机械能守恒定律习题含答案

合集下载

高中物理第八章机械能守恒定律必须掌握的典型题(带答案)

高中物理第八章机械能守恒定律必须掌握的典型题(带答案)

高中物理第八章机械能守恒定律必须掌握的典型题单选题1、一物体在运动过程中,重力做了-2J的功,合力做了4J的功,则()A.该物体动能减少,减少量等于4JB.该物体动能增加,增加量等于4JC.该物体重力势能减少,减少量等于2JD.该物体重力势能增加,增加量等于3J答案:BAB.合外力所做的功大小等于动能的变化量,合力做了4J的功,物体动能增加4J,故A错误,B正确;CD.重力做负功,重力势能增大,重力做正功,重力势能减小,所以重力势能增加2J,故CD错误。

故选B。

2、如图所示,重为G的物体受一向上的拉力F,向下以加速度a做匀减速运动,则()A.重力做正功,拉力做正功,合力做正功B.重力做正功,拉力做负功,合力做负功C.重力做负功,拉力做正功,合力做正功D.重力做正功,拉力做负功,合力做正功答案:B由于物体向下运动,位移方向向下,因此重力方向与位移方向相同,重力做正功,拉力方向与位移方向相反,拉力做负功,由于物体向下做匀减速运动,加速度方向向上,因此合力方向向上,合力方向与位移方向相反,合力做负功。

故选B。

3、关于机械能,以下说法正确的是()A.质量大的物体,重力势能一定大B.速度大的物体,动能一定大C.做平抛运动的物体机械能时刻在变化D.质量和速率都相同的物体,动能一定相同答案:DA.重力势能的大小与零势能面的选取有关,质量大但重力势能不一定大,A错误;B.动能的大小与质量以及速度有关,所以速度大小,动能不一定大,B错误;C.平抛运动过程中只受重力作用,机械能守恒,C错误;D.根据E k=12mv2可知质量和速率都相同的物体,动能一定相同,D正确。

故选D。

4、人造地球卫星绕地球旋转时,既具有动能又具有引力势能(引力势能实际上是卫星与地球共有的,简略地说此势能是人造卫星所具有的)。

设地球的质量为M,半径为R,取离地无限远处为引力势能零点,则距离地心为r,质量为m的物体引力势能为E p=−GMmr(G为引力常量),假设质量为m的飞船在距地心r1的近地点速度为v1,下列说法中错误的是()A.飞船在椭圆轨道上正常运行时具有的机械能GMm2r1B.飞船在椭圆轨道距离地心r2时的速度大小√v12+2GMr2−2GMr1C.地球的第一宇宙速度√GMRD.该飞船在近地点的加速度为G Mr12答案:AA.由于飞船在椭圆轨道上机械能守恒,所以飞船的机械能等于在近地点的机械能,机械能为E=12mv12−GMmr1故A错误,符合题意;B .根据机械能守恒有12mv 12−GMm r 1=12mv 22−GMm r 2解得v 2=√v 12+2GM r 2−2GM r 1 故B 正确,不符合题意;C .对地球近地卫星,其正常运行速度即为地球的第一宇宙速度,根据向心力公式有G Mm R 2=m v 2R解得v =√GM R故C 正确,不符合题意;D .飞船在近地点时,根据万有引力定律和牛顿第二定律有GMm r 12=ma 解得a =GM r 12 故D 正确,不符合题意。

机械能守恒定律(含答案)

机械能守恒定律(含答案)
A. B. C. D.
9.质量为 的物体,从静止开始以 的加速度下落高度 的过程中()
A.物体的机械能守恒B.物体的机械能减少
C.物体的重力势能减少 D.物体克服阻力做
10.某同学身高 ,在运动会上参加跳高比赛,起跳后身体横着越过了 高度的横杆,据此可估算他起跳时竖直向上的速度大约为( 取 )
A. B. C. D.
15.如图所示,斜面倾角 ,小球从斜面上A点做平抛运动的初动能为6J,不计空气阻力,小球落在斜面上P点的动能为多少.
16.如图所示,小球用不可伸长的长度为 的轻绳悬于O点,小球A在最低点需获得多大的速度才能在竖直平面内做完整的圆周运动?
答案:
1、D 2、CD 3、ABD 4、D 5、C 6、BD 7、A 8、B
11.如图所示,轻弹簧的一端悬挂于O点,另一端与小球P相连接,将P提起使弹簧处于水
平位置且无形变,然后自由释放小球,让它自由摆下,在小球摆到最低点的过程中()
A.小球的机械能守恒
B.小球的动能增加
C.小球的机械能减小
D.不能确定小球的机械能是否守恒
12.一个质量为 的物体以 的加速度竖直向下加速运动,则在此物体下降 高度的过程中,物体的重力势能减小了_____,动能增加了______,机械能增加了_______.
13.如图所示,ABC是一段竖直平面内的光滑的 圆周长的圆形轨道,圆轨道的半径为R,O为圆心,OA水平,CD是一段光滑的水平轨道,一根长 粗细均匀的细杆开始时正好搁在圆轨道的两个端点上,现由静止开始,释放细杆,则此杆最后在水平轨道上滑行的速度为________.
14.一人在高出地面 处抛出一个质量为 的小球,不计空气阻力,小球落地时的速率为 ,则人抛球时对小球做的功为________.

(完整版)机械能守恒定律练习题及其答案

(完整版)机械能守恒定律练习题及其答案

机械能守恒定律专题练习姓名:分数:专项练习题第一类问题:双物体系统的机械能守恒问题例1. (2007·江苏南京)如图所示,A 物体用板托着,位于离地面处,轻质细绳通过光滑定滑轮与A、B相连,绳子处于绷直状态,已知A 物体质量,B 物体质量,现将板抽走,A将拉动B上升,设A与地面碰后不反弹,B上升过程中不会碰到定滑轮,问:B 物体在上升过程中离地的最大高度为多大?(取)(例1)(例2)例2. 如图所示,质量分别为2m、m的两个物体A、B可视为质点,用轻质细线连接跨过光滑圆柱体,B着地A恰好与圆心等高,若无初速度地释放,则B上升的最大高度为多少?第二类问题:单一物体的机械能守恒问题例3. (2005年北京卷)是竖直平面内的四分之一圆弧形轨道,在下端B点与水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑,已知圆轨道半径,不计各处摩擦,求:为R,小球的质量为m(1)小球运动到B点时的动能;(2)小球下滑到距水平轨道的高度为R时速度的大小和方向;(3)小球经过圆弧形轨道的B点和水平轨道的C点时,所受轨道支持力各是多大。

例4. (2007·南昌调考)如图所示,O点离地面高度为H,以O点为圆心,制作点等高的圆弧最高点滚下后水平抛出,试求:四分之一光滑圆弧轨道,小球从与O(1)小球落地点到O点的水平距离;(2)要使这一距离最大,R应满足何条件?最大距离为多少?第三类问题:机械能守恒与圆周运动的综合问题例5. 把一个小球用细线悬挂起来,就成为一个摆(如图所示),摆长为l ,最大偏角为,小球运动到最低位置时的速度是多大?(例5)(例6)例6. (2005·沙市)如图所示,用一根长为L 的细绳,一端固定在天花板上的O点,另一端系一小球A ,在O 点的正下方钉一钉子B ,当质量为m 的小球由水平位置静止释放后,小球运动到最低点时,细线遇到钉子B ,小球开始以B 为圆心做圆周运动,恰能过B 点正上方C ,求OB 的距离。

