蒸汽局部阻力系数手册内容

合集下载

过热蒸汽锅炉水阻力计算1

过热蒸汽锅炉水阻力计算1

fm

Δ Pjb ΔP P'
2 总W /2ν
pj
Δ Pm+Δ Pjb+Δ PZW P''+Δ P
Φ 219x9 3.82 3.82 3.820 450 0.08134 9.72
Φ 38x4 17.11 3.86 3.820 3.839 352.3 450 401.15 0.07442 0.03 0.00071 58 17.644 0.00006 0.02342 0.02794 0.9 0 0.8 1.1
(4) 低温过热器管组 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 管子规格 管子长度 工质进口压力 工质出口压力 工质平均压力 工质进口温度 工质出口温度 工质平均温度 工质平均比容 管子内径 管子流通截面积 管子根数 工质流速 管子内壁绝对粗糙度 管子摩擦系数 管子摩擦阻力损失 进出口高度差 重位压差 工质由集箱进入管子 的入口介质系数 ν L P' P'' Ppj t' t'' t'
ξ
c
Δ Pjb
21 22
管子总阻力损失 锅筒出口压力
ΔP P'
MPa MPa
Δ Pm+Δ Pjb-Δ PZW P''+Δ P
二.省煤器
(1) 省煤器出口集箱至锅筒连管 1 2 5 6 7 8 9 10 11 12 13 17 18 19 22 23 24
省煤器出口集箱管子规格
管子长度 工质进口压力 工质出口压力 工质平均压力 工质平均温度 工质平均比容 省煤器出口集箱引出管 内径 管子流通截面积 管子根数 工质流速 管子内壁绝对粗糙度 省煤器出口集箱引出管 摩擦系数 管子摩擦阻力损失 进出口高度差 重位压差 管子的出口阻力系数

实验7 局部阻力系数实验

实验7 局部阻力系数实验

实验七 局部阻力系数实验1实验目的和要求1.掌握测量局部阻力系数的方法;2.测量管道突然扩大、突然缩小时的局部阻力系数;3.了解影响局部阻力系数的因素2局部阻力系数实验的原理水流在流动过程中,由于水流边界条件或过水断面的改变,引起水流内部各质点的流速、压强也都发生变化,并且产生旋涡。

在这一过程中,水流质点间相对运动加强,水流内部摩擦阻力所作的功增加,水流在流动调整过程中消耗能量所损失的水头称为局部水头损失。

局部水头损失的一般表达式为gvh j 22ζ= (1)式中,j h 为局部水头损失;ζ为局部水头损失系数,即局部阻力系数,它是流动形态与边界形状的函数,即)(e R f 边界形状,=ζ,一般水流的雷诺数e R 足够大时,可以认为ζ系数不再随e R 而变化,可视作为一常数;v 为断面平均流速,一般用发生局部水头损失以后的断面平均流速,也有用损失断面前的平均流速,所以在计算或查表时要注意区分。

局部水头损失可以通过能量方程进行分析。

图1为一水流突然扩大的实验管段,在发v 1图1 局部水头损失分析简图j h =gv v p z p z 2)()(2222112211ααγγ-++-+(2)式中,)()(2211γγp z p z +-+为断面1-1和2-2的测压管水头差;v 1、v 2 分别为1-1断面和2-2断面的平均流速。

管道局部水头损失目前仅有断面突然扩大(图1)可利用动量方程,能量方程和连续方程进行理论分析,并可得出足够精确的结果,其它情况尚需通过实验方法测定局部阻力系数。

对于管道突然扩大,理论公式为gv v h j 2221)(-= (3)由连续方程A 1v 1=A 2v 2,解出v 1或v 2代入上式可分别得 g v A A h j 2122212)(-= , 21211)(扩大-=A A ζ (4)或 gv A A h j 2121221)(-=, 22121)(扩大A A -=ζ (5)式中,A1、A2分别为断面1-1和2-2的过水断面面积;1扩大ζ、2扩大ζ叫做突然放大的局部阻力系数。

