non—conventional machining are thermal energy, chemical energy and electrical energy.Chemical machining is one of the oldest micromachining technologies.This process applies reactive enchants to remove unwanted part from the work piece surface. It is a corrosive-controlled process. Many studies have been done on CM to investigate its etching rate, surface roughness and dimensional accuracy. CM includes photochemical machining. PCM is a method of fabricating component using reactive etchings to corrosively oxidize selected areas of the component. This process can produce highly complex products with very fine details, at high accuracy and low cost. They present a number of advantages,such as simple set up,quick preparation and no tool required; hence problems such as tool wear, machine tool deflections, vibrations and cutting forces are eliminated. In addition, chemical machining minimizes the effect of ceramics brittleness and low fracture. Disadvantages of chemical machining include chemical disposal,the presence of uncontrollable parameters, especially material structure and their rate of chemical reaction with solutions. In addition, high attention is required during processing. ZUBEL studied the silicon anisotropic etching process in water solution of KOH and TMAH with and without both organic and inorganic addition.This study shows that the etching rate is affected by the attendance of organic and inorganic agents.KIM employed the etching process with alower oxygen gas flow ratio and found that this action reduces etching damage to the low—k materials.Abrasive water jet (AWJ) is a technique that involves forceful impingement of abrasive particles to achieve the removal of surface material. AWJ depends on the water jet pressure ,stand—off distance,abrasive type’s size and flow rate. However, these choices are significantly affected by extreme factors such as the machined material structure and geometry of the jet nozzle. The most common advantage of AWJ is that it yields little heat during machining process therefore no heat affected zone(HAZ) happens,hence the process does not require heat treatment and no damage is reported.Compared with traditional machining technologies. AWJ offers the following advantages:fast speed,able to cut thick material,good accuracy, finishing surface and it cuts virtually anything with no HAZ.Unfortunately, some burr will occur near the cutting area. AWJ is widely used in metal, glass, ceramic,marble and granite cutting machines. GI and GI made a conclusion in their research that AWJ had a great potential as a machining method for brittle and hard materials. Unfortunately, they found a large—scale fracture that easily developed on the backside of the work piece and affected surface finish. Although AWJ has been recognized as the most efficient method to machine ceramics , result showed that the damage in surface always happens in the lower zone of the surface , where a lot of pits were found and lower the surface quality. To overcome this problem,a new cutting head oscillation technique has been introduced. This technique applied to the cutting process produces superior results and shows that the smooth zone depths increase by more than 30%with oscillation as compared with that without oscillation. However, a further study is required to reduce the pits effect that occurs at the lower surface layer.Electrical discharge machining uses spark erosion to remove small particles from electrically conductive material.The acceleration of EDM material removal rate increases with the discharge current and working voltage, but decreases with increasing pulseduration. EDM is especially well—suited for cutting intricate contour that would be difficult to produce with traditional machining. Advantages of EDM include high dimensional accuracy, good surface finish,lack of burr .Ti3SiC2 with excellent electrical conductivity and thermal conductivity is easily machined by EDM but high power is needed. In order to obtain a high material removal rate and better surface roughness,LIU suggested using a suitable chemical additive, dielectric strength,washing capability and viscosity of the machining fluid. They also suggested using a water-based emulsion as the machining fluid as harmful gas is not generated during machining,and the equipment is not corroded. Another suggestion by MUTTAMARA to improve the material removal rate is by employing positive polarity in the case where the conductive layer is sufficient. Study on the EDM of conductive ceramics shows EDM performance is purely dependent on the level of intensity. It has been observed that increasing intensity will tend to increase surface roughness and electrode wear.HU investigated EDM on Ti3SiC2 using water as dialectic and found typical thermal shock cracks and loose grains in subsurface, which result in about 25%of strength degradation. Results of EDM reveal a wide variation in removal rates and surface finishes, as shown in 4 and 5 shows the material removal and tool wear for EDM under roughing condition;and Fig-6 indicates the TIB surface after EDM.Electrochemical discharge machining(ECDM)is a modification of EDM. Materials are removed or deposited with the transferring of ions based on the anodic dissolution