【高考物理必刷题】机械能守恒定律(后附答案解析)

【高考物理必刷题】机械能守恒定律(后附答案解析)

12C.3阶段,机械能逐渐变大阶段,万有引力先做负功后做正功4竖直悬挂.用外力将绳的下端缓慢地竖直向上拉.在此过程中,外力做功为()5的两点上,弹性绳的原长也为.将;再将弹性绳的两端缓慢移至天花板)6时,绳中的张力大于如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上,物块质量为,到小环的距离为,其两侧面与夹子间的最大静摩擦力均为.小环和物块以速度右匀速运动,小环碰到杆上的钉子后立刻停止,物块向上摆动.整个过程中,物块在夹子中没有滑动.小环和夹子的质量均不计,重力加速度为.下列说法正确的是()78受到地面的支持力小于受到地面的支持力等于的加速度方向竖直向下9的太空飞船从其飞行轨道返回地面.飞船在离地面高度的速度进入大气层,逐渐减慢至速度为时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为1 2C.3阶段,机械能逐渐变大阶段,万有引力先做负功后做正功天体椭圆运行中,从远日点向近日点运行时,天体做加速运动,万有引力做正功,引力势能转化为动能;反之,做减速运动,引力做负功,动能转化为引力势能;而整个过程机械能守恒.从这个规律出发,CD正确,B错误.同时由于速度的不同,运动个椭圆4,那么重心上升,外力做的功即为绳子增5答案解析6C设斜面的倾角为,物块的质量为,去沿斜面向上为位移正方向,根据动能定理可得:上滑过程中:,所以;下滑过程中:,所以据能量守恒定律可得,最后的总动能减小,所以C正确的,ABD错误.故选C.7时,绳中的张力大于A.物块向右匀速运动时,对夹子和物块组成的整体进行分析,其在重力和绳拉力的作B.绳子的拉力总是等于夹子对物块摩擦力的大小,因夹子对物块的最大摩擦力为,C.当物块到达最高点速度为零时,动能全部转化为重力势能,物块能达到最大的上升8受到地面的支持力小于受到地面的支持力等于的加速度方向竖直向下和受到地面的支持力大小均为;在的动能达到最大前一直是加速下降,处于失受到地面的支持力小于,故A、B正确;达到最低点时动能为零,此时弹簧的弹性势能最大,9答案解析考点一质量为的太空飞船从其飞行轨道返回地面.飞船在离地面高度处以的速度进入大气层,逐渐减慢至速度为时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为.(结果保留2位有效数字)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(1)求飞船从离地面高度处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的.(2);(1)(2)地地,地,大大大,大.(1)大,,由动能定理得:地,.(2)机械能机械能和机械能守恒定律机械能基础。

