基于环糊精的主客体化学法制备基因载体
第七章 超分子化学在分离中的应用

7.3 冠醚、穴醚在分离中的应用
8.影响冠醚配合物稳定性和选择性的因素
选择性(S)
冠醚对A、B两种离子的选择性为冠醚与该两种离子形成
配合物的稳定常数之比。即:
S A,B
K
A 稳
K
B 稳
冠醚结构、离子性质(半径、电荷密度)和溶剂极性是 影响冠醚选择性和配合物稳定性的主要因素。
7.3 冠醚、穴醚在分离中的应用
7.2 小分子聚集体超分子特定大小的分子具有选择 性(分子识别)
尿素、硫脲和硒尿素的选择性 尿素:直链烷烃、烯烃(支链烷烃不能进入其空腔) 硫脲:支链烷烃、环烷烃 硒尿素:对几何异构体具有超常的分离能力,如只与1t-丁基-4-新戊基烷己烷的反式异构体形成包接物,而与 其顺式异构体根本不反应。
手性拆分剂与消旋体中的一个对映体最少同时有三个相 互作用,其中至少一个是由立体化学决定的。这种手性 识别机理认为,消旋体中只有一个对映体与手性拆分剂 同时具有三个相互作用点。而另一个对映异构体则和拆 分剂只发生二点作用。前者所形成的复合物较后者稳定, 在许多物理性质上(如溶解度、熔点)存在差异。
分子间的三点作用类型包括氢键、偶极相互作用、位阻 排斥、疏水吸引等作用,这些作用都可以成为手性识别 的重要因素。在这个理论的指导下,已成功的合成了许 多拆分剂用于消旋体的手性拆分。
对苯二酚的两个羟基可相互作用形成多分子氢键缔合物
7.2 小分子聚集体超分子包接配合物 在分离中的应用
对苯二酚的多分子氢键缔合物 的缔合数达到一定长度后会发 生卷折而形成筒状物。
6个对苯二酚形成的筒状缔合分 子(右图)
筒状物的直径在0.42-0.52nm
筒状聚集体对分子的大小与形 状有很好的选择性。
超分子配合物 (主体-客体配合物)
医学论文--β-环糊精在药剂中应用的研究

湖北中医药大学毕业论文论文题目:β-环糊精在药剂中应用的研究姓名:黎志兵所在院系:专业班级:07级药物制剂班学号: 20071207006 指导教师:日期: 2011年5月15日独创性声明本人声明所呈交的论文是我个人在指导教师指导下进行的研究工作及取得的研究成果,尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,指导教师对此进行了审定。
本人拥有自主知识产权,没有抄袭,剽取他人成果,由此造成的知识产权纠纷有本人负责。
签名:黎志兵湖北中医药大学课题任务书07级药物制剂班学生:黎志兵一、毕业设计论文课题:β-环糊精在药剂中应用的研究二、毕业设计论文课题工作自2010年12月15日起至2011年5月15日三、毕业设计论文课题进行地点:九州通医药集团股份有限公司四、毕业设计论文课题内容要求:新颖性、真实性五、主要参考文献[1]吕东南.《药用辅料在药物制剂中的作用及应用概述》桂林医学院附属医院药剂科[2]王亚南,王洪权,窦媛媛《羟丙基-β-环糊精在药剂学中的应用的研究》.《食品与药品》2007年第九卷04期[3]廖才智.《β-环糊精环糊精的应用研究进展》《华工科技》2010年第五期[4]王铮。
《中国药学杂志》 1989 24(7):410[5]杨伟. 中国药科大学学报. 1987;18(4):293目录摘要 (1)关键词 (1)1、药物辅料的作用 (1)1.1常用药物辅料作用 (1)1.2 新型药物辅料作用 21.3环糊精作为新型辅料的简介 (2)2.β-环糊精的理化性质 (3)3.β-环糊精在药剂中的应用 (3)3.1、提高药物的溶出 (3)3.2提高药物的生物利用度 (4)3.3增加药物的稳定性 (4)3.4降低毒副降低毒副作用、掩盖不良气味 (4)4β-环糊精在药剂中的制备工艺 (5)5参考文献 (6)β-环糊精在药剂中应用的研究黎志兵摘要:本文重在分析β-环糊精作为新型辅料在药剂中的应用。
高中生物-1.2《基因基本操作程序—基因表达载体的构建》教学设计-新人教版选修3