mechanism, so that high precision is achievable and it has the feasibility of micromachining. In order to obtain better machining accuracy and smaller machining size,many research works have been done on electrolyte, electrode’s insulation and systematic control of machining process. BHATTAC HARYYA found that the machining rate and accuracy could be enhanced through effective and precise control of the spark generation. Taper side wall and flat front tool tip are the most effective parameters for controlled machining. The advantages of ECDM include higher material removal rate , use of nontoxic electrolyte components withvery little changes in their composition during operation ,minimal waste disposal ,monitoring and control of electrolyte .Laser assisted machining is a thermal process. The laser is used as a heat source with the beam focused on the un—machined section of the work piece .The addition of heat softens the surface layer of the material, so ductile deformation happens rather than brittle deformation during cutting. LAM power requirements depend largely on the material and the nature of the machining process. In LAM ,cutting force is obviously significantly reduced and the ease of cutting is increased accordingly ,resulting in evident improvement in surface roughness. The possibility of vaporizing material during LAM may cause surface problems due to its severity in much the same way as in discharge machining. The advantages of laser are that it provides high speed and precise cut when cutting thin material ;Laser yields no burr and a little HAZ. LAM has demonstrated its ability to reduce cutting force and lower dynamic forces,less sharp segmented chip and smooth surface finish is produced .It is suitable to cut non—reflection mild steel.LAM disadvantages include it requires high energy, high cost and must be conducted in a specify condition .The power of laser must be controlled properly to obtain a satisfactory result and a lot of power is needed to conduct this machining .CHANG and KUO showed that LBM clearly appropriate for predicting the temperature distribution of difficult—to—machine materials during the LAM process.Tool wear is a major factor affecting the surface roughness of the work piece.Data shows the comparison of tool wear in LAM with conventional machining. They found that cutting resistance of processing aluminum oxide ceramics is extremely large, thus increasing the tool wear and affecting surface quality. BLACK showed that surface glaze usually possesses a different linear expansion rate to the underlying substrate.The large thermal gradient due to laser beam causes the lower substrate to expand at a different rate,resulting in cracking of the glaze.Ultrasonic machining (USM) is a process where material is removed primarily by repeated impact of the abrasive particles .the main parameters, which are staticforce, vibration amplitude, and grit size, have significant effects on the material removal rate .Material removal occurs when the abrasive particles, suspended in the slurry between the tool and work piece, impact the work piece due to the down stroke of the vibrating tool. It is mentioned in many reports that, for deeper cut, a vacuum-assist to ensure adequate flow of the suspension is strongly recommended. Another type of USM is rotary ultrasonic machining .The difference between USM and RUM is the tool used. USM uses a soft tool and slurry loaded with hard abrasive particles, while in RUM the hard abrasive particles are handed on the tools .The major advantage of USM is that it is a non-thermal, non-chemical, and non—electrical process.Therefore,metallurgical,chemical or physical properties of work piece remain unchanged.However, in USM.The material removal rate is considerably slow and even stops as penetration depth increases;the slurry may wear away the wall of the machined hole as it passes back towards the surface,which limits the accuracy; and considerable tool wear happens,which in turn makes the process very difficult to hold close tolerances. Efforts have also been made to develop models to predict the material removal rate in RUM from control variables. ZENG concluded that RUM tools could be designed in a way so that the lateral face is shorter. Tools with shorter latter face use less diamond grains and hence lower manufacturing cost.非传统的加工工艺非传统加工已得到很好的处理,由于其高效率及成本效益陶瓷闻名。
Parameter optimization of machining processes

abrasive consumption. However, the authors had not considered any constraint and no bounds for variables were specified. To overcome above limitations, Jain et al. [7] used genetic algorithm as a tool for maximization of the material removal rate with power consumption as a constraint. Rao et al. [8] used simulated annealing algorithm to the optimization of abrasive water jet machining process and reported significant improvement in the material removal rate over that obtained by Jain et al. [7]. Previous work on the optimization of grinding process parameters has concentrated on possible approaches for optimizing constraints during grinding. Amitay [9] reported the technique of optimizing both grinding and dressing conditions for the maximum workpiece removal rate subjected to constraints on workpiece burn and surface finish