机械能守恒定律参考答案

机械能守恒定律参考答案

机械能守恒定律 能的转化和守恒定律1、解析:物体重力势能的增加量等于克服重力做的功,A 正确;物体的合力做的功等于动能的减少量ΔE k =max =,故B 错误、C 正确;物体机械能的损失量等于克服摩擦力做的功,因mg sin 30°+F f =ma ,所以F f =41mg ,故物体克服摩擦力做的功为F f x =41mg ·2h =21mgh ,D 正确. 答案:ACD 2、解析:P 、Q 整体上升的过程中,机械能守恒,以地面为重力势能的零势面,根据机械能守恒定律有:mgH +2mg (H +L sin α)=2mgh +mg (h +L sin β), 解方程得:h =H +()3sin -2sin L βα . 答案:B3、解析:设行李与传送带间的动摩擦因数为μ,则传送带与行李间由于摩擦产生 的总热量Q =n μmg Δx由运动学公式得:Δx =x 传-x 行=vt -22vt vt = 又v =μgt ,联立解得:Q =21nmv 2,由能量守恒得:E =Q +21Mv 2+21nmv 2 所以E =21Mv 2+nmv 2. 答案:21Mv 2+nmv 24、解析:退潮时水的落差是h =2 m ,水的质量是m =ρV =ρsh ,这些水的重心下降高度重力势能减少:ΔE p =mg Δh =每天发出的电能为ΔE =2ΔE p ×12%=0.12ρSgh 2=4.8×1010 J A 为发电机.【例1】解析:开始时B 静止不动,B 所受的静摩擦力为4mg sin 30°=2mg ,方向沿斜面向上.假设A 向下摆动时B 不动,则A 到最低点的过程中,根据机械能守恒定律有:mgh =21mv 2,设最低点的位置绳子的张力为T ,则T -mg =hv m 2,解得T =3mg .再对B 受力分析可得,此时B 受到的静摩擦力为mg ,方向沿斜面向下,故假设成立,B相对于斜面始终静止,选项C 正确.由于绳子拉力是逐渐增大的,所以选项A 正确.将B 与斜面体看作整体,A 在下摆过程中对整体有向左的拉力,所以地面对斜面 体的摩擦力方向向右,选项B 正确. 答案:ABC变式 1-1 解析:不计一切摩擦,小球下滑时,小球和斜劈组成的系统只有小球重力做 功,系统机械能守恒,故选B 、D. 答案:BD变式1-2解析:考查机械能守恒定律.如图为力的矢量三角形图示,若F =mg tan θ,则F 力可能为b 方向或c 方向,故力F 的方向可能与运动方向成锐角,也可能与运动方向成钝角,除重力外的力F 对质点可能做正功,也可能做负功,故质点机械能可能增大,也可能减小,C 对A 错;当F =mg sin θ,即力F 为a 方向时,力F 垂直质点运动方向,故只有重力对质点做功,机械能守恒,B 对D 错. 答案:BC 【例2】解析(1)小球从A →C ,由机械能守恒定律得mgh =小球在C 点处,根据牛顿第二定律有F N C -mg =,解得F N C =m=4.6 N根据牛顿第三定律知小球到达C 点时对管壁压力的大小为4.6 N ,方向竖直向下. (2)小球从A →D ,由机械能守恒定律得mgh =mgR +,代入数值解得v D =2 m/s小球由D 点竖直上抛至刚穿过圆筒时,由位移公式得d =v D t -解得t 1=0.1 s 和t 2=0.3 s(舍去) 小球能向上穿出圆筒所用时间满足t =2T(2n +1)(n =0,1,2,3…) 联立解得T = s(n =0,1,2,3…)变式2-1解析:(1)以10个小球整体为研究对象,由力的平衡条件可得:tan θ=,得F =10mg tan θ.(2)以1号球为研究对象,根据机械能守恒定律可得:mgh =21mv 2,解得v =.(3)撤去水平外力F 后,以10个小球整体为研究对象,利用机械能守恒定律可得:10mg=21·10m ·v ′2,解得v ′= 以1号球为研究对象,由动能定理得mgh +W =21mv ′2,得W =9mgr sin θ.【例3】解析:(1)滑环从E 点滑到F 点的过程中,根据机械能守恒得:在F 点对滑环分析受力,得由①②式得:根据牛顿第三定律得滑环第一次通过圆弧轨道O 2的最低点F 处时对轨道的压力为N.(2)由几何关系可得倾斜直轨CD 的倾角为37°,每通过一次克服摩擦力做功为: W 克=μmgL cos θ,得W 克=16 J ,由题意可知n =克W E K0=6.25,取6次. (3)由题意可知得:滑环最终只能在圆弧轨道O 2的D 点下方来回运动,即到达D 点速度为零,由能量守恒得: 2021mv +mgR 2(1+cos θ)=μmgs cos θ,解得:滑环克服摩擦力做功所通过的路程s =78 m.变式3-1解析:(1)从速度图象中可以看出,物块被击穿后,先向左做减速运动,速度为零后,又向右做加速运动,当速度等于2 m/s ,以后随传送带一起做匀速运动,所以,传送带的速度方向向右传送带的速度v 的大小为2.0 m/s. (2)由速度图象可得,物块在滑动摩擦力的作用下做匀变速运动的加速度为a ,有a =m/s 2=2.0 m/s 2由牛顿第二定律得滑动摩擦力F =μMg 得到物块与传送带间的动摩擦因数μ=gM Ma =100.2= 0.2. (3)由速度图象可知,传送带与物块存在摩擦力的时间只有3秒,传送带在这段时间内移动的位移为x ,则x =vt =2.0×3 m =6.0 m所以,传送带所做的功W =F f x =4.0×6.0 J =24 J在物块获得速度到与传送带一起匀速运动的过程中,物块动能减少了ΔE k所以转化的内能E Q =W +ΔE k =24+12=36 J.【例4】解析:Q 球从水平位置下摆到最低点的过程中,受重力和杆的作用力,杆的作用力是Q 球运动的阻力(重力是动力),对Q 球做负功;P 球是在杆的作用下上升的,杆的作用力是动力(重力是阻力),对P 球做正功.所以,由功能关系可以判断,在Q 下摆过程中,P 球重力势能增加、动能增加、机械能增加,Q 球重力势能减少、机械能减少;由于P 和Q 整体只有重力做功,所以系统机械能守恒.本题的正确答案是BC. 答案:BC【巩固提高】1、解析:设铁块在圆轨道底部的速度为v ,则1.5mg -mg =m v 2R ,由能量守恒有:mgR -ΔE =12mv 2,所以ΔE =34mgR .答案:D2、解析:物体下滑过程中,由于物体与斜面相互间有垂直于斜面的作用力,使斜面加速运动,斜面的动能增加;物体沿斜面下滑时,既沿斜面向下运动,又随斜面向右运动,其合速度方向与弹力方向不垂直,且夹角大于90°,所以物体克服相互作用力做功,物体的机械能减少,但动能增加,重力势能减少,故A 项正确,B 、C 项错误.对物体与斜面组成的系统内,只有动能和重力势能之间的转化,故系统机械能守恒,D 项正确. 答案:AD3、解析:由机械能守恒定律求出演员b 下落至最低点时的速度大小为v . 12mv 2=mgl (1-cos 60°),v 2=2gl (1-cos60°)=gl .此时绳的拉力为T =mg +m v 2l=2mg ,演员a 刚好对地压力为0.则m a g =T =2mg .故m a ∶m =2∶1. 答案:B4、解析:考查机械能守恒定律.在b 球落地前,a 、b 球组成的系统机械能守恒,且a 、b 两球速度大小相等,根据机械能守恒定律可知:3mgh -mgh =12(m +3m )v 2,v =gh ,b 球落地时,a 球高度为h ,之后a 球向上做竖直上抛运动,在这个过程中机械能守恒,12mv 2=mg Δh ,Δh =v 22g =h2,所以a 球可能达到的最大高度为1.5h ,B 项正确. 答案:B5、解析:物体离开弹簧后的动能设为E k ,由功能关系可得:E k =μmgx 1=7.8 J ,设弹簧开始的压缩量为x 0,则弹簧开始的弹性势能E p 0=μmg (x 0+x 1)=7.8 J +μmgx 0>7.8 J ,A 错误;当弹簧的弹力kx 2=μmg 时,物体的速度最大,得x 2=0.05 m ,D 正确,C 错误;物体在x 2=0.05 m 到弹簧的压缩量x 2=0的过程做减速运动,故最大动能一定大于7.8 J ,故B 错误. 答案:D6、解析:电动机做功:W =(M -m )gh +12(M +m )v 2=(1 000-800)×10×1+12(1 000+800)×22=5 600 J. 答案:B7、解析:A 机械能守恒,E A =E B ,B→A 机械能守恒,E A =E B ,B→C 弹力对人做负功,机械能减小,E B >E C . 答案:AC8、解析:小球从A 出发到返回A 的过程中,位移为零,重力做功为零,支持力不做功,摩擦力做负功,所以A 选项错误;从A 到B 的过程与从B 到A 的过程中,位移大小相等,方向相反,损失的机械能等于克服摩擦力做的功,所以C 选项正确;小球从A 到C 过程与从C 到B 过程,位移相等,合外力也相等,方向与运动方向相反,所以合外力做负功,大小相等,所以减少的动能相等,因此,B 选项正确;小球从A 到C 过程与从C 到B 过程中,减少的动能相等,而动能的大小与质量成正比,与速度的平方成正比,所以D 错误. 答案:BC9、解析:撑杆跳运动员过最高点时竖直速度为零,水平速度不为零,选项A 错误;当运动员到达最高点杆恢复形变时,弹性势能转化为运动员的重力势能和动能,选项B 错误;运动员可以背跃式跃过横杆,其重心可能低于横杆,选项C 错误;运动员在上升过程中对杆先做正功转化为杆的弹性势能后做负功,杆的弹性势能转化为运动员的重力势能和动能,选项D 正确. 答案:D10、解析:根据机械能守恒定律,当速度为v 0=gR ,由mgh =12mv 20解出h =R2,A 项正确,B 项错误;当v 0=5gR ,小球正好运动到最高点,D 项正确;当v 0=3gR 时小球运动到最高点以下,若C 项成立,说明小球此时向心力为0,这是不可能的. 答案:AD11、解析:(1)设滑块到达B 端时速度为v , 由动能定理,得mgR =12mv 2由牛顿第二定律,得F N -mg =m v 2R联立两式,代入数值得轨道对滑块的支持力:F N =3mg =30 N. (2)当滑块滑上小车后,由牛顿第二定律,得 对滑块有:-μmg =ma 1 对小车有:μmg =Ma 2设经时间t 两者达到共同速度,则有:v +a 1t =a 2t解得t =1 s .由于1 s <1.5 s ,此时小车还未被锁定,两者的共同速度:v ′=a 2t =1 m/s因此,车被锁定时,车右端距轨道B 端的距离:x =12a 2t 2+v ′t ′=1 m.(3)从车开始运动到被锁定的过程中,滑块相对小车滑动的距离Δx =v +v ′2t -12a 2t 2=2 m所以产生的内能:E =μmg Δx =6 J.(4)对滑块由动能定理,得-μmg (L -Δx )=12mv ″2-12mv ′2滑块脱离小车后,在竖直方向有:h =12gt ″2所以,滑块落地点离车左端的水平距离:x ′=v ″t ″=0.16 m. 12、解析:(1)轮缘转动的线速度:v =2πnr =1.6 m/s. (2)板运动的加速度:a =μg =0.16×10 m/s 2=1.6 m/s 2板在轮上做加速运动的时间:t =v a =1.6 m/s1.6 m/s 2=1 s板在做匀加速运动中所发生的位移:x 1=12at 2=12×1.6×12m =0.8 m板在做匀速运动的全过程中其重心平动发生的位移为:x 2=3.6 m -0.8 m -0.4 m =2.4 m因此,板运动的总时间为:t =t 1+s 2v =1 s +2.41.6s =2.5 s.(3)由功能关系知:轮子在传送木板的过程中所消耗的机械能一部分转化成了木板的动能,另一部分因克服摩擦力做功转化成了内能,即:木板获得的动能:E k =12mv 2,摩擦力做功产生的内能:Q =F f ·Δx加速过程木板与轮子间的相对位移:Δs =v ·t -0+v2·t ,消耗的机械能:ΔE =E k +Q联立上述四个方程解得:ΔE =mv 2=2×1.62J =5.12 J.。