“基因表达载体的构建”专题1 1.2基因工程的基本操作程序之基因表达载体的构建一、目的基因和运载体的连接二、利用标记基因筛选含目的基因的受体细胞 三、目的基因和启动子的相对位置关系 附件1:附件2:【教学反思】基因表达载体的构建是基因工程的关键步骤,空间想象难度大,科学理论和技术实践密切联系,思维跨度也大。
福州屏东中学学生程度一般,正因如此,处理不好会提高学习难度,令学生视高科技为畏途,导致教学流于形式。
本节课用微课和模型成功地化解了难点。
一方面基于学生课前微课的“先学”,学生对表达载体的构建有个整体的认识,然后以此为支架在课堂上填充和拓展内容,当学生在课堂上遇到相关问题时,能尽快到达 “最近发展区”,获得进一步的发展,使学生逐渐对细节有更丰富更具体的理解,这种先整体后局部的处理符合学生的认知规律。
基于微课的先学后教模式实质上是利用微课为学生创设一个情境,使学生带着思考和疑惑走进课堂,节省课堂的热身时间,从而使高效率大容量的课堂教学目标得以实现。
另一方面高二学生具有抽象思维,但是仍然需要感性知识,形象知识作为支持,所以教师精心设计纸质模型,基于教材原有的学习完“DNA 重组的基本工具”后的纸圈模拟活动,再设计了双酶切的活动,化微观为直观,一系列问题的发生都源自学生自己亲手构建的模型,从模型中发现问题,进而逐步由浅入深。
学生像科学家一样思考问题、解决问题,获得成功的体验。
由于是带着问题的探究模拟活动,使学生的课堂参与是形式之上思维的积极参与。
学生获得的体验是:基因工程这么高深的原理原来我也能想得到。
学生的纸质模型立体、科学、易操作,但不好展示,而教师利用不同颜色的磁贴,随着课程的逐步推进,简洁明了地逐步在黑板上呈现,让整个环节衔接自然,师生互动流畅。
直观的教学手段——模型构建,减轻了学生掌握这些知识的阻力,激发了学习积极性,使学生在轻松愉快的氛围中突破了重难点,强化了学生交流合作意识。
总之,作为教师,应该想学生之所难,积极探索有效途径,一堂成功的课不是展示教师的才智、形象、语言,更要通过学生的成功来反映。
超分子化学作业及2004年诺贝尔化学奖得奖者对化学发展的贡献

1.对超分子化学的认识1.1发展历史1987年诺贝尔化学奖授予了C.J Pedersen (佩德森)、J.M Lehn (莱恩)、D.J Cram (克来姆)三位化学家,以表彰他们在超分子化学理论方面的开创性工作。
1967年Pederson等第一次发现了冠醚。
这可以说是第一个发现的在人工合成中的自组装作用。
Cram和Lehn在Pedersen工作的启发下,也开始了对超分子化学的研究。
从此之后,超分子化学作为一门新兴的边缘科学快速发展起来。
1.2简介超分子化学不仅涉及无机化学、有机化学、物理化学、分析化学和高分子化学,而且涉及材料、信息和生命科学,它是一门处于近代化学、材料化学和生命科学交汇点的新兴学科。
超分子化学的发展不仅与大环化学(冠醚、环糊精、杯芳烃等)的发展密切相连,而且与分子自组装(双分子膜、胶束、DNA双螺旋等)、分子器件和新兴有机材料的研究息息相关。
到目前为止,尽管超分子化学还没有一个完整、精确的定义和范畴,但它的诞生和成长却是生机勃勃、充满活力的。
1.3研究内容与分子化学相对照,分子化学基于原子间的共价键,而超分子化学则基于分子间的相互作用,即是两个或两个以上的构造块依靠分子间键缔合。
超分子化学的研究领域包括:分子识别,分为离子客体的受体和分子客体的受体;环糊精;生物有机体系和生物无机体系的超分子反应性及传输;固态超分子化学、分为晶体工程、二维和三维的无机网络;超分子化学中的物理方法:模板、自组装和自组织;超分子技术(分子器件及分子技术的应用)。
分子识别是超分子化学的核心研究内容之一。
所谓分子识别即是指主体(受体)对客体(底物)选择性结合并产生某种特定功能的过程。
它们不是靠传统的共价键力,而是靠称为非共价键力的分子间的作用力,如范德华力(包括离子—偶极、偶极—偶极和偶极—诱导偶极相互作用)、疏水相互作用和氢键等。
分子识别主要可分为对离子客体的识别和对分子客体的识别,而以人工合成受体的分子识别主要包括冠醚、穴醚、臂式冠醚、双冠醚、环糊精、化学修饰环糊精、桥联环糊精、杯芳烃、环番等大环全体化合物选择性键合客体(离子或分子)形成超分子体系的过程。
环糊精包合技术ppt课件