局部阻力损失

局部阻力损失

五、局部阻力损失两种近似计算阻力损失得方法。

(一) 阻力系数法:22'u h f ξ= (1-98)或22'u P f ρξ=∆ (1-99)其中:u —小管线速; ξ—局部阻力系数。

1. 突然扩大与突然缩小(a )(b )21A A 或12A A大截面小截面2. 进口与出口进口:流体自容器进入管内 5.0,0/12=≈ξA A (b ) 出口:流体自管道进入容器 0.1,0/21=≈ξA A (a ) 3. 管件与阀门: 查表得到 P 59例1-17. 已知水输送量为20m 3/h ,3/1000m kg =ρ,S P a ⋅⨯=-3101μ,吸入管A 为φ89×4mm 无缝钢管,总长l 1=10m ,其上有一个底阀和一个标准弯头,排出口B 为φ57×3mm 的无缝钢管,总长l 2=40m ,其上有一个3/4开的闸阀和两个标准弯头。

储罐和高位槽上方均通大气,液面恒定,两液面差为10m ,求泵的有效功率N e 。

ξf e h Pu gZ W P u gZ ∑+++=+++ρρ2222121122(书中的“Zu ”改为“2u”)Z 1=0,Z 2=10,P 1=P 2=P a ,0,021≈≈u u 上式简化为:f e h gZ W ∑+=2=98+f h ∑(1)吸入管A 的阻力损失A f h ,∑d A =89-4×2=81mm=0.081ms m d V u AA /08.1)081.0(785.03600/20785.022=⨯==431075.8101100008.1081.0⨯=⨯⨯⨯==-μρA A eA u d R (湍流) 管壁绝对粗糙度查表1-5 为0.2~0.3,取0.3mm0037.0813.0==Ad ε查图1-44查得029.0=A λ查表1-7底阀的局部阻力系数为1.5,进口的局部阻力系数为0.5; 由图1-47查得标准弯头的当量长度为3.4m (书中为2.2m ) 2)(2,',,A A e A Af A f A f u d l l hh h ξλ∑+∑+=+=∑kgJ /96.3208.1)5.05.1081.04.310029.0(2=⨯++++=(2)排出管B 的阻力损失B f h ,∑d B =57-3×2=51mm=0.051ms m u d d u A B A B /72.208.1)5181()(22=⨯== 531034.1101100078.2051.0⨯=⨯⨯⨯==-μρB B eB u d R (湍流) 0059.0513.0==Bd ε查图1-44查得032.0=B λ由图1-47查得3/4开闸阀的当量长度为2.6m (书中为2m ) 标准弯头的当量长度为2.2m (书中为1.5m ) 出口局部阻力系数为12)(2,',,B B e B Bf B f B f u d l l hh h ξλ∑+∑+=+=∑kgJ /8.112272.2)1051.02.226.240032.0(2=⨯+⨯+++=(3)整个管路总阻力损失f h ∑f h ∑=A f h ,∑+B f h ,∑=3.96+112.8=116.76 (J/kg )则W e =98+116.76=214.76(J/kg ) 泵的有效功率为KW W V W W W N e e e 19.11.1193360010002076.214≈=⨯⨯=⋅=⋅=ρ(二) 当量长度法在管路计算中,当量长度法计算局部阻力损失更为广泛。

局部阻力系数测定说明书

局部阻力系数测定说明书

局部阻力系数测定实验说明手册上海同广科教仪器有限公司2014年8月局部阻力系数测定说明书一、实验目的1.掌握三点法、四点法量测局部阻力系数的技能。

2.通过对圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公孔1~3和3~6分别测量突扩和突缩圆管的局部阻力。

其中测孔1位于突扩界面处,用于测量小管出口端压强值。

三、实验原理突扩和突缩圆管的局部阻力损失由前后两断面的能量方程,根据推导条件,扣除沿程水头损失求得。

1.突扩圆管的局部阻力损失●突扩圆管的局部阻力损失采用三点法计算,即突扩圆管的局部阻力损失je h 为1、2两断面总水头差减去断面1~2的沿程水头损失2~1f h ,而2~1f h 由3~2f h 按流长比例换算得出。

⎥⎦⎤⎢⎣⎡+++-⎥⎦⎤⎢⎣⎡++=2~1222221112)(2)(f je h g v p z g v p z h αγαγ突扩圆管的局部阻力系数 gv h je e 221αζ=● 理论上,突扩圆管的局部阻力系数221'1⎪⎪⎭⎫⎝⎛-=A A e ζ 对应的局部阻力损失gv h eje221''αζ=2.突缩圆管的局部阻力损失● 突缩圆管的局部阻力采用四点法计算。