in an adaptive control system. Wen et al. [10] applied successive quadratic programming approach using a multiobjective function model with a weighted approach for optimization of surface grinding process parameters. Rowe et al. [11] provided an extensive review on various approaches based on artificial intelligence to the grinding process. A genetic algorithm (GA)-based optimization procedure was developed by Saravanan et al. [12] to optimize the grinding conditions. Dhavalikar et al. [13] applied combined Taguchi and dual response methodology to determine the robust condition for minimization of out of roundness error of workpiece for centerless grinding operation. Optimization was then carried out by using Monte Carlo simulation procedure. Mitra and Gopinath [14] used non-dominated sorting genetic algorithm for multiobjective optimization of industrial grinding process. Krishna [15] applied differential evolution algorithm for optimization of process parameters of grinding operation. Pawar et al. [16] used particle swarm optimization algorithm for optimization of grinding process parameters and showed superiority of particle swarm optimization algorithm over traditional optimization techniques. For the same problem, Rao and Pawar [17] presented that artificial bee colony and harmony search algorithms provide better accuracy of solution as compared to particle swarm optimization. Various investigators have proposed optimization techniques, both traditional and advanced, for optimization of multipass milling operation. Shin and Joo [18] used the dynamic programming optimization method for milling process parameter optimization. Wang [19] used a neural network based approach to optimize milling process parameters. Tolouei-Rad and Bidhendi [20] used the method of feasible direction and considered maximization of profit rate as an objective function in milling operation. Sonmez et al. [21] applied dynamic programming to determine optimum number of passes and the optimal values of the cutting conditions were found by using geometric programming. Shunmugam et al. [22] used GA for milling process
水射流加工技术11

水射流加工技术
主讲:杨晓峰
水射流加工技术(以柔克刚的技术)的历史
“水滴石穿”体现了在人们眼中秉性柔弱的水本身潜在的 威力。 20世纪60年代初期的探索实验阶段,主要应用于低压水射 流采矿。 60年代末至70年代初的基础设备研制和攻坚阶段,主要研 制高压泵、增压器和高压管件及推广高压水射流清洗技术。 70年代初至80年代初的工业实验及工业应用阶段,大量的 高压水射流采煤机、切割机和清洗机相继问世并进行工业 实验。 80年代以来是高压水射流迅速发展阶段,主要特点是高压 水射流的研究进一步深化,磨料水射流、磨料射流、空化 射流和自激震荡射流等新型射流技术发展迅速。
水射流加工技术的理论基础:
当高速水滴(Water Slugs)冲击固体表面时, 击点的滞止压力(Stagnation Pressure)Ps为: Ps=1/2ρv2 式中:v—水滴的速度; ρ —水的密度。 从上式可以看出,水射流的打击力(或穿透力) 与射流速度的平方成正比。这意味着通过提高 射流的速度,水射流的打击力(或穿透力)可以 成倍提高。
龙门式数控水切割机
悬臂式数控水切割机
水射流加工的优点:
多功能、高效能 没有热反应区 投资成本低、效益好 绿色环保
水射流加工的缺点:
设备功率大 喷嘴磨损快 不适合于大型零件及去除超大的毛刺加工 缺乏适用与水射流加工的软件
不锈钢
其它铁合金
其他材料
玻璃,大理石,复合材料等
影响水射流加工性能的参数:
系统参数:水射流系统压力; 喷嘴结构参数:喷嘴直径、倒角半径和混合管长 度、混合管直径 ; 磨料参数:磨料材料、颗粒直径、磨料流量、颗 粒形状; 混合方式:压力驱动或负压吸入; 磨料混合状态:干粉或浆液; 切割参数:进给速度、靶距、走刀次数、射流角 度; 工件材料参数:强度、硬度、致密度等;
基于HyperWorks的不同铺层方式复合材料剪切强度有限元分析

第36卷第6期2020年12月电4机械,打E lectro-M echanical Engineering•制造工艺•D O I: 10.19659/j.issn.l008-5300.2020.06.012基于Hyper W orks的不同铺层方式复合材料剪切强度有限元分析+马玉钦、陈义\许威\任晓雨2,靳浩\李开府\王杰\赵亚涛\李飞1(1.西安电子科技大学机电工程学院,陕西西安n o o n;2.陕西职业技术学院汽车工程与通用航空学院,陕西西安710038)摘要:剪切强度和剪切韧性是反映复合材料构件在复合受力状态下承载能力及耗能能力的重要指标,不同 铺层方式的单向玻璃纤维与短切玻璃纤维混杂增强复合材料层合板的层间剪切性能有明显差异。
文中基于 HyperWorks商用有限元软件建立了精确的复合材料层合板模型,通过数值模拟分析不同铺层方式复合材料层 合板的层间剪切性能。
研究结果表明,铺层材料对复合材料层合板的层间剪切性能影响较大,而铺层顺序对复 合材料层合板的层间剪切性能影响较小。
关键词:复合材料;铺层方式;层间剪切强度;有限元分析中图分类号:TB381 文献标识码:A文章编号:1008-5300(2020)06-0050-04F in ite E lem en t A n alysis o f Shear S tren gth o f C om p osite w ithD ifferent L am inate M eth od s B ased on H yperW orksM A Yuqin1, CH EN Y i1, X U W ei1, R EN X iaoyu2, JIN H ao1, LI K aifu1,W ANG Jie1, ZHAO Y atao1, LI Fei1(1.School of Mechano-Electronic Engineering,Xidian University,Xi'an710071, China-,2.School of Automotive Engineering and General Aviation,Shanxi Vocational and Technical College,Xi'an710038, China)A bstract: Shear strength and shear toughness are important indexes to reflect the bearing capacity and energy dissipation capacity of composite components under complex stress condition.The interlaminar shear properties of composite laminates reinforced by unidirectional glass fiber and short-cut glass fiber hybrid with different laminate methods are significantly different.Based on the HyperWorks commercial finite element software,an accurate composite laminate model is established and the interlaminar shear properties of composite laminates with different laminate modes are numerically analyzed in this paper.The results show that the interlaminar shear strength of the composite laminates is greatly affected by the lay-up materials but less affected by the lay-up sequence.K ey words: composite;laminate method;interlaminar shear strength;finite element analysis引言玻璃纤维具有拉伸强度高、防火、防霉、耐高 温、电绝缘性好等一系列优异的性能,是目前使用量 最大的一种增强纤维[1_3]。
机械工程英语第2版叶邦彦PART I Unit-16
under proper conditions light energy of a particular frequency is used to stimulate the electrons in an atom to emit additional light with exactly the same characteristics of the original light source.
Jet-nozzle [喷嘴] diameters range between 0.05 mm and 1 mm (0.002 in. and 0.04 i can be cut, including
plastics, fabrics, rubber, wood products, paper, leather, insulating [绝缘的] materials, brick, and composite materials.
