微分方程求解方法总结
高中微分方程解题方法总结

高中微分方程解题方法总结微分方程是数学中的重要概念,也是高中数学的重点内容之一。
学好微分方程不仅可以提高数学水平,还能为日后的学习和科研打下坚实基础。
本文将总结高中微分方程解题的常用方法,通过举例说明具体操作方法,分析性循序推理论点,并给出实践导向结论,同时对问题进一步阐释以提供更深入的相关信息和扩展内容。
一、常见的微分方程类型在高中数学教学中,常见的微分方程类型主要包括一阶、二阶、线性、非线性等。
其中,一阶线性微分方程是最基础且常见的类型。
一阶线性微分方程的一般形式为:dy/dx + P(x)y = Q(x)。
而二阶微分方程则包括一般二阶线性微分方程、常系数二阶齐次微分方程和常系数二阶非齐次微分方程等。
二、具体操作方法示例1. 一阶线性微分方程对于一阶线性微分方程dy/dx + P(x)y = Q(x),我们可以通过以下步骤进行求解:(1)将方程改写为dy/dx + P(x)y = 0;(2)求出积分因子μ(x) = e^(∫P(x)dx);(3)将方程两边同时乘以μ(x),得到d(y * μ(x))/dx = Q(x) * μ(x);(4)对方程两边同时积分,得到y * μ(x) =∫Q(x) * μ(x)dx + C,其中C为常数;(5)最后解出y = (1/μ(x)) * (∫Q(x) * μ(x)dx + C)。
举例:求解微分方程dy/dx - 2xy = e^x。
首先,将方程改写为dy/dx - 2xy = 0。
然后,求出积分因子μ(x) = e^(∫-2xdx) = e^(-x^2)。
接着,将方程两边同时乘以μ(x),得到d(y * e^(-x^2))/dx = e^x * e^(-x^2)。
对方程两边同时积分,得到y * e^(-x^2) = ∫e^x * e^(-x^2)dx + C。
最后解出y = (1/e^(-x^2)) * (∫e^x * e^(-x^2)dx + C)。
常微分方程的解法总结总结

常微分方程的解法总结前言常微分方程(Ordinary Differential Equation,ODE)是研究一阶或高阶导数与未知函数之间关系的数学方程。
在物理学、工程学和计算机科学等领域,常微分方程扮演着重要的角色。
解决常微分方程是这些领域中许多问题的关键。
本文将总结常用的常微分方程解法方法,帮助读者加深对常微分方程的理解并提供解决问题的思路。
一、可分离变量法可分离变量法是一种常见且简单的求解常微分方程的方法。
它适用于形如dy/dx = f(x)g(y)的一阶常微分方程。
解题思路:1.将方程写成dy/g(y) = f(x)dx的形式,将变量进行分离。
2.两边同时积分得到∫(1/g(y))dy = ∫f(x)dx。
3.求出积分后的表达式,并整理得到解 y 的表达式。
使用这种方法解决常微分方程的步骤相对简单,但要注意确认分母不为零以及选取合适的积分常数。
二、特殊方程类型的求解除了可分离变量法,常微分方程还存在一些特殊的方程类型,它们可以通过特定的方法进行解决。
1. 齐次方程齐次方程是指形如dy/dx = F(y/x)的方程。
其中,F(t) 是一个只有一个变量的函数。
解题思路:1.令 v = y/x,即 y = vx。
将方程转化为dy/dx = F(v)。
2.对于dv/dx = F(v)/x这个方程,可以使用分离变量法进行求解。
3.求出 v(x) 后,将其代入 y = vx 得到完整的解。
2. 齐次线性方程齐次线性方程是指形如dy/dx + P(x)y = 0的方程。
解题思路:1.使用积分因子法求解,将方程乘以一个积分因子,使得左边变成一个可积的形式。
2.求积分因子的方法是根据公式μ = e^(∫P(x)dx),其中 P(x) 是已知的函数。
3.通过乘积的方式求解完整的方程。
3. 一阶线性常微分方程一阶线性常微分方程是指形如dy/dx + P(x)y = Q(x)的方程。
解题思路:1.使用积分因子法,将方程乘以一个积分因子,使得左边变成一个可积的形式。
高数微分方程总结

5、二阶常系数齐次线性方程解法
形如 y(n) P1 y(n1) Pn1 y Pn y f ( x)
n阶常系数线性微分方程
y py qy 0 二阶常系数齐次线性方程 y py qy f ( x) 二阶常系数非齐次线性方程
解法 由常系数齐次线性方程的特征方程的根确 定其通解的方法称为特征方程法.