B 点为突缩点,突缩圆管的局部阻力损失js h 为4、5两断面总水头差减去断面4~B 的沿程水头损失B f h ~4和断面B ~5的沿程水头损失5~fB h 。

同样按流长比例,B f h ~4由4~3f h 换算得出,5~fB h 由6~5f h 换算得出。

⎥⎦⎤⎢⎣⎡+++-⎥⎦⎤⎢⎣⎡-++=5~2555~424442)(2)(fB B f js h g v p z h g v p z h αγαγ突缩圆管的局部阻力系数gv h jss 225αζ=●突缩圆管局部阻力系数的经验值⎪⎪⎭⎫⎝⎛-=35'15.0A A s ζ 对应的局部阻力损失gv h s s225''αζ=四、实验方法与步骤1.测记实验有关常数。

局部阻力系数

局部阻力系数

局部阻力系数局部阻力系数(coefficient of local resistance)与流体方向和速度变化有关的系数具体指:流体流经设备及管道附件所产生的局部阻力与相应动压的比值,其值为无量纲数。

功能:用于计算流体受局部阻力作用时的能量损失。

公式:动压二局部阻力系数*p*V*V*l/2hf二-Ap/p.局部阻力表示为动能u八2的倍数,hf'Hu八2/2也可表示为管件的当量长度hf'二入lu八2/2d.人可根据雷诺数Re求得,层流入=64/Re,另外还有一些公式雷诺数在3000~lxl0八5,入二0.3164/ReA0.25.对于雷诺数在3000~3xl0八6,入=0.0056 + 0.5/Re八0.32,还有其他的可以通过查表入与Re 8/d可得。

通风压力克服通风阻力,两者因次相同,数值相等,方向相反。

知道通风阻力的大小就能确定所需通风压力的大小。

在矿井通风中,存在着摩擦阻力和局部阻力,必须分析研究它们的特性、测定方法以及降低措施等,从而作为选择通风设备,进行通风管理与设计的依据。

这在通风设计中尤其重要。

第一讲空气流动状态流体产生的阻力与流体流动过程中的状态有关。

流体流动时有两种状态;一种是流体呈层状流动,各层间流体互不混合,流体质点流动的轨迹为直线或有规则的平滑曲线,这一状态称为层流。

在流速很小、管径很小、或粘性较大的流体流动时会发生层流。

另一种是流体流动时,各部分流体强烈地互相混合,流体质点的流动轨迹是极不规则的。

除了有沿流体总方向的位移外,还有垂直于液流总方向的位移,流体内部存在看时而产生时而消灭的漩涡,这种状态称为紊流。

研究层流与紊流的主要意义在于两种流态有着不同的阻力定律。

试验证明,层流与紊流彼此间的转变关系决定于液体的空度P、绝对粘性系数U, 流体的平均速度V与管道水力直径d ,这些因素的综合影响可以用雷诺数来表示为:式中,V--运动粘性系数,m VdVd矿井巷道很少为圆形,对于非圆形通风巷道,以4S/U(水力直径)代替上式中的d ,即:U--巷道周界长度,m。

7-局部阻力

7-局部阻力
1.5 流体在管内的流动阻力
1.5.2 管路上的局部阻力 1.5.3 管路系统中的总能量损失
返回
1.5.2 局部阻力
一、阻力系数法
将局部阻力表示为动能的某一倍数。
2 u hf' 2 2 u H f' 2g
J/kg
J/N=m

ζ ——局部阻力系数
返回
1. 突然扩大
A1 2 (1 ) A2 u1 hf 2
' 2
0~1
u1 — 小管中的大速度
返回
2.突然缩小
A2 0.5(1 ) A1
2 u Wf' 2 2
0~0.5
u2 小 管 中 的 大 速 度
返回
3. 管进口及出口 进口:流体自容器进入管内。
ζ进口 = 0.5 进口阻力系数
出口:流体自管子进入容器或从管子排放到管外
h
pa
90º 标准弯头一个,标准截止阀(全开)
一个。若维持进料量为 5m3/h ,问高
位槽中的液面至少高出进料口多少米?
操作条件下料液的物性:
890kg/m3 1.3 103 Pa s 返回