高考物理《机械能守恒定律》真题练习含答案

高考物理《机械能守恒定律》真题练习含答案

高考物理《机械能守恒定律》真题练习含答案1.[2024·上海市新中中学月考]如图,将质量为m 的篮球从离地高度为h 的A 处,以初始速度v 抛出,篮球恰能进入高度为H 的篮圈.不计空气阻力和篮球转动的影响,经过篮球入圈位置B 的水平面为零势能面,重力加速度为g .则篮球经过位置B 时的机械能为( )A .12 m v 2B .12 m v 2+mg (h -H )C .12 m v 2+mg (H -h )D .12 m v 2+mgh答案:B解析:不计空气阻力和篮球转动的情况下,篮球运动过程中机械能守恒,篮球经过B 点的机械能等于在A 点的机械能.以B 点所在的水平面为零势能面,篮球在A 点的重力势能E p =-mg (H -h )=mg (h -H ),则机械能E =E k +E p =12m v 2+mg (h -H ),B 正确.2.如图所示,一根轻质弹簧左端固定,现使滑块沿光滑水平桌面滑向弹簧,在滑块接触到弹簧直到速度减为零的过程中,弹簧的( )A .弹力越来越大,弹性势能越来越大B .弹力越来越小,弹性势能越来越小C .弹力先变小后变大,弹性势能越来越小D .弹力先变大后变小,弹性势能越来越大 答案:A解析:滑块接触到弹簧直到速度减为零的过程中,弹簧形变量越来越大,根据F =kx 得弹力越来越大,滑块接触到弹簧直到速度减为零的过程中,弹簧弹力一直做负功,物块的动能逐渐转化为弹簧的弹性势能,弹簧的弹性势能越来越大,A 正确.3.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如一根长为2L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A 、B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为( )A .6mgB .23 mgC .5mgD .533 mg答案:B解析:小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,由机械能守恒定律得mg ×3 L =12 m v 22 -12 m v 21 ,由牛顿第二定律得3 F -mg =m v 22 32L ,联立以上各式解得F =23 mg ,B 正确.4.[2024·河北省张家口市张垣联盟联考]有一条均匀金属链条,一半长度在光滑的足够高斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂,由静止释放后链条滑动,已知重力加速度g =10 m/s 2,链条刚好全部滑出斜面时的速度大小为522 m/s ,则金属链条的长度为( )A .0.6 mB .1 mC .2 mD .2.6 m 答案:C解析:设链条的质量为2m ,以开始时链条的最高点所在水平面为零势能面,链条的机械能为E =E p +E k =-12 ×2mg ×L 4 sin θ-12 ×2mg ×L 4 +0=-14 mgL (1+sin θ),链条全部滑出后,动能为E ′k =12 ×2m v 2,重力势能为E ′p =-2mg L2 ,由机械能守恒可得E =E ′k +E ′p ,即-14mgL (1+sin θ)=m v 2-mgL ,解得L =2 m ,C 正确.5.[2024·山东省济宁市期中考试]有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一根不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速度为v ,则连接A 、B 的绳长为( )A .4v 2gB .3v 2gC .2v 23gD .4v 23g答案:D解析:如图所示,将A 、B 的速度分解为沿绳的方向和垂直于绳的方向,两物体沿绳子的方向速度大小相等,则有v B cos 60°=v A cos 30°,解得v A =33v ,由于A 、B 组成的系统只有重力做功,所以系统机械能守恒,B 减小的重力势能全部转化为A 和B 的动能,有mgh =12 m v 2A +12 m v 2B ,解得h =2v 23g ,绳长L =2h =4v 23g,D 正确.6.(多选)如图所示,轻弹簧的一端固定在O 点,另一端与质量为m 的小球连接,小球套在光滑的斜杆上,初始时小球位于A 点,弹簧竖直且长度为原长L .现由静止释放小球,当小球运动至B 点时弹簧水平,且长度再次变为原长.关于小球从A 点运动到B 的过程,以下说法正确的是( )A .小球的机械能守恒B .小球运动到B 点时的速度最大 C.小球运动到B 点时的速度为0D .小球运动到B 点时的速度为2gL答案:BD解析:在小球向下运动的过程中,弹簧的弹力做功,并不是只有重力做功,小球的机械能不守恒,A 错误;从A 到B 的过程中,弹簧弹力做功为零,小球的重力做正功最多,由动能定理得小球的速度最大,B 正确,C 错误;小球运动到B 点时,弹簧为原长,由系统的机械能守恒定律得mgL =12m v 2,解得v =2gL ,D 正确.7.(多选)在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y =2.5cos (kx +23 π)(单位:m),式中k =1 m -1,将一光滑小环套在该金属杆上,并从x =0处以v 0=5m/s 的初速度沿杆向下运动,取重力加速度g =10 m/s 2,则下列说法正确的是( )A.当小环运动到x =π3 时的速度大小v 1=52 m/sB.当小环运动到x =π3 时的速度大小v 1=5 m/sC .该小环在x 轴方向最远能运动到x =56 π处D .该小环在x 轴方向最远能运动到x =76 π处答案:AC解析:当x =0时,y 0=-1.25 m ;当 x =π3 时,y 1=-2.5 m .由机械能守恒定律得mg (y 0-y 1)=12 m v 21 -12 m v 20 ,解得v 1=52 m/s ,A 正确,B 错误;设小球速度为零时上升的高度为h ,由机械能守恒定律得mgh =12 m v 20 ,解得h =1.25 m ,即y =0,代入曲线方程可得x =56π,C 正确,D 错误.8.如图所示,在竖直平面内有一半径为R 的四分之一圆弧轨道BC ,与竖直轨道AB 和水平轨道CD 相切,轨道均光滑.现有长也为R 的轻杆,两端固定质量为m 的小球a 、质量为2m 的小球b (均可视为质点),用某装置控制住小球a ,使轻杆竖直且小球b 与B 点等高,然后由静止释放,杆将沿轨道下滑.设小球始终与轨道接触,重力加速度为g .则( )A .下滑过程中a 球机械能增大B .下滑过程中b 球机械能守恒C .小球a 滑过C 点后,a 球速度大于26mgR3D .从释放至a 球到滑过C 点的过程中,轻杆对b 球做正功为23 mgR答案:D解析:下滑过程中,若以两球为整体,只有重力做功,则有系统的机械能守恒,若分开单独分析,杆对a 球做负功,a 球的机械能减小,杆对b 球做正功,b 球的机械能增加,A 、B 错误;若以两球为整体,只有重力做功,则有系统的机械能守恒,则有mg ·2R +2mgR =12(m +2m )v 2,解得v =26gR 3 ,C 错误;对b 球分析,由动能定理可得W +2mgR =12 ·2m v 2,W =12 ·2m v 2-2mgR =23 mgR ,杆对b 球做正功为23mgR ,D 正确.9.[2024·浙江1月]类似光学中的反射和折射现象,用磁场或电场调控也能实现质子束的“反射”和“折射”.如图所示,在竖直平面内有三个平行区域Ⅰ、Ⅱ和Ⅲ,Ⅰ区宽度为d ,存在磁感应强度大小为B 、方向垂直平面向外的匀强磁场,Ⅱ区的宽度很小.Ⅰ区和Ⅲ区电势处处相等,分别为φⅠ和φⅢ,其电势差U =φⅠ-φⅢ.一束质量为m 、电荷量为e 的质子从O 点以入射角θ射向Ⅰ区,在P 点以出射角θ射出,实现“反射”;质子束从P 点以入射角θ射入Ⅱ区,经Ⅱ区“折射”进入Ⅲ区,其出射方向与法线夹角为“折射”角.已知质子仅在平面内运动,单位时间发射的质子数为N ,初速度为v 0,不计质子重力,不考虑质子间相互作用以及质子对磁场和电势分布的影响.(1)若不同角度射向磁场的质子都能实现“反射”,求d 的最小值;(2)若U =m v 20 2e,求“折射率”n (入射角正弦与折射角正弦的比值);(3)计算说明如何调控电场,实现质子束从P 点进入Ⅱ区发生“全反射”(即质子束全部返回Ⅰ区);(4)在P 点下方距离3m v 0eB 处水平放置一长为4m v 0eB的探测板CQD (Q 在P 的正下方),CQ 长为m v 0eB ,质子打在探测板上即被吸收中和.若还有另一相同质子束,与原质子束关于法线左右对称,同时从O 点射入Ⅰ区,且θ=30°,求探测板受到竖直方向力F 的大小与U 之间的关系.答案:(1)2m v 0Be (2)2 (3)U ≤-m v 20 cos 2θ2e(4)见解析解析:(1)根据牛顿第二定律 Be v 0=m v 20r不同角度射向磁场的质子都能实现“反射”,d 的最小值为 d min =2r =2m v 0Be(2)设水平方向为x 方向,竖直方向为y 方向,x 方向速度不变,y 方向速度变小,假设折射角为θ′,根据动能定理Ue =12 m v 21 -12 m v 20 解得 v 1=2 v 0 根据速度关系 v 0sin θ=v 1sin θ′ 解得n =sin θsin θ′ =v 1v 0=2 (3)全反射的临界情况:到达Ⅲ区的时候y 方向速度为零,即 Ue =0-12 m (v 0cos θ)2可得U =-m v 20 cos 2θ2e即应满足U ≤-m v 20 cos 2θ2e(4)临界情况有两个:1、全部都能打到,2、全部都打不到的情况,根据几何关系可得 ∠CPQ =30°所以如果U ≥0的情况下,折射角小于入射角,两边射入的粒子都能打到板上,分情况讨论如下:①当U ≥0时 F =2Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =2Nm34v 20 +2eUm②全部都打不到板的情况,根据几何知识可知当从Ⅱ区射出时速度与竖直方向夹角为60°时,粒子刚好打到D 点,水平方向速度为v x =v 02所以v y =v x tan 60° =36 v 0又eU =12 m v 2y-12 m (v 0cos θ)2 解得 U =-m v 20 3e即当U <-m v 203e 时F =0③部分能打到的情况,根据上述分析可知条件为(-m v 203e ≤U <0),此时仅有O 点右侧的一束粒子能打到板上,因此F =Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =Nm 34v 20 +2eUm。

