自动化车床模型(数学建模)
自动化车床管理建模分析

600
件由题设刀具故障占 95% ,
非刀具故障占 5% , 故非刀具平均故障间隔为 b=
a
·
95 5
=
11400 件.
其次由 100 个数据确定刀具寿命的经验分布或拟合分布 F (x ).
当进行预防保全定期 u 更换刀具时, 刀故障的平均间隔.
u- 1
∑ au =
1 F (u)
i
c= 1
(F (i) - F (i - 1) + u (1 - F (u) )
的. 此种做法只有在目标函数非常规则的情况下才能找到最优点.
51 第二问的效益函数要考虑两种误判. 一是工序正常时检查到不合格品误判停机, 将
使检查的费用增加; 二是工序故障时检查到合格品, 将继续生产直到下一次检查, 使不合格
品损失增加, 此时两次故障间由此产生的不合格品平均数为
n+ 2
1+
W
∑ ∑ s
42
数 学 的 实 践 与 认 识
30 卷
的平均更为合理, 但由于工序故障率较小, 在不同的换刀间隔和检查间隔下, 生产的合格零 件数与全部零件数之比变化很小, 因而两种考虑下建立的效益函数的最优解不会有大的差 异, 而考虑为生产每个零件的平均费用时, 效益函数会简单些. L 包括预防保全费用 L 1, 检 查费用L 2, 和故障造成的不合格品损失和修复费用L 3.
3 ) 以 G (x ) = 0195F (x ) + 0105H (x ) , 其中 H (x ) 是非刀具故障间隔的分布, 取代
F (x ).
1期
孙山泽: 自动化车床管理建模分析
45
这三种修正办法, 1) 似乎比较合理, 2) 和 3) 则较为粗糙. 51 第二问和第三问的考虑与解法一差不多, 需要对目标函数中的某些费用作适当调 整, 发表的参赛论文中有较详细的考虑, 这里不再赘述. 以上是关于基本模型和基本解法的分析. 另外在具体的数值计算上, 有些参赛队在选 用适宜的数学软件和编程上也存在一些问题. 在模型基本正确的情况下, 解出的最优解与 正确答案相去甚远.
数学建模竞赛-自动化车床管理

自动化车床管理一道工序用自动化车床连续加工某种零件,由于刀具损坏等原因该工序会出现故障,其中刀具损坏故障占95%, 其它故障仅占5%。
工序出现故障是完全随机的, 假定在生产任一零件时出现故障的机会均相同。
工作人员通过检查零件来确定工序是否出现故障。
现积累有100次刀具故障记录,故障出现时该刀具完成的零件数如附表。
现计划在刀具加工一定件数后定期更换新刀具。
已知生产工序的费用参数如下:故障时产出的零件损失费用f=200元/件;进行检查的费用t=10元/次;发现故障进行调节使恢复正常的平均费用d=3000元/次(包括刀具费);未发现故障时更换一把新刀具的费用k=1000元/次。
1)假定工序故障时产出的零件均为不合格品,正常时产出的零件均为合格品, 试对该工序设计效益最好的检查间隔(生产多少零件检查一次)和刀具更换策略。
2)如果该工序正常时产出的零件不全是合格品,有2%为不合格品;而工序故障时产出的零件有40%为合格品,60%为不合格品。
工序正常而误认有故障仃机产生的损失费用为1500元/次。
对该工序设计效益最好的检查间隔和刀具更换策略。
3)在2)的情况, 可否改进检查方式获得更高的效益。
附:100次刀具故障记录(完成的零件数)459362624542509584433748815505 612452434982640742565706593680 9266531644877346084281153593844 527552513781474388824538862659 775859755649697515628954771609402960885610292837473677358638 699634555570844166061062484120 447654564339280246687539790581 621724531512577496468499544645 764558378765666763217715310851三、问题的假设条件1关于刀具寿命x:由于故障出现的随机性,刀具寿命x是一个随机变量。
自动化车床管理的数学模型