解 (1) 由题设可得:
2 p( x)2x 0,
2 x3
p( x)( 1 ) x2
f ( x),
解此方程组,得
p( x) 1 , x
f
(x)
3 x3
.
(2) 原方程为 y 1 y 3 .
x
x3
显见 y1 1, y2 x2 是原方程对应的齐次方 程 的两个线性无关的特解 ,
又 y* 1 是原方程的一个特解, x
dt 2
即 x g x g , 99
x(0) 0, x(0) 0.
10m
o x
解此方程得
x(t)
1
(e
1 3
gt
1
e3
gt
) 1,
2
整个链条滑过钉子 ,即 x 8,
代入上式得
t 3 ln(9 80). (秒) g
最好的,不一定是最合适的;最合适的,才是真正最好的。 最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 快乐的人帮助别人,积极人的肯定自己。——王修强 对于每一个不利条件,都会存在与之相对应的有利条件。 人必须有自信,这是成功的秘密。 人一旦觉悟,就会放弃追寻身外之物,而开始追寻内心世界的真正财富。 这世间最可依赖的不是别人,而是你自己。不要指望他人,一定要坚强自立。 懂得感恩,感谢帮助你的每一个人。 不要因为小小的争执,远离了你至亲的好友,也不要因为小小的怨恨,忘记了别人的大恩。
微分方程几种求解方法

微分方程几种求解方法微分方程是数学中重要的概念之一,用于描述变量之间的函数关系。
求解微分方程是数学和工程中的常见问题。
根据问题的性质和条件,有多种方法可以用来求解微分方程,下面将介绍几种常见的求解方法。
1.变量分离法:变量分离法是求解一阶常微分方程的常用方法。
它的基本思想是将微分方程中的变量分离,然后进行积分。
具体步骤是将微分方程写成形式dy/dx=f(x)g(y),然后将方程变换为g(y)dy=f(x)dx,再两边同时积分,即可得到方程的解。
这种方法适用于一阶常微分方程,如y'=f(x)。
2.齐次方程方法:齐次方程是指微分方程中不包含任意常数项的方程。
对于齐次方程可以使用变量代换法进行求解。
具体的步骤是将微分方程中y的函数形式换成u,然后进行代换,将微分方程变为可分离变量的形式。
然后用变量分离法来求解,最后再进行反代还原,得到原方程的解。
这种方法适用于一阶齐次常微分方程,如dy/dx=f(y/x)。
3.线性方程方法:线性微分方程是指微分方程中只有一阶导数,并且函数关系是线性的。
线性方程可以使用常数变易法或者待定系数法来进行求解。
常数变易法的基本思想是假设方程的解具有特定的形式,然后将其带入方程,通过确定待定的常数来求解。
待定系数法的基本思想是假设方程的解是一组形式已知的函数的线性组合,然后通过确定待定系数来求解。
这些方法适用于一阶线性常微分方程,如dy/dx+a(x)y=b(x)。
4.积分因子法:积分因子法是一种用于求解一阶非齐次线性常微分方程的方法。
它的基本思想是通过引入一个合适的因子,将一阶非齐次线性微分方程转化为恰当微分方程,从而利用变量分离法来求解。
具体步骤是先将非齐次方程写成标准形式dy/dx+p(x)y=q(x),然后通过选择合适的积分因子μ(x)来将方程转为恰当微分方程(即满足(dμ(x)/dx)y+p(x)μ(x)=q(x)),再对该恰当微分方程进行积分,即可得到原方程的解。
高中数学备课教案解常微分方程组的方法总结

高中数学备课教案解常微分方程组的方法总结高中数学备课教案:解常微分方程组的方法总结一、引言常微分方程组是高中数学中重要的内容之一,其解法包含了多种方法。
本文将对解常微分方程组的几种常见方法进行总结和讨论,并提供相应的例题进行说明。
二、方法一:变换法变换法是解常微分方程组的一种常见方法,通过引入新的变量来将方程组转化为更简单的形式进行求解。