Fig.1 Schematic set up of a laser drilling operation
Laser beams are also used for the following:
(1) Welding
(2) Small-scale and localized heat treating of metals and ceramics to modify their surface mechanical and tribological [摩擦学的] properties
➢ A machining process in which heat is produced by a focused electron beam at a sufficiently high temperature to volatilize [挥发] and thereby remove metal in a desired manner; takes place in a vacuum. Abbreviated EBM.
基于FLUENT的淹没环境高压水射流数值模拟
基于FLUENT的淹没环境高压水射流数值模拟刘霄亮;高辉;焦向东;田路【摘要】海底管道配重混凝土的去除工作是大多数水下管道维抢修的前提,高压水射流应用于海底管道配重混凝土的去除工作相比于机械方法优势明显.将高压水射流应用于海底需要探究淹没环境对射流效果的影响,通过FLUENT数值分析,分别研究了喷嘴直径、环境压力、射流压力对淹没射流动压的影响,得到了一些对工程有重要指导意义的结论,结论指出:淹没环境对高压水射流的效果削弱很大;环境压力对射流影响相对较小;喷嘴直径和射流压力对射流效果影响明显.最后通过淹没环境高压水射流破碎混凝土实验应用和验证了仿真所得结论.【期刊名称】《机械设计与制造》【年(卷),期】2016(000)011【总页数】4页(P117-120)【关键词】高压水射流;淹没环境;FLUENT数值模拟;混凝土清除【作者】刘霄亮;高辉;焦向东;田路【作者单位】北京化工大学机电工程学院,北京100029;北京石油化工学院机械工程学院,北京102617;北京石油化工学院机械工程学院,北京102617;北京化工大学机电工程学院,北京100029【正文语种】中文【中图分类】TH16;TH137海底管道配重混凝土的去除是大多数水下管道维抢修的前提,高压水射流应用于海底管道配重混凝土的去除工作较机械去除的方法有很大的优势,工程应用广泛,但是目前国内还没有掌握这项技术。
高压水射流技术具有传递能量集中、无磨损、减尘和适应性强等优点[1-2],广泛应用于清洗,切割、矿山开采、石油钻探以及建筑混凝土的破碎、清洗、打毛等项目[3-4]。
将高压水射流应用于海底混凝土的破碎有很大的优势,由于水下环境复杂,要求连续作业时间长,如果用机械去除的方法对刀具要求极高,容易磨损,维护成本很高,而且机械刀具也容易对海底管道造成额外损伤。
在海底应用高压水射流要注意淹没环境和海底高压环境对射流速度和动压较大的衰减作用,所以对淹没环境的高压水射流的相关研究很有必要。
冶金工业术语(英汉)
A埃(angstrom的缩写,1埃=10“厘米)A alloy A铝合金(铝镁硅合金)A.3A alloy A.3A变形镁合金(3A1,余量Mg)A5 A5法国货币合金(90Al,5Ag,5Cu)A.13 alloy A 13压铸硅铝合金(12Si,余量A1)A.355 alloy A.355铸造铝合金(1.4Cu,0.5Si,0.8Mg,0.8Ni,余量Al) A AND NOT B gate禁止门,A“与”B非门abac坐标网,列线(诺谟)图abaci(abacus的复数)算盘;曲线图,列线图;【选】淘金盘abacus算盘;曲线图,列线图;【选】淘金盘abampere绝对安培(电磁制电流强度单位,等于10安培)abandonment 废弃abas列线图,诺谟图abatement消除;减轻,减少;失效;废料;【环保】治理abatement of smoke 消除烟雾(法)abatjour灯罩;反射器;斜片百叶窗;天窗,亮窗;遮阳abat-vent固定百叶窗;通气帽;障风装置Abbe condenser 阿贝聚光镜abbertite黑沥青Abbott rail joint阿博特钢轨接头A-B-C process污水净化三级过程A-B-C-scale Rockwell machine A-B -C标度洛氏硬度机Abel's reagent阿贝尔侵蚀剂aberration失常,错乱;【铁】炉况反常,不顺行;【金】象差aberration caustics 象差焦散线aberrant source象差源;偏差源abichite光线矿,砷铜矿abietic acid 松香酸C20H2002 20ability能力,本领;性能ability to ball造球性能,造球能力ability to deform变形能力ability to depth-harden 淬透能力ability to harden硬化性能,硬化能力ability to retain moisture含水性能,含水能力Abiperm process艾比珀姆钠回收法ablation除去;消融,烧蚀abnormal反常的,不正常的;不规则的abnormal alarm lamp 反常警报灯abnormal creep 反常蠕变abnormal current 异常电流abnormal descent index反常(炉料)下降指数abnormal erosion 异常侵蚀abnormal fast driving 反常快行,料速过快abnormal grain growth 异常(反常)晶粒长大abnormality异常性,反常性;不正常现象abnormal steel反常(组织的)钢abnormal structure 反常组织abnormal temperature 反常温度abnormal voltage反常电压abnormal wrought iron 反常熟铁A- bomb原子弹abort故障,失灵,紧急停车aborted heat炼废炉次,报废炉次about-sledge hammer夕C锤above critical state超临界(状)态above-the-bed temperature 料层上部温度above- thermal 超热的abradability磨损性,磨蚀性abradant磨料,研磨剂;金刚砂abrade磨蚀,磨损;磨光abrader磨光机;磨蚀试验机;砂轮机abradibility可研磨性abradum细氧化铝粉Abramsen machine艾布拉姆森式管材矫直机Abramsen straightener 艾布拉姆森型斜辊(管棒)矫直机Abramson code艾布拉姆逊码abraser 磨料abrasion磨损,磨耗,磨蚀;海蚀,冲蚀;【团】粉末率abrasion effect磨损效应abrasion hardness 耐磨硬度abrasion index抗磨指数,抗磨强度;粉末率abrasion