(D ep a rtm en t of M a them a tics, T a iyuan T eacher Co llege, T a iyuan 030012) Abstract: T h is p ap er ana lyzes the p rob lem A of 99 CM CM in deta il and g ive tw o k ind s of m odel w ith geom etrica l d istribu tion and exponen tra l d istribu tion. M eanw h ile, W e b la in the . app rox i m a te so lu tion s of p a rt p rob lem A w ith si m p le p robab ility m ethod s Keywords: radom va riab le; geom etrica l d istribu tion; exponen tra l d istribu tion
散变量时的近似结果, 与另一途径, 零件个数是连续变量时的近似结果相近 . 2) 本模型在建立、 计算时, 根据题设数据, 将尽可能使检查周期内工序故障概率很小, 更换刀具周期内不发生刀具故障, 但由于生产任一产品时, 都有可能出现故障, 因此计算结 果仅表示长期以来平均意义下的最优值. 3) 由于模型的数学关系式较为复杂, 算出的值不太精确, 特别是对于问题 2) 的情况, 仅得出离散型时 T 的模型, 对其他情况, 思路类似, 本文予以省略 . 4) 对问题 3) 没有进行严格建模运算, 仅给出直观判断 . 5) 根据题目给出的 100 次刀具的样本统计, 用指数分布建模并不是太恰当的 . 本文仅 做试探.
关于自动化机床管理的数学模型分析

1 问题提出
一道工序用自动化车床连续加工某种零件 , 由于刀具损坏等原因该工序会出现故障 . 其中刀 具损坏故障占 95 % ,其他故障仅占 5 %. 工作人员 通过检查零件来确定工序是否出现故障 . 现计划 在刀具加工一定件数后定期更换新刀具 . 己知生 产工序的费用参数如下 : 出现故障时产出的零件损失费用 f = 200 元 / 件; 进行检查的费用 t = 10 元 / 次 ; 发现故障进行调节使恢复正常的平均费用
d = 3 000 元 / 次 ( 包括刀具费) ;
1 000元/ 次 .
2 模型假设
● 工序出现故障是完全随机的
, 假定在生产任
一零件时出现故障的机会均相同 . ● 设备刀具故障的发生服从参数为 μ 及σ的 正态分布 , 以近似代替泊松分布 . ●设 n 为定期进行检查间隔 , 即每生产 n 个零 件进行依次检查 , 若发现故障立即进行调节 , 使车 床恢复正常 , 假设此时车床和刀具均恢复到原来 状态 . ● 刀具在生产了 m 个零件后因使用时间过长 而必须被更新 , 从而设备又回到原来状态 . ● 假定其他故障的发生服从平均分布 ,并且因 为刀具损坏故障占 95 % ,其他故障仅占 5 %. 可以 假设其他故障发生的概率很小 ; 其概率为刀具故 障的 5/ 95 ,即 1/ 19.
摘 要 : 为解决自动化车床连续加工出现的故障及更换刀具的问题 ,运用数理统计与概率论 ,根据不同的实 际情况和要求 ,建立了两种数学模型 ,设计出合理可行的算法 ,进行编程计算 ,得出最优解 ,并提出了改进后 的检查方式 . 这一数学模型为自动化车床的管理提供了可靠的依据 . 关键词 : 正态分布 ; 数学期望 ; 概率 ; 概率密度 ; 均值 中图分类号 : O213 :TB114 文献标识码 : A
数学建模 自动化车床管理