具体步骤如下:1. 假设方程组为:dx/dt = f(x, y)dy/dt = g(x, y)2. 引入新的变量:u = φ(x, y)v = ψ(x, y)3. 计算新的变量的导数:du/dt = (∂φ/∂x)*(dx/dt) + (∂φ/∂y)*(dy/dt)dv/dt = (∂ψ/∂x)*(dx/dt) + (∂ψ/∂y)*(dy/dt)4. 将方程组转化为关于u和v的形式:du/dt = Φ(u, v)dv/dt = Ψ(u, v)5. 求解转化后的方程组,并将u和v转化为x和y。
三、方法二:特征方程法特征方程法是解常微分方程组的另一种重要方法,通过求解特征方程来得到方程组的通解。
具体步骤如下:1. 假设方程组为:dx/dt = f(x, y)dy/dt = g(x, y)2. 将方程组写成矩阵形式:X' = AX其中,X = [x, y], A = [[∂f/∂x, ∂f/∂y], [∂g/∂x, ∂g/∂y]]3. 求解特征方程:det(A - λI) = 0其中,λ为特征值,I为单位矩阵。
4. 求解特征方程得到的特征值,并代入公式:X = c1*e^(λ1*t)*v1 + c2*e^(λ2*t)*v2其中,c1、c2为常数,v1、v2为特征向量。
5. 根据初值条件确定常数c1和c2,并得到方程组的特解。
四、方法三:欧拉法欧拉法是解常微分方程组的一种近似求解方法,通过使用差分逼近来计算方程组的数值解。
具体步骤如下:1. 假设方程组为:dx/dt = f(x, y)dy/dt = g(x, y)2. 将时间区间等分成若干小段:Δt = (b - a) / N其中,a、b为时间区间的起点和终点,N为等分的段数。
二阶非齐次微分方程解法总结

二阶非齐次微分方程解法总结一、引言微分方程是数学中非常重要的一个分支,它在物理、工程、经济等领域中都有广泛的应用。
其中,二阶非齐次微分方程是比较基础的一种类型,解法也比较多样化。
本文将对二阶非齐次微分方程的解法进行总结和归纳。
二、基本概念1. 二阶非齐次微分方程:形如y''+p(x)y'+q(x)y=f(x)的微分方程。
2. 齐次线性微分方程:形如y''+p(x)y'+q(x)y=0的微分方程。
3. 非齐次线性微分方程:形如y''+p(x)y'+q(x)y=f(x)的微分方程。
4. 常系数线性微分方程:系数p(x)和q(x)都是常数的线性微分方程。
三、特解法特解法是求解非齐次线性微分方程最常用的方法之一。
其基本思路是先求出对应齐次线性微分方程的通解,再通过待定系数法求出一个特解,将通解和特解相加即可得到非齐次线性微分方程的通解。
1. 对应齐次线性微分方程通解:(1)若r1≠r2,通解为y=C1e^(r1x)+C2e^(r2x);(2)若r1=r2,通解为y=(C1+C2x)e^(rx);(3)若r1,r2为复数,设r=a+bi,则通解为y=e^(ax)(C1cosbx+C2sinbx)。
其中,C1、C2为任意常数。
2. 待定系数法求特解:(1)当f(x)为常数、多项式、正弦函数、余弦函数时,可根据f(x)的形式分别猜测特解的形式,并通过待定系数法求出特解;(2)当f(x)为指数函数或三角函数的乘积时,可通过猜测特解的形式,并利用欧拉公式将其转化成指数函数或三角函数的和的形式,再通过待定系数法求出特解。
四、常数变易法常数变易法是另一种求解非齐次线性微分方程的方法。
其基本思路是假设非齐次线性微分方程的一个特解可以表示成原齐次线性微分方程通解乘以一个待定函数的形式,将此代入非齐次线性微分方程中,并确定待定函数使得等式成立。
具体步骤如下:(1)先求出对应齐次线性微分方程的通解;(2)假设非齐次线性微分方程的特解为y1(x),可以表示成对应齐次线性微分方程的通解乘以一个待定函数u(x)的形式,即y1(x)=u(x)y0(x),其中y0(x)为对应齐次线性微分方程的通解;(3)将y1(x)代入非齐次线性微分方程中,并确定待定函数u(x)使得等式成立;(4)将求出的特解y1(x)与对应齐次线性微分方程的通解相加即可得到非齐次线性微分方程的通解。
常微分方程解法总结
常微分方程解法总结是研究函数的一种重要方法,其解法总结对于深入了解的应用和理论有着重要意义。
本文将总结的解法,主要包括分离变量法、齐次方程法、一阶线性方程法、常系数线性方程法和变量可分离方程法等方法。