marks 磨痕,擦痕abrasion- proof耐磨的,防磨的abrasion resistance耐磨性,抗磨性abrasion resistance test 耐磨试验abrasion resistant抗磨的,耐磨的abrasion resistant alloy 耐磨合金abrasion resistant cast iron 耐磨铸铁abrasion resistant coating 耐磨镀层,耐磨保护层abrasion resistant lining 抗磨炉衬abrasion resistant quality 耐磨性,抗磨性abrasion resistant steel 耐磨钢abrasion strength 抗磨强度abrasion test磨耗试验,磨损试验,磨蚀试验;抗磨试验abrasion tester 磨损试验机abrasion (testing) machine 磨损试验机,耐磨试验机abrasive磨蚀的,磨损的;磨料abrasive action磨蚀作用;磨剥作用abrasive belt磨光砂带,研磨砂带abrasive belt grinding 带式磨光,用研磨带磨光abrasive belt polishing带式抛光,用研磨带抛光abrasive blast cleaning 喷砂清理abrasive brick 耐磨砖abrasive characteristics 磨损性,磨蚀性abrasive cleaning砂轮清理法abrasive cutoff砂轮切割abrasive cutoff machine 磨切机,磨割机,砂轮切断机abrasive cutting wheel 切割砂轮abrasive damage 磨伤;磨损abrasive descaling磨除氧化皮,磨除铁鳞abrasive disc砂轮abrasive disc cutter 砂轮切割片,砂轮锯abrasive dust磨屑,研磨粉abrasive finishing研磨精整abrasive grain磨粒abrasive grit磨料,铁粒abrasive hardness摩擦硬度,磨损硬度abrasive laden含有磨料的abrasive material磨料,研磨材料abrasive media 磨料abrasive nature 磨损性质abrasiveness磨损性,磨蚀性abrasive paper研磨纸,砂纸abrasive point 研磨头abrasive powder研磨粉,磨料粉abrasive power 研磨力abrasive resistance 耐磨性,抗磨性abrasive resistant material 抗磨材料,耐磨材料abrasive shot研磨用金属丸.abrasive slurry磨粉浆abrasive stick油石,磨条abrasive surface研磨面,磨损面abrasive water jet processing 磨损性流体加工,磨损性(水)射流加工abrasive wear磨损,磨耗abrasive wheel砂轮,研磨轮abrator抛喷清理机abreuvage砂型孔隙金属液渗透abreuvoir石块间隙缝abridged spectrophotometer滤色光度计,简易型分光光度计Abrikosov model阿布里科索夫模型abros阿布劳斯镍铬锰耐蚀合金(88Ni,lO Cr,2Mn)abrupt change 陡变,突变abrupt curve折线;急弯曲abrupt slope陡坡abscess气孔,砂眼abscissa+横坐标absence缺乏,缺少absent day缺勤日absolute绝对的absolute activity绝对活度absolute address绝对地址,机器地址absolute alcohol 无水酒精absolute altitude绝对高度absolute Angstrom 绝对埃absolute assembler绝对地址汇编程序absolute atmosphere绝对大气压absolute black body绝对黑体absolute boiling point 绝对沸点absolute capacity 绝对容量absolute code 绝对代码absolute coil绝对线圈absolute deflection 绝对变位;绝对垂度;绝对弯曲度absolute density 绝对密度absolute deviation 绝对偏差absolute disintegration rate 绝对蜕变速率,绝对衰变速率 7 absolute displacement 绝对位移absolute draught绝对压下量absolute electrostatic unit 绝对静电单位absolute error 绝对误差absolute ether 无水醚absolute ethyl alcohol 无水乙醇,无水酒精absolute expansion 绝对膨胀absolute hardness 绝对硬度absolute heating effect 绝对热效应;绝对供暖效应absolute humidity 绝对湿度absolute intensity 绝对强度absolute liability绝对责任;无辜(赔偿)责任absolute magnitude绝对大小,绝对值absolute manometer 绝对压力计absolute maximum 绝对最大值absolute measurement 绝对测量,绝对测定法absolute minimum绝对最小值absolute object programme 绝对目标程序absolute permeability 绝对透气性,绝对渗透性,绝对导磁率absolute permittivity绝对介电常数absolute plotter control全值绘图机控制absolute pore size绝对孔径,最大孔径absolute pressure 绝对压力absolute pressure gauge 绝对压力表absolute pressure vacuum gauge 绝对压力真空计absolute programme 绝对程序absolute programme Loader 绝对程序的装入程序absolute programming绝对程序设计absolute rate theory绝对速率理论absolute reaction rate theory 绝对反应速率理论absolute readout绝对示值读数absolute signal绝对信号absolute size value绝对粒度值absolute specific gravity 真比重absolute spread宽展量,绝对宽展absolute stability绝对稳定性absolute system of units 绝对单位制absolute temperature 绝对温度absolute