空间。
ζ出口 = 1 出口阻力系数
4 . 管件与阀门
返回
返回
返回
蝶阀
返回
返回
返回
二、当量长度法
将流体流过管件或阀门的局部阻力,折合成
直径相同、长度为le的直管所产生的阻力 。
le u h d 2
' f
2
le u 或 H d 2g
' f
2
le —— 管件或阀门的当量长度,m。

实验三局部阻力系数的测定

实验三局部阻力系数的测定
静态压力测试是测量局部阻力系数的一种有效方法。

本实验旨在通过静态压力测试的
方法,测定一些流体中的局部阻力系数。

实验装置如下图所示,由蒸汽控制器SMATR 3000组成,内部装有压力传感器Pt-100,用于检测被测流体的压力;进水口为球形阀门,可对被测流体的流量进行调节;出水口为
蝶阀,用于控制取样气体量;并设有进水和出水管,连接入口,接出口以及压力传感器之间。

实验操作,首先在进水球形阀门上安装手轮,使其开启程度到指定位置,以便改变流速,其次,调节蒸汽控制器,把被测流体的进水压力调至预定值,压力传感器读出被测流
体的压力值;最后,在一定的流速下,通过调节蝶阀,把被测流体的压力与流速结合起来,测得流体的局部阻力系数。

实验结果表明,当流速恒定时,随着被测流体的进水压力的增加,求出的局部阻力系
数也有所增加。

另外,在实验过程中,还要及时对入口管道中的垃圾进行清扫,以保证实
验测量的精确度。

实验三 局部阻力系数的测定

实验三局部水头损失量测实验一、实验目得1.观察突扩管旋涡区测管水头线,以及其它各种边界突变情况下得测管水头变化情况,加深对局部水头损失得感性认识。

2. 掌握测定管道局部水头损失系数得方法,并将突扩管得实测值与理论值比较,将突缩管得实测值与经验值比较。

ﻫ3。

学习用测压管测量压强与用体积法测流量得实验技能。

二、实验原理有压管道恒定流遇到管道边界得局部突变→ 流动分离形成剪切层→ 剪切层流动不稳定,引起流动结构得重新调整,并产生旋涡→平均流动能量转化成脉动能量,造成不可逆得能量耗散(图1)。

与沿程因摩擦造成得分布损失不同,这部分损失可以瞧成就是集中损失在管道边界得突变处,每单位重量流体承担得这部分能量损失称为局部水头损失.图1 流道得局部突变示意图根据能量方程,局部水头损失ﻫ,ﻫ这里我们认为因边界突变造成得能量损失全部产生在1-1,2—2两断面之间,不再考虑沿程损失。

上游断面1—1应取在由于边界得突变,水流结构开始发生变化得渐变流段中,下游2-2断面则取在水流结构调整刚好结束,重新形成渐变流段得地方.总之,两断面应尽可能接近,又要保证局部水头损失全部产生在两断面之间。

经过测量两断面得测管水头差与流经管道得流量,进而推算两断面得速度水头差,就可测得局部水头损失。

局部水头损失系数就是局部水头损失折合成速度水头得比例系数,即当上下游断面平均流速不同时,应明确它对应得就是哪个速度水头?例如,对于突扩圆管就有与之分。

其它情况得局部损失系数在查表或使用经验公式确定时也应该注意这一点.通常情况下对应下游得速度水头。

ﻫ局部水头损失系数随流动得雷诺数而变,即。

但当雷诺数大到一定程度后, 值成为常数。

在工程中使用得表格或经验公式中列出得就就是指这个范围得数值.局部水头损失得机理复杂,除了突扩圆管得情况以外,一般难于用解析方法确定,而要通过实测来得到各种边界突变情况下得局部水头损失系数。

对于突扩圆管得情况,局部水头损失系数有理论结果,推导如下:流动经过突扩圆管得局部水头损失,ﻫ取1—1,2-2两断面如图2,这里要特别注意1—1断面取为突扩开始得断面,2—2断面则取在水流结构调整刚好结束,重新形成渐变流段得地方.两断面面积都为,而与则分别为细管与粗管中得平均流速。