分离变量法是解的常用方法之一。
对于形如dy/dx=f(x)g(y)的方程,我们可以通过移项和对x、y变量分离来解得方程的解。
以dy/dx=x/y为例,我们可以将方程改写为ydy=xdx,然后分别对x和y进行积分,得到y^2=2x^2+C,其中C为常数,即为原方程的解。
齐次方程法是解决形如dy/dx=f(y/x)的方程的常用方法。
对于这类方程,我们可以通过引入新的变量u=y/x来将方程转化为一阶可分离变量方程。
例如对于dy/dx=y/x,令u=y/x,我们可以得到dy=udx,进一步可以积分得到ln|x|=ln|u|+C,即为方程的解。
一阶线性方程法是解决形如dy/dx+p(x)y=q(x)的方程的常用方法。
对于这类方程,我们可以通过引入一个积分因子来将方程转化为恰当方程,从而进行求解。
以dy/dx+(1/x)y=(x+1)/x为例,我们可以通过引入积分因子μ=e^∫(1/x)dx=x将方程转化为d(μy)/dx=μ(x+1)/x,进而利用积分来解得方程的解。
常系数线性方程法是解决形如dy/dx+ay=b的方程的常用方法。
对于这类方程,我们可以通过特征方程的求解来得到方程的通解。
以dy/dx+2y=5为例,我们可以求得对应的特征方程r+2=0的根为r=-2,进而可以得到方程的通解y=Ce^(-2x)+(5/2),其中C为任意常数。
变量可分离方程法是解决形如dy/dx=f(x)/g(y)的方程的常用方法。
对于这类方程,我们可以通过对x和y的积分来解得方程的解。
以dy/dx=x^2/y为例,我们可以将方程改写为ydy=x^2dx,然后分别对x和y进行积分,得到y^3=1/3x^3+C,其中C为常数。
以上总结了解法的主要方法,但需要注意的是,并非所有的都可以直接应用这些方法进行求解。
微分方程的数值解法
微分方程的数值解法微分方程是描述自然界中众多现象和规律的重要数学工具。
然而,许多微分方程是很难或者无法直接求解的,因此需要使用数值解法来近似求解。
本文将介绍几种常见的微分方程数值解法。
1. 欧拉方法欧拉方法是最简单的数值解法之一。
它将微分方程转化为差分方程,通过计算离散点上的导数来逼近原方程的解。
欧拉方法的基本思想是利用当前点的导数值来估计下一个点的函数值。
具体步骤如下:首先,将自变量区间等分为一系列的小区间。
然后,根据微分方程的初始条件,在起始点确定初始函数值。
接下来,根据导数的定义,计算每个小区间上函数值的斜率。
最后,根据初始函数值和斜率,递推计算得到每个小区间上的函数值。
2. 龙格-库塔方法龙格-库塔方法是一种常用的高阶精度数值解法。
它通过进行多次逼近和修正来提高近似解的准确性。
相比于欧拉方法,龙格-库塔方法在同样的步长下可以获得更精确的解。
具体步骤如下:首先,确定在每个小区间上的步长。
然后,根据微分方程的初始条件,在起始点确定初始函数值。
接下来,根据当前点的导数值,使用权重系数计算多个中间点的函数值。
最后,根据所有中间点的函数值,计算出当前点的函数值。
3. 改进欧拉方法(改进的欧拉-克罗默法)改进欧拉方法是一种中阶精度数值解法,介于欧拉方法和龙格-库塔方法之间。
它通过使用两公式递推来提高精度,并减少计算量。
改进欧拉方法相对于欧拉方法而言,增加了一个估计项,从而减小了局部截断误差。
具体步骤如下:首先,确定在每个小区间上的步长。
然后,根据微分方程的初始条件,在起始点确定初始函数值。
接下来,利用欧拉方法计算出中间点的函数值。
最后,利用中间点的函数值和斜率,计算出当前点的函数值。
总结:微分方程的数值解法为我们研究和解决实际问题提供了有力的工具。
本文介绍了欧拉方法、龙格-库塔方法和改进欧拉方法这几种常见的数值解法。
选择合适的数值解法取决于微分方程的性质以及对解的精确性要求。
在实际应用中,我们应该根据具体情况选择最合适的数值解法,并注意控制步长以尽可能减小误差。
微分方程组的数值求解方法
微分方程组的数值求解方法微分方程组数值求解方法微分方程组是数学中非常重要的一个分支,它描述了许多自然界和社会生活中的现象,例如电路的运行、天体的运行、生命体的生长等等。