temperature scale 绝对温标absolute thermal efficiency 绝对热效塞absolute thermometer 绝对温度计absolute unit 绝对单位absolute vacuum 绝对真空absolute valency绝对价,最高价absolute value 绝对值absolute-value computer 全值计算机absolute viscosity绝对粘度absolute water content 绝对含水量absolute weight绝对重量absolute zero绝对零度(- 273℃)absorb吸收;减震absorbability吸收性,吸收能力,吸收量absorbance吸收率,吸收系数absorbancy吸收本领,吸收能力absorbate吸收剂,吸收质absorbed energy 吸收能量absorbed heat吸收热absorbed-in-fracture energy 冲击韧性;冲击功absorbed.ion 吸收离子absorbed moisture 吸收水分absorbed monolayer吸收单(分子)层absorbed power 吸收能量;吸收本领absorbed radiation dose 吸收辐射剂量absorbed striking energy 吸收冲击功absorbefacient 吸收剂absorbency吸收能力;吸墨性absorbent吸收剂;吸收器,减震器absorbent bed吸收剂层,吸收床absorbent carbon 吸收性碳;活性碳absorbent charcoal 吸收性碳;活性碳absorbent filter 吸收过滤器absorber吸收剂;吸收体;吸收器;减震器;滤波器;滤光器absorber control rod (中子)吸收控制杆absorbing吸收;吸收的absorbing ability吸收能力,吸收本领absorbing capacity 吸收能力,吸收性,吸收率absorbing column吸收塔,吸收柱absorbing liquid 吸收液absorbing material 吸收物质,吸收体;吸收剂absorbing matter吸收材料,吸收物质absorbing medium 吸收介质absorbing tower 吸收塔absorptance吸收能力,吸收本领absorptiometer吸收计;光度计;调液厚器absorptiometry吸收测量学;吸光光度法absorption 吸收absorption apparatus 吸收装置absorption band 吸收带,吸收(光)谱带,吸收光带absorption capacity 吸收能力,吸收量,吸收率absorption cell吸收匣,吸收池;耗能元件absorption chromatography 吸收色层(分离)法absorption coefficient吸收系数,吸收益absorption color filter 吸收滤色器absorption column 吸收塔,吸收柱absorption constant 吸收常数absorption cross-section 吸收截面absorption curve 吸收曲线absorption efficiency 吸收效率absorption energy 吸收能量absorption equation 吸收方程absorption error吸收误差absorption factor吸收因素,吸收系数absorption filter吸收滤光片absorption frequency 吸收频率absorption function 吸收作用absorption glass 吸光玻璃absorption index吸收系数absorption installation 吸收装置absorption jump吸收突变(跃变)absorption law 吸收定律absorption light filter吸收滤光器(镜)absorption limit吸收(极)限absorption line 吸收线absorption liquid 吸收液absorption loss 吸收损失absorption meter 吸收计absorption method 吸收法absorption of thermal energy 热能吸收absorption peak 吸热峰absorption phenomenon 吸附现象absorption pipet( te) 吸收吸移管,吸收移液管absorption plant 吸收设备absorption power 吸收能力absorption property 吸收性能;吸收能力,吸收本领absorption pyrometer 吸收高温计absorption radiation 吸收辐射(能)absorption rate吸收速率;吸收率absorption ratio吸收率,吸收系数absorption spectral analysis 吸收光谱分析absorption spectrograph 吸收摄谱仪absorption spectrometer 吸收分光计,吸收光谱计absorption spectroscopy 吸收光谱法;吸收光谱学absorption spectrum吸收(光)谱,吸收频谱absorption surface 吸收表面absorption temperature 吸收温度absorption test吸收试验absorption tower吸收塔absorption tube吸收管absorption water吸附水absorptive capacity吸收能力absorptive power吸收能力,吸收本领absorptivity吸收性,吸收率,吸收系数abstergent去垢剂abstract提取,抽取;提要,文摘abstracted heat减热,去热abstracting service文摘服务(机构)abstraction除去,抽除;提取,抽出abstract symbol抽象符号abundance 丰富;丰度,裕度abuse误用abuse coefficient 误差率abut端面;支架;枢轴abutment支点,支座,承座;【建】拱基,拱脚abutment crane 台座起重机abutment joint对接;对接接头abutment screw 止动螺钉abutting相邻的;接触的;突出的abutting edges 对接边abutting end接合端abutting joint对接;对接接头Abyssinian gold 埃塞俄比亚假金(88Cu,11.52n,0.5Au)A.C.41A alloy A.C.41A锌基合金(4A1,lCu,0.04Mg,余量Zn)academic laboratory大学试验室academic organization 