实验三 局部阻力系数的测定

实验三局部水头损失量测实验一、实验目的1.观察突扩管旋涡区测管水头线,以及其它各种边界突变情况下的测管水头变化情况,加深对局部水头损失的感性认识。

2.掌握测定管道局部水头损失系数的方法,并将突扩管的实测值与理论值比较,将突缩管的实测值与经验值比较。

3.学习用测压管测量压强和用体积法测流量的实验技能。

二、实验原理有压管道恒定流遇到管道边界的局部突变→流动分离形成剪切层→剪切层流动不稳定,引起流动结构的重新调整,并产生旋涡→平均流动能量转化成脉动能量,造成不可逆的能量耗散(图1)。

与沿程因摩擦造成的分布损失不同,这部分损失可以看成是集中损失在管道边界的突变处,每单位重量流体承担的这部分能量损失称为局部水头损失。

图1流道的局部突变示意图根据能量方程,局部水头损失,这里我们认为因边界突变造成的能量损失全部产生在1-1,2-2两断面之间,不再考虑沿程损失。

上游断面1-1应取在由于边界的突变,水流结构开始发生变化的渐变流段中,下游2-2断面则取在水流结构调整刚好结束,重新形成渐变流段的地方。

总之,两断面应尽可能接近,又要保证局部水头损失全部产生在两断面之间。

经过测量两断面的测管水头差和流经管道的流量,进而推算两断面的速度水头差,就可测得局部水头损失。

局部水头损失系数是局部水头损失折合成速度水头的比例系数,即 当上下游断面平均流速不同时,应明确它对应的是哪个速度水头?例如,对于突扩圆管就有和之分。

其它情况的局部损失系数在查表或使用经验公式确定时也应该注意这一点。

通常情况下对应下游的速度水头。

局部水头损失系数随流动的雷诺数而变,即(Re)f ζ=。

但当雷诺数大到一定程度后,值成为常数。

在工程中使用的表格或经验公式中列出的就是指这个范围的数值。

局部水头损失的机理复杂,除了突扩圆管的情况以外,一般难于用解析方法确定,而要通过实测来得到各种边界突变情况下的局部水头损失系数。

对于突扩圆管的情况,局部水头损失系数有理论结果,推导如下:流动经过突扩圆管的局部水头损失,取1-1,2-2两断面如图2,这里要特别注意1-1断面取为突扩开始的断面,2-2断面则取在水流结构调整刚好结束,重新形成渐变流段的地方。

采暖系统水力计算汇总

在《供热工程》P97和P115有下面两段话:可以看出对于单元立管平均比摩阻的选择需要考虑重力循环自然附加压力的影响,试参照下面实例,分析对于供回水温60/50℃低温热水辐射供暖系统立管比摩阻的取值是多少?
实例:
附件6.2关于地板辐射采暖水力计算的方法和步骤(天正暖通软件辅助完成)
6.2.1水力计算界面:
根据施工图
“供水方式”选择“下供下回”
接着再根据施工图:
“立管形式”选择“双管”
“立管关系”选择“异程”
勾选“分户计量”
“采暖形式”选择“地板采暖”
点击“确定”
2.第二步在【设置】菜单中的【生成框架】完成下列内容:
楼层数:6层
系统分支数:1
分支1样式
分支2样式
本住宅楼样式同分支1,所以系统分支数为“1”
b、如右图:一个环路可能承担两个或两个以上房间,如果是这样,计算此环路所带负荷的时候,应该把所承担的房间负荷进行累加,假如某环路承担的是某个整个房间和另一个房间的一部分,如图中环路3,既承担客厅又承担部分餐厅,这时该环路负荷取那个整个房间的负荷与那个承担部分房间的部分负荷(可以用相对盘管面积,相对负荷的原则,按他们所占的面积进行取值。如果这部分靠近外围护结构,应该把其适当的放大,比如乘以1.2的修正系数,以减少实际情况与理论分析的误差。)
每支分支立管数:2
每楼层用户数:2
每用户分支数:3
(见下图单元盘管图)
3.第三步【设置】菜单中“设计条件”
4.第四步在【生成框架】对话框中点击“生成”,如下图
5.第五步在树视图中依次打开“立管1”、“楼层6”、“户1”,如下图:
6.第六步在上图中完成以下几项内容的输入:
1)负荷:指某盘管分支(环路)热媒提供的热量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档