高中物理(机械能守恒定律)习题训练与答案解析

高中物理(机械能守恒定律)习题训练与答案解析

基础知识一.功1.一个物体受到力的作用,并在上发生了位移,我们就说这个力对物体须知了功,做功的两个必不可少的因素是的作用,在力的。

2.功的计算公式:W= ,式中θ是的夹角,此式主要用于求作功,功是标量,当θ=90°时,力对物体;当θ<90°时,力对物体;当θ>90°时,力对物体。

3.合力的功等于各个力做功的,即W合=W1+W2+W3+W4+……4.功是过程量,与能量的转化相联系,功是能量转化的,能量转化的过程一定伴随着二.功率1.功跟的比值叫功率,它是表示的物理量。

2.计算功率的公式有、,若求瞬时功率,则要用。

3.两种汽车启动问题中得功率研究:三.动能1.物体由于而具有的能量叫动能,公式是,单位是,符号是。

2.物体的动能的变化,指末动能与初动能之差,即△Ek=Ekt一Eko,若△Ek>0,表示物体的动能;若△Ek<0,表示物体的动能。

四.重力势能1.概念:物体由于被举高而具有的能量叫 ,表达式:Ep= ,它是,但有正负,正负的意义是表示比零势能参考面上的势能大还是小,重力势能的变化与重力做功的关系:重力对物体做多少正功,物体的重力势能就多少;重力对物体做多少负功,物体的重力势能就多少。