我们需要对微分方程组进行求解,才能够得到它们的解析解,从而更好地理解和应用它们。
然而,大多数微分方程组不可能用解析法求解,因此,我们需要采用数值方法来求解微分方程组。
常见的微分方程组数值求解方法包括欧拉法、龙格库塔法和变步长法等。
下面,我们将逐一介绍它们的基本原理和优缺点。
一、欧拉法欧拉法是微分方程组数值求解方法中最简单的一种。
它的基本思想是将微分方程组中的各个变量离散化,然后根据微分方程组的导数计算每一步的值。
具体来讲,欧拉法的数值求解公式为:\begin{aligned} &x_{n+1}=x_n+hf_n(x_n,y_n,z_n),\\&y_{n+1}=y_n+hf_n(x_n,y_n,z_n),\\&z_{n+1}=z_n+hf_n(x_n,y_n,z_n), \end{aligned}其中,$x(t)$,$y(t)$,$z(t)$是微分方程组的解,$f_n(x_n,y_n,z_n)$是微分方程组导数在点$(x_n,y_n,z_n)$处的值,$h$为时间步长。
欧拉法的优点是简单易懂,方便实现,缺点是误差较大,计算不够精确。
因此,在实际应用中,往往需要采用更加精确的数值方法。
二、龙格库塔法龙格库塔法是微分方程组数值求解方法中比较常用的一种。
它的基本思想是通过多次计算微分方程组中的导数,以获得更加精确的数值解。
具体来讲,龙格库塔法的求解公式为:\begin{aligned}&k_{1x}=hf_n(x_n,y_n,z_n),k_{1y}=hf_n(x_n,y_n,z_n),k_{1z}=hf_n (x_n,y_n,z_n),\\&k_{2x}=hf_n(x_n+\frac{h}{2},y_n+\frac{k_{1y}}{2},z_n+\frac{k_ {1z}}{2}),k_{2y}=hf_n(x_n+\frac{h}{2},y_n+\frac{k_{1y}}{2},z_n+ \frac{k_{1z}}{2}),k_{2z}=hf_n(x_n+\frac{h}{2},y_n+\frac{k_{1y}}{ 2},z_n+\frac{k_{1z}}{2}),\\&k_{3x}=hf_n(x_n+\frac{h}{2},y_n+\frac{k_{2y}}{2},z_n+\frac{k_ {2z}}{2}),k_{3y}=hf_n(x_n+\frac{h}{2},y_n+\frac{k_{2y}}{2},z_n+ \frac{k_{2z}}{2}),k_{3z}=hf_n(x_n+\frac{h}{2},y_n+\frac{k_{2y}}{ 2},z_n+\frac{k_{2z}}{2}),\\&k_{4x}=hf_n(x_n+h,y_n+k_{3y},z_n+k_{3z}),k_{4y}=hf_n(x_n+h,y_n+k_{3y},z_n+k_{3z}),k_{4z}=hf_n(x_n+h,y_n+k_{3y},z_n+k_{3 z}),\\&x_{n+1}=x_n+\frac{k_{1x}}{6}+\frac{k_{2x}}{3}+\frac{k_{3x}}{ 3}+\frac{k_{4x}}{6},\\&y_{n+1}=y_n+\frac{k_{1y}}{6}+\frac{k_{2y}}{3}+\frac{k_{3y}}{ 3}+\frac{k_{4y}}{6},\\&z_{n+1}=z_n+\frac{k_{1z}}{6}+\frac{k_{2z}}{3}+\frac{k_{3z}}{ 3}+\frac{k_{4z}}{6}, \end{aligned}其中,$k_{1x}$,$k_{1y}$,$k_{1z}$,$k_{2x}$,$k_{2y}$,$k_{2z}$,$k_{3x}$,$k_{3y}$,$k_{3z}$,$k_{4x}$,$k_{4y}$,$k_{4z}$是微分方程组中导数的值。
微分方程的求解方法
微分方程是数学中的重要概念,它是描述物理现象以及各种变化规律的数学工具。