数学建模自动化车床管理数学建模:自动化车床管理一、引言自动化车床管理是现代制造业中的重要环节,通过合理的管理和优化,可以提高生产效率和产品质量。
为了实现自动化车床管理的科学化、规范化和高效化,需要进行数学建模分析,以便找到最优的管理策略和决策方案。
二、问题描述在自动化车床管理中,存在以下几个关键问题需要解决:1. 生产计划优化问题:如何合理安排车床的生产计划,以最大程度地提高生产效率和资源利用率?2. 设备故障预测问题:如何通过数学建模分析,提前预测车床的故障情况,以便及时进行维修和更换?3. 零部件供应链优化问题:如何通过数学建模分析,优化零部件的供应链管理,以确保及时供应和减少库存成本?三、数学建模方法针对上述问题,可以采用以下数学建模方法进行分析和求解:1. 线性规划模型:通过建立生产计划优化的线性规划模型,考虑生产能力、设备利用率、订单需求等因素,以最大化产量和利润为目标,确定最优的生产计划。
2. 时间序列分析模型:通过对历史数据进行时间序列分析,建立车床故障预测的模型,包括趋势分析、季节性分析、残差分析等,以便提前预测故障情况,采取相应的维修和更换措施。
3. 随机优化模型:通过建立供应链的随机优化模型,考虑供应商的可靠性、交货时间、库存成本等因素,以最小化总成本为目标,确定最优的零部件供应链管理策略。
四、数据收集和处理为了进行数学建模分析,需要收集和处理以下数据:1. 生产数据:包括车床的生产能力、设备利用率、订单需求等数据。
2. 故障数据:包括车床的故障记录、维修时间和维修费用等数据。
3. 供应链数据:包括供应商的可靠性、交货时间、库存成本等数据。
通过对以上数据进行整理和处理,可以得到适用于数学建模的数据集。
五、模型求解和结果分析根据收集和处理的数据,运用上述数学建模方法,可以进行模型求解和结果分析。
具体步骤如下:1. 建立数学模型:根据问题描述,建立相应的数学模型,包括目标函数、约束条件等。
自动化车床管理数学模型

自动化车床管理数学模型
(原创实用版)
目录
一、引言
二、自动化车床管理的数学模型
1.模型建立
2.模型解法
三、结论
正文
一、引言
随着制造业的迅速发展,自动化车床在生产过程中发挥着越来越重要的作用。
如何有效地管理自动化车床,提高生产效率,降低生产成本,成为了许多企业亟待解决的问题。
为此,本文针对 1999 年全国大学生数学建模竞赛 A 题——自动化车床管理问题,建立了一个完整的数学模型,
并给出了该数学模型的解。
二、自动化车床管理的数学模型
1.模型建立
在分析自动化车床管理问题的基础上,我们首先建立了一个数学模型。
该模型主要包含以下要素:
(1)车床数量:假设有 n 台车床;
(2)加工零件:每个车床可以加工不同类型的零件;
(3)加工时间:每台车床加工不同类型零件所需的时间不同;
(4)优先级:考虑不同类型零件的优先级,优先级高的零件优先加工。
基于以上要素,我们建立了一个线性规划模型,以最小化生产总时间为目标函数,以每台车床加工每种零件的时间为约束条件。
2.模型解法
为了求解该数学模型,我们采用了线性规划方法。
具体步骤如下:(1)根据约束条件,构建不等式约束条件表示的生产可行域;
(2)在可行域内寻找使目标函数最小化的最优解;
(3)求解最优解对应的生产方案,即每台车床加工哪些零件。
通过以上步骤,我们得到了最优的生产方案,从而实现了自动化车床的有效管理。
三、结论
本文针对自动化车床管理问题,建立了一个线性规划数学模型,并求解了该模型。
通过该模型,企业可以有效地管理自动化车床,提高生产效率,降低生产成本。
自动化车床的管理问题数学建模解析