学术机构(组织、团体)academy学会;科学院acaricide杀蜱剂ACAR( Allis-Chalmers Agglomeration-Reduction) ProcessACAR直接还,原法,爱立斯·恰默斯公司造块直接还原法ACCAR (Allis-Chalmers Controlled Atmosphere Reduction) process AC-CAR法,爱立斯·恰默斯可控气氛直接还原法accelerant加速剂;催化剂;促进剂accelerated ageing 加速时效accelerated bath快速镀槽accelerated cement 快凝水泥accelerated circulation 加速环流,加速循环accelerated combustion加速燃烧accelerated cooling加速冷却accelerated corrosion 加速腐蚀accelerated creep 加速蠕变accelerated leaching 加速浸出accelerated life test加速寿命试验accelerated load test加速载荷试验accelerated quenching oil 加速淬火油,快冷淬火油accelerated solution 加速侵蚀液accelerating agent 催化剂;促凝剂accelerating electrode 加速电极accelerating field加速场;加速电场accelerating flow加速流变accelerating force 加速力accelerating grid 加速栅极accelerating moment 加速力矩accelerating potential 加速(电)势差,加速(电)位差accelerating relay加速继电器accelerating tube 加速管acceleration 加速度acceleration anode 加速阳极acceleration of gravity重力加速度acceleration phase加速阶段accelerator加速剂,催化剂;加速器;速滤剂accelerator test加速剂试验accelerometer加速(度)计,加速(度)表acceptability适应性;适用性acceptable environmental limit 环境容限acceptable failure rate合格故障率acceptable quality Level验收(合格)质量标准acceptable sinter合格烧结矿acceptable test验收(合格)试验acceptance 验收acceptance angle接近角,进入角;到达角acceptance certificate验收证明书,验收单acceptance inspection接收检验,验收acceptance number合格数,接收数,验收数acceptance of work 工程验收acceptance quality level质量验收标准acceptance sampling验收取样acceptance stamp验收钢印;检验钢印acceptance standard 验收标准accepting station接收站acceptor接受器;半1受体,受主acceptor atom 受主原子acceptor band 受主能带acceptor binding energy 受主结合能acceptor centre受主中心acceptor impurity受主杂质acceptor level受主能级acceptor molecule受主分子,接受体分子access进路,通路;入口;【计】取数,存取access arm存取臂,定位臂access circuit存取电路access cover检修(进入)盖access cycle存取周期access door检修孔,检修门access eye检查孔access floor活地板access hole检修孔,窥视孔accessibility可达性,可接近性accessible intraparticle porosity 颗粒内部开孔率accessible porosity外通孔access mechanism存取机构access method存取法access mode存取方式access of air空气通路;空气入口access of gas烟气入口,进气口accessories 辅助设备(装置,仪器);配件,附件accessory equipment 辅助设备,附属设备accessory machinery辅助机械设备accessory material.辅助材料accessory mineral 副矿物accessory plant辅助车间access railroad 专用铁路access time存取时间,取数时间accident事故,故障;损坏,损伤accidental discharge 事故排放accidental error偶然误差accidental exposure 偶然曝光,无意曝光accidental homicide事故致死accidental inclusion 偶存夹杂accident defect事故损坏accident insurance 事故保险accident prevention 事故预防,安全技术AC circuit交流电路acclimation 驯化作用Accoloy阿科洛伊镍铬耐热合金(12~18Cr,36~68Ni,余量Fe) accommodation coefficient 适应系数,调节系数;供应系数accommodation dislocation 适应位错accommodation road 专用路accommodation twin 调节孪晶accommodator 调节器accompanying element伴生元素accompanying impurity 伴生杂质accountant会计员account balance账户结余accounting device计算装置,计算机accounting routine 费用计算程序accounting system会计制度account number 账号account of receipts 收入账户account valuation(建筑)造价预算,估价accretion增大,增加物;【冶】结块,结壳,结瘤,结圈,炉结accretion blasting炉结爆破accretion formation 结圈accretion removing practice 洗炉accrue产生,增殖accumulated dose累计剂量,总剂量,积分剂量accumulated error 累计误差accumulated total punch 累计穿孔机accumulating conveyer储运机accumulating pool 聚积池accumulating reproducer 累加复孔机accumulation 