重力对物体所做的功等于物体的减小量。

即W G=一△Ep=一(Ep2一Ep1)=Ep1一Ep2.2.弹性势能:定义:物体由于发生而具有的能量叫。

大小:弹性势能的大小与及有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能就越大。

习题练习1.下列说法正确的是( )A.当作用力做正功时,反作用力一定做负功B.当作用力不做功时,反作用力也不做功C.作用力与反作用力的功,一定大小相等,正负符号相反D.作用力做正功,反作用力也可能做正功2.如图所示,小物块A位于光滑的斜面上,斜面位于光滑的水平面上,从地面上看,小物块沿斜面下滑的过程中,斜面对小物块的作用力( )A.垂直于接触面,做功为零B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零3.如图所示,质量为m的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,现使斜面水平向左匀速移动距离L.(1)摩擦力对物体做的功为(物体与斜面相对静止)()A.0B.μmglcosθC.-mglcosθsinθD.mglsinθcosθ(2)斜面对物体的弹力做的功为 ( )A.0B.mglsinθcos2θC.-mglcos2θD.mglsinθcosθ(3)重力对物体做的功( )A.0B.mglC.mgltan θD.mglcos θ(4)斜面对物体做的总功是多少? 各力对物体所做的总功是多少? 4.如图所示,物体沿弧形轨道滑下后进入足够长的水平传送带,传送带以图示方向匀速运转,则传送带对物体做功情况可能是( ) A.始终不做功 B.先做负功后做正功 C.先做正功后不做功 D.先做负功后不做功5.物体在水平力F 1作用下,在水平面上做速度为v 1的匀速运动,F 1的功率为P;若在斜向上的力F 2作用下,在水平面上做速度为v 2的匀速运动,F 2的功率也是P,则下列说法正确的是( ) A.F 2可能小于F 1, v 1不可能小于v 2 B.F 2可能小于F 1, v 1一定小于v 2 C.F 2不可能小于F 1, v 1不可能小于v 2 D.F 2不可能小于F 1, v 1一定小于v 26.小汽车在水平路面上由静止启动,在前5 s 内做匀加速直线运动,5 s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图所示.已知汽车的质量为m=2×103kg,汽车受到地面的阻力为车重的0.1倍,则以下说法正确的是( )A.汽车在前5 s 内的牵引力为4×103NB.汽车在前5 s 内的牵引力为6×103N C.汽车的额定功率为60 kW D.汽车的最大速度为30 m/s7.手持一根长为l 的轻绳的一端在水平桌面上做半径为r 、角速度为ω的匀速圆周运动,绳始终保持与该圆周相切,绳的另一端系一质量为m 的木块,木块也在桌面上做匀速圆周运动,不计空气阻力则( ) A.手对木块不做功B.木块不受桌面的摩擦力C.绳的拉力大小等于223r l m +ωD.手拉木块做功的功率等于m ω3r(l 2+r 2)/l8.一根质量为M 的直木棒,悬挂在O 点,有一只质量为m 的猴子抓着木棒,如图所示.剪断悬挂木棒的细绳,木棒开始下落,同时猴子开始沿木棒向上爬.设在一段时间内木棒沿竖直方向下落,猴子对地的高度保持不变,忽略空气阻力,则下列的四个图中能正确反映在这段时间内猴子做功的功率随时间变化的关系的是( )9.机车从静止开始沿平直轨道做匀加速运动,所受的阻力始终不变,在此过程中,下列说法正确的是( ) A.机车输出功率逐渐增大 B.机车输出功率不变C.在任意两相等的时间内,机车动能变化相等D.在任意两相等的时间内,机车动量变化的大小相等10.如图所示,质量为m 的物体A 静止于倾角为θ的斜面体B 上,斜面体B 的质量为M,现对该斜面体施加一个水平向左的推力F,使物体随斜面体一起沿水平方向向左匀速运动的位移为l,则在此运动过程中斜面体B 对物体A 所做的功为( )A.m M Flm +B.Mglcot θC.0D.21mglsin2θ 11.起重机的钢索将重物由地面吊到空中某个高度,其速度图象如图所示,则钢索拉力的功率随时间变化的图象可能是下图中的哪一个( )12.以恒力推物体使它在粗糙水平面上移动一段距离,恒力所做的功为W 1,平均功率为P 1,在末位置的瞬时功率为P t1,以相同的恒力推该物体使它在光滑的水平面上移动相同距离,力所做功为W 2,平均功率为P 2,在末位置的瞬时功率为P t2,则下面结论中正确的是( )A.W 1>W 2B.W 1=W 2C.P 1=P 2D.P t2<P t113.如图所示,滑雪者由静止开始沿斜坡从A 点自由滑下,然后在水平面上前进至B点停下.已知斜坡、水平面与滑雪板之间的动摩擦因数皆为μ,滑雪者(包括滑雪板)的质量为m,A 、B 两点间的水平距离为L.在滑雪者经过AB 段运动的过程中,克服摩擦力做的功( )A.大于μmgLB.小于μmgLC.等于μmgLD.以上三种情况都有可能14.某汽车以额定功率在水平路面上行驶,空载时的最大速度为v 1,装满货物后的最大速度为v 2,已知汽车空车的质量为m 0,汽车所受的阻力跟车重成正比,则汽车后来所装的货物的质量是( )A.0221m v v v - B.0221m v vv + C.m 0 D.021m v v 15.物体在恒力作用下做匀变速直线运动,关于这个恒力做功的情况,下列说法正确的是( ) A.在相等的时间内做的功相等 B.通过相同的路程做的功相等 C.通过相同的位移做的功相等D.做功情况与物体运动速度大小有关16.解放前后,机械化生产水平较低,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用,如图所示,假设驴拉磨的平均用力大小为500 N,运动的半径为1 m,则驴拉磨转动一周所做的功为( ) A.0 B.500 J C.500π J D.1 000π J17.如图所示,在倾角为θ的光滑斜面上,木板与滑块质量相等,均为m,木板长为l.一根不计质量的轻绳通过定滑轮分别与木板、滑块相连,滑块与木板间的动摩擦因数为μ,开始时,滑块静止在木板的上端,现用与斜面平行的未知力F,将滑块缓慢拉至木板的下端,拉力做功为( )A.μmglcos θB.2μmglC.2μmglcos θD.21μmgl18.额定功率为80 kW 的汽车,在平直的公路上行驶的最大速度为20 m/s,汽车的质量为2.0 t.若汽车从静止开始做匀加速直线运动,加速度大小为2 m/s 2,运动过程中阻力不变,则:(1)汽车受到的恒定阻力是多大?(2)3 s末汽车的瞬时功率是多大?(3)匀加速直线运动的时间是多长?(4)在匀加速直线运动中,汽车牵引力做的功是多少?答案 (1)4×103 N (2)48 KW (3)5 s (4)2×105 J19.汽车发动机的功率为60 kW,汽车的质量为4 t,当它行驶在坡度为sinα=0.02的长直公路上时,如图所示,所受阻力为车重的0.1倍(g取10 m/s2),求:(1)汽车所能达到的最大速度v m.(2)若汽车从静止开始以0.6 m/s2的加速度做匀加速直线运动,则此过程能维持多长时间?(3)当汽车以0.6 m/s2的加速度匀加速行驶的速度达到最大值时,汽车做功多少?答案 (1)12.5 m/s (2)13.9 s (3)4.16×105 J20.如图甲所示,质量m=2.0 kg的物体静止在水平面上,物体跟水平面间的动摩擦因数μ=0.20.从t=0时刻起,物体受到一个水平力F的作用而开始运动,前8 s内F随时间t变化的规律如图乙所示.g取10m/s2.求:(1)在图丙的坐标系中画出物体在前8 s内的v—t图象.(2)前8 s内水平力F所做的功.答案 (1) v-t图象如下图所示 (2)155 J动能定理.机械能守恒定律一.动能定理1.内容:外力对物体做功的代数和等于。

(典型题)高中物理必修二第八章《机械能守恒定律》测试题(含答案解析)

(典型题)高中物理必修二第八章《机械能守恒定律》测试题(含答案解析)

一、选择题1.如图所示,轻质弹簧竖直放置,下端固定。

小球从弹簧的正上方某一高度处由静止下落,不计空气阻力,则从小球接触弹簧到弹簧被压缩至最短的过程中()A.小球的动能一直减小B.小球的机械能守恒C.弹簧的弹性势能先增加后减小D.小球的重力势能一直减小2.从同一高度以相同的速率分别抛出质量相等的三个小球,一个竖直上抛,一个竖直下抛,另一个平抛,则它们从抛出到落地(不计空气阻力),以下说法正确的是()①运行的时间相等②重力的平均功率相等③落地时重力的瞬时功率相等④落地时的动能相等A.④B.②③C.③④D.②③④3.两个互相垂直的力F1与F2作用在同一物体上,使物体运动,物体通过一段位移时,力F1对物体做功为4J。

力F2对物体做功为3J,则力F1与F2的合力对物体做功为()A.0 B.5J C.7J D.25J4.关于功和能,下列说法不正确的是()A.滑动摩擦力对物体可以做正功B.当作用力对物体做正功时,反作用力可以不做功C.一对互为作用力和反作用力的滑动摩擦力,做功之和一定为零D.只有重力做功的物体,在运动过程中机械能一定守恒5.物体从某一高度做初速为0v的平抛运动,p E为物体重力势能,k E为物体动能,h为下落高度,t为飞行时间,v为物体的速度大小。