2017年数学建模论文第 5 套论文题目:自动化车床管理专业班级姓名:专业班级姓名:专业班级姓名提交日期:2017.7.19自动化车床管理摘要本文研究了自动化车床的管理问题,将检查间隔和刀具更换策略的确定归结为单个零件期望损失最小的一个优化问题,我们利用原始数据在matlab中进行处理,建立了以期望损失费用为目标函数的数学模型。
首先对于题目中给出的100次刀具故障记录的数据在matlab中画出频率直方图,我们可以看出,数据基本是符合正态分布的,我们借用jbtext函数对这些数据进行处理和正态性校验,可以得出样本符合正态分布的假设,然后我们用求得概率密度函数的期望和标准差,然后得出刀具寿命的正态分布函数。
对于问题(1),我们首先建立以单个零件分摊的费用的损失函数为目标函数,然后我们用概率论及数理统计来建立出非线性优化模型,每个零件分摊的费用记为L,L包括预防保全费用L1,检查费用L2,和故障造成的不合格品损失和修复费用L3.在matlab中进行求解得出最优检查间隔为23个,最优刀具更新间隔为352个,合格零件的平均损失期望为7.61元对于问题(2),根据题目信息,不管工序是否正常都有可能出现正品和次品,我们在问题一上,加入检查间隔中的不合格品带来的损失,同时还有误检带来的损失,然后建立出每个零件的期望损失费用作为目标函数的优化模型,在matlab 中用穷举法进行求解得出最优检查间隔为30个,最优刀具更新间隔为308个,合格零件的平均损失期望为10.07元。
对于问题(3),我们将第二题的模型,改变为如果检查为合格品时多检查一次,如果第二次仍然为合格品,我们则判定为工序正常,否则认为故障,改变第二问中的L2和L3,优化模型进行求解得出最优检查间隔为20个,最优刀具更新间隔为375个,合格零件的平均损失期望为9.50元。
对于第三问我们一直是固定检查间隔,我们也可以利用刀具发生故障的函数模型,对检查的间隔也进行调整,检查间隔随函数变换,这一问还没有具体讨论。
自动化车床管理数学模型

自动化车床管理数学模型一、引言随着制造业的不断发展,自动化车床在生产过程中的应用越来越广泛。
然而,如何有效地管理自动化车床以提高生产效率、降低成本并保证产品质量成为企业面临的关键问题。
本文针对这一问题,构建了一个自动化车床管理数学模型,以期为车床管理者提供有益的决策依据。
二、自动化车床管理数学模型的构建1.数据收集与处理为实现自动化车床管理数学模型的构建,首先需收集车床相关数据。
这些数据包括生产过程中的产量、成本、设备利用率、故障率等。
在收集数据的基础上,对原始数据进行清洗和处理,以便后续分析。
2.变量选取与模型设计根据车床生产过程的实际情况,选取影响生产效率、成本和质量的关键因素。
这些因素包括设备参数、工艺参数、操作人员技能等。
针对这些因素,设计一个多元线性回归模型,以揭示各变量之间的关系。
3.模型验证与优化为保证模型的准确性和实用性,需对模型进行验证。
常用的模型验证方法有内部验证、外部验证等。
在验证过程中,若发现模型拟合效果不佳,可对模型进行优化,如调整变量、修改参数等。
三、模型应用与分析1.自动化车床生产效率分析利用构建的数学模型,对企业自动化车床的生产效率进行分析。
通过对生产数据的模拟,为企业提供优化生产计划、提高设备利用率等方面的建议。
2.生产成本分析基于模型,分析车床生产过程中的成本构成,为企业提供降低成本的途径。
例如,通过分析不同产品的生产成本,指导企业进行产品结构调整,以实现利润最大化。
3.产品质量分析运用模型分析产品质量与各影响因素之间的关系,为企业提供改进产品质量的方法。
例如,通过分析工艺参数对产品质量的影响,指导企业调整生产工艺,提高产品合格率。
四、结论与展望本文针对自动化车床管理问题,构建了一个数学模型。
通过模型应用与分析,为企业提供了提高生产效率、降低成本和保证产品质量的途径。
然而,本文构建的模型尚有一定局限性,未来研究可进一步探讨更复杂的非线性模型,以提高模型的预测能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。