积聚,积累;聚集accumulation of heat 蓄热accumulation of impurities 杂质积聚accumulation of mud 污泥淤积accumulation test集气(检漏)试验accumulation type wiredrawing machine无滑动多次(级)拉丝机,堆积式拉丝机accumulator蓄压器;贮料塔;蓄电池;【计】累加器,存储器,记忆装置accumulator box 蓄电池箱accumulator car 电瓶车accumulator cell 蓄电池accumulator container 蓄电池箱(槽)accumulator drive 蓄电池传动accumulator grid蓄电池极板栅accumulator insulator 蓄电池绝缘子accumulator jump instruction 累加器转移指令accumulator metal 蓄电池合金(90Pb,9.2Sn.0.8Sb)accumulator multi-draft machine 无滑动多次拉丝机,积累式多次拉丝机accumulator plate 蓄电池极板accumulator register 累加寄存器accumulator tank贮槽;蓄电池箱accuracy准确,精确;准确度,精确度accuracy class准确度级别,精度等级accuracy control system准确度控制系统accuracy of measuring 测量精度,计量精度accuracy of reading读数精确度accuracy of separation 分离精确度accuracy of shape形状精确度accuracy rate 精度等级accuracy to gauge(size)尺寸精确度accurate adjustment 精密调整accurate grinding 精磨accurate lattice-parameter determination method晶格常数精确测定法,点阵常数精密测定法accurate measurement 精密测量,精确测量accurate proportioning 精确配料AC electromagnetic casting 交流电磁铸造acenaphthene 苊C12Hl0A-centered(Bravais) lattice A底心(布喇菲)点阵acerasing交流擦除,交流清洗acetaldehyde 乙醛CH3CHOacetaldehyde ammonia 乙醛合氨acetaldehyde resin 乙醛树脂acetate醋酸盐,乙酸盐CH3COOMacetate film醋酸纤维胶片acetate solution 醋酸溶液acetic acid 醋酸,乙酸CH3COOHacetic anhydride乙酐(醋酐)acetoacetate 乙酰醋酸盐(酯)CH3COCH,COOMacetone 丙酮C3 H60acetone resin 丙酮树脂acetonitrile 乙腈CH3CNacetonitrile isoamyl ether 乙腈异戊醚acetophenone乙酰苯,苯乙酮,甲基·苯基甲酮CH3COC6H5 acetpyrogall焙酚三醋酸酯(商品名)acetyl acetone 乙酰丙酮(CH3C0)2CH2acetylene乙炔,电石气acetylene-air flame 乙炔一空气焰acetylene black 乙炔黑;乙炔炭黑acetylene burner 乙炔焊枪;电石灯acetylene cutter (氧一)乙炔焰切割器,(氧一)乙炔焰割炬acetylene cutting torch (氧一)乙炔焰割炬acetylene cylinder 乙炔瓶acetylene drying device 乙炔干燥器acetylene feather氧-乙炔焰中心区acetylene gas乙炔气(体)acetylene generating room 乙炔发生器房,乙炔站发生器间acetylene generator 乙炔发生器acetylene hose 乙炔软管.acetylene lime乙炔石(俗名电石),碳化钙acetylene (pipe) line 乙炔气管道acetylene smoke 乙炔(烟)黑;乙炔炭黑acetylene smudge 乙炔渣滓acetylene torch乙炔焰炬acetylene torch valve 乙炔焰炬阀;电石(乙炔)灯阀acetylene welding 乙炔焊acetylene welding set 乙炔气焊机acetylenic corrosion inhibitor 乙炔缓蚀剂acetylide copper 乙炔铜a-c exciting current 交流激励电流a-c generator交流发电机Acheson AGR graphite 艾奇逊人造石墨Acheson electric resistance furnace 艾奇逊电阻炉。
水喷射加工技术
如陶瓷、硬质合金、模具钢、钛合金、钨钼钴 合金、复合材料,如以金属为基体的纤维增 强金属(FRM)、纤维增强橡胶(FRR)等、 不锈钢、高硅铸铁及可锻铸铁等的加工。
以汽车制造业为例,其中汽车内部装饰材 料的加工占水射流加工的40%,此外,还用 于汽车后架、车轮罩和隔热材料等的切割。
•
2.去毛刺各种小型精密零件上交叉孔、内螺 纹、窄槽、盲孔等毛刺的去除,用其他一般加 工方法就十分困难甚至于无法完成,而利用水 喷射加工技术(稍降低压力或增大喷距等), 就十分方便且质量好,具有独特的效果。
2. 切割系统 喷嘴是切割系统最重要的零件。喷嘴应具 有良好的射流特性和较长的使用寿命。喷嘴的 结构取决于加工要求、常用的喷嘴有单孔和分 叉两种。 3. 控制系统 可根据具体情况选择机械、气压和液压控 制。工作台应能纵、横向灵活移动,适应大面 积和各种型面加工的需要。当采用程序控制和 数字控制系统是理想的。目前,已出现程序控 制液体加工机,其工作台尺寸1.2m×1.5m, 移动速度为380mm/s。
5. 机床床身
机床床身结构通常采用龙门式或悬臂式机 架结构,一般都是固定不动的。为了保证喷嘴 与工件距离的恒定,以保证加工质量,因此要 在切削头上安装一只传感器。为了实现加工三 维复杂形状零件,切削头和关节式机器人手臂 或三轴的数控系统控制结合,可以加工出复杂 的立体形状。
超高压水射流加工的工作参数及其对加工的影响 (1) 流速与流量。水喷射加工采用高速水流,速 度可高达每秒数百米,是声速的2~3倍。超高 压水射流加工的流量可达7.5L/min。流速和流 量越大对,加工效率越大。 (2) 水压。加工时,在由喷嘴喷射到工件加工面 之前,水的压力经增压器作用变为超高压,可 高达700MPa。提高水压,将有利于提高切割 深度和切割速度。但会增加超高压水发生装置 及超高压密封的技术难度,增加设备成本。目 前,常用超高压水射流切割设备的最高压力一 般控制在400MPa以内。