以水平地面为零势能面,不计空气阻力,下E与各物理量之间关系可能正确的是()列图象中反映pA.B.C.D.6.在水平地面上竖直上抛一个小球,小球在运动过程中重力瞬时功率的绝对值为P,离地高度h。

不计空气阻力,从抛出到落回原地的过程中,P与h关系图像为()A.B.C.D.7.如图,游乐场中,从高处P到水面Q处有三条不同的光滑轨道,图中甲和丙是两条长度相等的曲线轨道,乙是直线轨道。

甲、乙、丙三小孩沿不同轨道同时从P处自由滑向Q 处,下列说法正确的有()A.甲的切向加速度始终比丙的小B.因为乙沿直线下滑,所经过的路程最短,所以乙最先到达Q处C.虽然甲、乙、丙所经过的路径不同,但它们的位移相同,所以应该同时到达Q处D.甲、乙、丙到达Q处时的速度大小是相等的8.将一个小球从水平地面竖直向上抛出,它在运动过程中受到的空气阻力大小恒定,其上升的最大高度为20m,则运动过程中小球的动能和重力势能相等时,其高度为(规定水平地面为零势能面)()A.上升时高于10m,下降时低于10mB.上升时低于10m,下降时高于10mC.上升时高于10m,下降时高于10mD.上升时低于10m,下降时低于10m9.在倾角为30°的斜面上,某人用平行于斜面的力把原来静止于斜面上的质量为2kg的物体沿斜面向上推了2m的距离,并使物体获得1m/s的速度,已知物体与斜面间的动摩擦因数为33,g取10m/s2,则在这个过程中()A.物体机械能增加41J B.摩擦力对物体做功20JC.合外力对物体做功1J D.物体重力势能增加40J10.按压式圆珠笔内装有一根小弹簧,尾部有一个小帽,压一下小帽,笔尖就伸出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《机械能守恒》第Ⅰ卷(选择题,共40分)一、选择题(每小题4分,共40分。

在每小题给出的四个选项中,至少有一个选项是正确的,全部选对得4分,对而不全得2分。

)1、关于机械能是否守恒的叙述,正确的是()A.做匀速直线运动的物体机械能一定守恒B.做变速运动的物体机械能可能守恒C.外力对物体做功为零时,机械能一定守恒D.若只有重力对物体做功,物体的机械能一定守恒2、质量为m的小球,从离桌面H高处由静止下落,桌面离地面高度为h,如图1所示,若以桌面为参考平面,那么小球落地时的重力势能及整个下落过程中重力势能的变化分别是()A.mgh,减少mg(H-h)B.mgh,增加mg(H+h)C.-mgh,增加mg(H-h)D.-mgh,减少mg(H+h)图13、一个物体以一定的初速度竖直上抛,不计空气阻力,那么如图2所示,表示物体的动能E k随高度h变化的图象A、物体的重力势能E p随速度v变化的图象B、物体的机械能E随高度h变化的图象C、物体的动能E k随速度v的变化图象D,可能正确的是()图24、物体从高处自由下落,若选地面为参考平面,则下落时间为落地时间的一半时,物体所具有的动能和重力势能之比为()A.1:4 B.1:3 C.1:2 D.1:15、如图3所示,质量为m的木块放在光滑的水平桌面上,用轻绳绕过桌边的定滑轮与质量为M的砝码相连,已知M=2m,让绳拉直后使砝码从静止开始下降h(小于桌面)的距离,木块仍没离开桌面,则砝码的速率为()图3图4A .31gh 6 B .mgh C .gh 2 D .gh 3326、质量为m 的小球用长为L 的轻绳悬于O 点,如图4所示,小球在水 平力F 作用下由最低点P 缓慢地移到Q 点,在 此过程中F 做的功为( ) A .FL sin θ B .mgL cos θ C .mgL (1-cos θ) D .Fl tan θ7、质量为m 的物体,由静止开始下落,由于阻力作用,下落的加速度为54g ,在物体下落h 的过程中,下列说法中正确的应是( )A .物体的动能增加了54mghB .物体的机械能减少了54mghC .物体克服阻力所做的功为51mghD .物体的重力势能减少了mgh8、如图5所示,一轻弹簧固定于O 点,另一端系一重物,将重物从与悬点O 在同一水平面且弹簧保持原长的A 点无初速地释放,让它自 由摆下,不计空气阻力,在重物由A 点摆向最低点的过程中( ) A .重物的重力势能减少 B .重物的重力势能增大 C .重物的机械能不变 D .重物的机械能减少9、如图6所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的应是( ) A .重力势能和动能之和总保持不变 B .重力势能和弹性势能之和总保持不变 C .动能和弹性势能之和保持不变D .重力势能、弹性势能和动能之和总保持不变10、平抛一物体,落地时速度方向与水平方向的夹角为θ.取地面为参考平面,则物体被抛出时,其重力势能和动能之比为( ) A .tan θ B .cot θ C .cot 2θ D .tan 2θ图6 图5图8第Ⅱ卷(非选择题,共60分)二、填空题(每小题6分,共24分。

把正确答案填写在题中的横线上,或按题目要求作答。

)11、从某一高度平抛一小球,不计空气阻力,它在空中飞行的第1 s 内、第2 s 内、第3 s 内动能增量之比ΔE k1∶ΔE k2∶ΔE k3=________.12、质量为m 、摆长为L 的摆球从摆角为53°处无初速地摆下,不计空气阻力,设摆球在最低点处的重力势能为零,那么当摆球的摆角θ=________时,摆球的动能和重力势能相等.(sin53°=0.8) 13、如图7所示,物体以100 J 的初动能从斜面底端向上运动,中途第一次通过斜面上M 点时,其动能减少了80 J , 机械能减少了32 J.则当物体沿斜面重新返回底端时,其动 能为________J. 14、在“验证机械能守恒定律”的实验中,已知打点计时器所用电源的频率为50 H z.查得当地的重力加速度g =9.80 m /s 2,所用的重物的质量为m (kg ),实验中得到一条点迹清晰的纸带,如图8把第一个点记作O ,另外连续的4个点A 、B 、C 、D 作为测量的点,经测量知道A 、B 、C 、D 各点到O 点的距离分别为62.99 cm 、70.18 cm 、77.76 cm 、85.73 cm ,根据以上数据,可知重物由打O 点运动到打C 点, 重力势能减少量等于________J ,动能的增加量等于 ________J.(取3位有效数字)三、计算题(共36分。

要求写出必要的文字说明、主要方程式和重要演算步骤,有数值计算的要明确写出数值和单位,只有最终结果的不得分。

) 15、(12分)物体的质量为m ,沿光滑的弯曲轨道滑下,轨道的形状如图9所示,与弯曲轨道相接的圆轨道的半径为R ,要使物体沿光滑圆轨道能通过最高点,物体应从离轨道最低处多高的地方由静止开始滑下?图7图916.(12分)细绳的一端固定,另一端系一质量为m的小球,小球绕绳的固定点在竖直平面做圆周运动.小球在最低点和最高点时细绳对小球拉力的大小相差多少?17.(12分)一个质量m=0.20kg的小球系于轻质弹簧的一端,且套在光滑竖立的圆环上,弹簧的上端固定于环的最高点A,环的半径R=0.5m,弹簧的原长L0=0.5m,劲度系数为4.8N/m,如图10所示,若小球从图中所示位置B点由静止开始滑动到最低点C时,弹簧的弹性势能E p弹=0.6J,求(1)小球到C点时的速度vc的大小。