求解微分方程是研究微分方程学科的核心内容,也是数学应用领域中的重要课题。
本文将介绍微分方程的求解方法,为读者提供一些宝贵的参考。
求解微分方程的方法有很多种,下面将介绍其中的两种常见方法:分离变量法和常系数线性齐次微分方程求解方法。
首先,我们来介绍分离变量法。
这是一种常见且简单的求解微分方程的方法。
对于形如dy/dx=f(x)g(y)的微分方程,我们可以通过分离变量的方式将其分离为两个独立的变量,从而得到解析解。
具体步骤如下:1.将微分方程的形式表示为dy/dx=f(x)g(y)。
2.将dy/g(y)=f(x)dx两边同时积分,得到∫(1/g(y))dy=∫f(x)dx。
3.对上述两个积分进行求解,得到F(y)=G(x)+C,其中F(y)和G(x)分别表示两个积分的结果,C为常数。
4.如果可以解出y关于x的表达式,则方程的解析解为y=F^(-1)(G(x)+C),其中F^(-1)表示F的反函数。
接下来,我们来介绍常系数线性齐次微分方程求解方法。
这是一种适用于形如ay''+by'+cy=0的微分方程的方法。
具体步骤如下:1.假设y=e^(rx)为方程的解,其中r为待求常数。
2.将y=e^(rx)代入方程,得到方程ae^(rx)''+be^(rx)'+ce^(rx)=0。
3.对方程进行化简,得到ar^2e^(rx)+bre^(rx)+ce^(rx)=0。
4.将e^(rx)整理出来得到方程ar^2+br+c=0。
5.求解上述二次方程,得到两个解r1和r2。
6.将r1和r2代入y=e^(rx)中,得到方程的两个解y1=e^(r1x)和y2=e^(r2x)。
7.方程的通解为y=C1e^(r1x)+C2e^(r2x),其中C1和C2为待定常数。
以上介绍了微分方程的两种常见求解方法,这两种方法在实际应用中具有广泛的适用性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微分方程求解方法总结
可分离变量法:对于一个解析方程,如果它的可分离变量都是独立的,即为可分离变量方程,这类方程称为可分离变量方程。
它具有代数解的形式,所以用来求解微分方程比较简便、迅速。
下面介绍几种常用的可分离变量方程求解方法:
代入消元法:方程的一般解x, y均不能确定,只有通过变换可得到一些离散点,对这些离散点先进行适当的变换,使它们成为含参数的代数式x, y,然后利用方程的特征方程,去除未知函数的特征根,就可以将其变为x, y两个具体数值的解。
因此代入消元法是解可分离变量方程的基本方法之一。
2。
迭代法:也称直接法,是一种重要的微分方程求解方法。
其主要思想是从初始点出发,经过若干次迭代计算,最终获得近似解或精确解。
下面介绍几种常用的迭代公式: 1。
抛物线法:其中S是开口向上的抛物线,△y是与s轴正半轴相切的直角三角形, 3。
梯形法:将微分方程的开口向上的方程转化为向下的方程,即s=-x+y,当出现开口向上或向下的抛物线时,使用梯形法求解。
4。
极坐标法:是一种高效、精确的求解方法。
5。
零差异曲线法:是根据实验的原理,运用数学工具,建立某种关系式,由该式求解微分方程的一种方法。
由于零差异曲线在任何时刻都存在,可以选取许多近似解,但是总有一个误差范围。
6。
参数法:求解方程的某些近似解。
利用解析法求解无限阶微分方程时所采用的各种方法,只能给出方程的近似解,而不能提供方程
的精确解。
只有在用计算机求解时,才能给出方程的精确解,这种方法也称为数值解法。
计算机求解微分方程的方法有很多,目前,有限元法、差分法和有限差分法等,它们都是近似解,对于非线性微分方程,还没有找到一种准确、简单而又快速的方法。
6。
对偶原理:当已知的一个方程可以有两个或两个以上的实根,且每一个实根都可以用另外一个方程表示,而且其系数互为相反数时,则称此微分方程对应于一个双变量齐次线性方程组,并记为gx=n+jx,式中a为未知函数, n为变量个数, m为待定系数,jx是满足方程的所有的系数,只要能够给出两个方程的解,而不管这两个解怎样相同,那么他们必定满足这个对偶方程。