A (2)小球在C点对环的作用力。

(g=10m/s2)Array BC图10参考答案1.【答案】 BD【解析】 判断机械能是否守恒,依据是重力以外的力是否做了功,不管物体是做匀速运动还是变速运动,也不管物体是做直线运动还是做曲线运动,只要重力以外的力不做功,机械能就一定守恒.外力做功为零,并不意味着重力以外的力做功为零,所以,机械能不一定守恒.选项B 、D 正确. 2.【答案】 D【解析】 重力势能的数值与参考平面的选取有关.重力势能的变化量与重力做功对应,而与参考平面的选取无关. 3.【答案】 ABCD【解析】 设物体的初速度为v 0,物体的质量为m ,由机械能守恒定律得21mv 02=mgh +21mv 2,所以,物体的动能与高度h 的关系为E k =21mv 02-mgh ,图象A 正确。

物体的重力势能与速度v 的关系为E p =21mv 02-21mv 2,则E p -v 图象为开口向下的抛物线(第一象限中的部分),图象B 可能正确.由于竖直上抛运动过程中机械能守恒,所以,E -h 图象为一平行h 轴的直线,C 图象正确.由E k =21mv 2知,E k -v 图象为一开口向上的抛物线(第一象限中部分),所以,D 图象可能正确. 4.【答案】 B【解析】 设物体下落时离地面高度为h ,则物体所具有的机械能为mgh ,当物体下落时间为落地时间一半时,下落高度为h 1,则h 1=43h,物体下落时机械能守恒,所以mgh =mgh 1+E k =43mgh +E k ,所以,E k =4mgh,E k ∶E p =1∶3. 5.【答案】 D【解析】 以m 和M 组成的系统为研究对象,系统机械能守恒.则M 下降h 后速度为v ,由机械能守恒定律得:系统减少的重力势能等于增加的动能,则Mgh =21mv 2+21Mv 2 ,M =2m ,得v =32gh 36.【答案】 C【解析】 水平力做功使小球的重力势能增加,水平力对小球做多少功,小球的重力势能增加多少.所以,水平力对小球做的功为 W =mgL (1-cos θ).C 选项正确. 7.【答案】 ACD 【解析】 由牛顿第二定律得mg -F =ma ,物体下落时受到阻力大小为F =m (g -a )=51mg ,物体所受的合外力大小为54mg ,在物体下落h 的过程中,合外力做的功为54mgh ,所以,物体的动能增加54mgh ,A 选项正确.重力以外的力(阻力)做功为-51mgh ,所以,物体的机械能减少51mgh ,B 选项错,C选项对.重力做功为mgh ,物体的重力势能减少了mgh ,选项D 正确. 8.【答案】 AD【解析】 物体从A 点释放后,在从A 点向B 点运动的过程中,物体的重力势能逐渐减小,动能逐渐增加,弹簧逐渐被拉长,弹性势能逐渐增大,所以,物体减小的重力势能一部分转化为物体的动能,另一部分转化为弹簧的弹性势能.对物体和弹簧构成的系统,机械能守恒,但对物体来说,其机械能减小.选项A 、D 正确. 9.【答案】 D【解析】 在球从高处下落到弹簧压缩到最短的过程中,重力势能、动能、弹性势能相互转化,其总和不变,选项D 正确. 10.【答案】 D【解析】 设物体抛出点的高度为h ,初速度为v 0,则落地时速度为v =v 0/cos θ,平抛过程只有重力做功,物体机械能守恒,得mgh +21mv 02=21mv 2=21m θ220cos v ,所以 mgh =21mv 02·tan 2θ. 11.【答案】 1:3:5【解析】 平抛运动的竖直分运动为自由落地运动,在第1 s 内、第2 s 内、第3 s 内物体的竖直位移之比为 h 1:h 2:h 3=1:3:5 ,则在第1 s 内、第2 s 内、第3 s 内重力做功之比为mgh 1:mgh 2:mgh 3=1:3:5 ,由动能定理得,物体在第1 s 内、第2 s 内、第3 s 内动能增量之比为ΔE k1: ΔE k2: ΔE k3=1:3:5 12.【答案】 37°【解析】 根据机械能守恒定律得mgL (1-cos53°)=21mv 2+mgL (1-cos θ),由于21mv 2=mgL (1-cos θ),所以,mgL (1-cos53°)=2mgL (1-cos θ),求得cos θ=0.8,θ=37° 13.【答案】 20【解析】 物体沿斜面上滑的过程中,克服摩擦力做的功等于物体机械能的减少量,即 μmg cos α·s =ΔE ,设物体在上滑过程中动能的减少量为ΔE k ,由动能定理得 -(mg sin α+μmg cos α)s =-ΔE k ,即 (mg sin α+μmg cos αs =ΔE k ,得αμααμcos sin cos +=KE E∆∆,即在上滑过程中,物体减少的机械能和减少的动能之比为定值,并且K E E ∆∆=8032=52,物体到达最高点时动能减少了100 J ,减少的机械能为ΔE =52ΔE k =52×100 J=40 J ,由此可知,物体在上滑过程中克服摩擦力做的功为40 J.由于物体下滑时摩擦力大小和位移大小都没变,所以,下滑过程中克服摩擦力做的功也为40 J.即在全过程中物体损失的机械能为80 J ,物体返回底端时动能为20 J. 14.【答案】 7.62m ;7.56m【解析】 ΔE p =mgh =9.80×0.7776 m =7.620 m J , v C =T S BD 2=3.888 m /s ,ΔE k =221C mv =7.56 m J.15.(12分) 【解析】 物体恰能通过圆轨道的最高点,有mg =m Rv 2① 3分)物体下滑过程中机械能守恒,有ΔE p =ΔE k , (3分)即 mg (h -2R )=21mv 2 ② (3分)由①、②解得 h =25R . (3分)16.(12分)【解析】 设小球在最高点和在最低点时速度分别为v 1和v 2,绳对球的拉力分别为F 1和F 2,圆周运动的半径为R ,由牛顿第二定律得F 1+mg =m R v21 ① (3分)F 2-mg =m Rv22 ② (3分)由机械能守恒定律得 21mv 12+mg ·2R =21mv 22 ③ (3分) 由①②③解得 F 2-F 1=6mg (3分) 17.(12分)【解析】 (1)小球从B 到C 过程中,满足机械能守恒,取C 点为重力势能的参考平面mgR(1+cos600)=弹P c E mv +221 (3分) 解得 s m mE gR v P c /32.06.025.010323=⨯-⨯⨯=-=弹 (3分) (2)根据胡克定律 F 弹 = kx = 4.8×0.5=2.4N (3分) 小球在C 点时应用牛顿第二定律得(竖直向上的方向为正方向)F 弹+F N -mg =m Rv c 2(3分)∴ F N = mg - F 弹+ m Rv c 2=0.2×10-2.4+0.2×5.032=3.2N (3分)根据牛顿第三定律得,小球对环的作用力为3.2N ,方向竖直向下。

相关文档
最新文档