– 采用t-检验,检查正常组织和肿瘤组织中5FU浓度的差异性。
43
The concentration of 5-FU in liver of mice after affused 5-FU for injection(µg/g)
NO
Group
平均
1 234 5 6 7 8
Natural tissue Tumour tissue
• 热分析法 • 相溶解度法 • 薄层色谱法 • 荧光光谱法 • 园二色谱法
22
环糊精衍生物
CH2OR3
CH2OR3 O
O
O
OR1 O
OR2
OR1
O
O
O
OR2
O
OR1
O O
CH2OR3
OR2 O
O OR1 O
OR2 O
OR2 O
OR2 O
O
OR1 O
O
CH2OR3
O OR1 O
O
CH2OR3
O
23
30
β-CD-14S的初步研究
• β-环糊精的衍生物,环状硫酸酯多糖 • 与氢化可的松联合
离体实验:抑制内皮细胞增殖和迁移 体内实验:抑制新生血管形成 • 与化疗药物联合 抑制肿瘤新生血管,延长动物生存期 • 与同类药物比较,副作用最小
31
32
元素分析鉴定
项目
测定值%
计算值%
C
18.45
17.91
30
22.9 22.1 31.0 30.3 19.4
36.2±3.6 25.1±4.4
60
10.5 14.3 17.7 12.43 9.7
12.8±2.5
超分子自组装研究进展

3
3. 超分子的分类
受体和底物在分子识别原则基础上, 分子间缔 合成分立的低聚分子物种Host-guest
数量多而不确定的组分缔合成超分子组装体 (Molecular assemblies)
a. 组成和结合形式不断变动的薄膜、囊泡、胶束、 介晶相等
包合,即主体与客体通过分子间的相互作用和相互识 别,使得客体分子部分或全部嵌入主体内部的现象
CH3
CH3
+
CH3
CH3
环糊精的结构和主要性质
环糊精与客体分子结合的机理
环糊精的疏水空腔平时被水分子所占据 当疏水性有机分子靠近环糊精的空腔边缘时,由于疏
水相互作用,空腔中的水分子就被排斥出来 这一过程对水分子而言是熵增加的过程,因此在热力
轮烷(rotaxane) 准轮烷(pseudorotaxane) 准聚轮烷(polypseudorotaxane) 聚轮烷(polyrotaxane)
自组装单层膜(self-assembled mono-layer membranes) 自组装多层膜(self-assembled multi-layer membranes)
电荷转移作用
亲疏水作用
π-π堆积
范德华力
••••••
20
表1 分子间作用力的分类
• 类型 力的范围 吸引(-) 有加和性*(A)
•
排斥(+) 无加和性(NA)
• 重叠
短程 -/+ NA
• (库仑力及电子交换)
• 静电 较短程 - / + A
• 诱导
长程
环糊精包合物分离及制备工艺研究

环糊精包合物分离及制备工艺研究环糊精包合物作为一种新型的功能性材料,已经在很多领域广泛应用,包括制药、化妆品、食品、环境等领域。
由于其独特的结构和性质,环糊精包合物可以与不同的分子形成稳定的结合,从而提高分子的稳定性和溶解度。
然而,环糊精包合物的制备和分离却是一个复杂的过程。
本文将探讨环糊精包合物的分离和制备工艺,包括参数选取、实验方法和分析技术等方面。
一、制备参数的选择制备环糊精包合物需要控制好许多参数,如环糊精的种类和浓度、模板分子的种类和浓度、pH值、温度等。
这些参数都会对环糊精包合物的形成和稳定性产生影响。
在制备环糊精包合物时,首要的参数是选择合适的环糊精种类和浓度。
不同的环糊精结构不同,对不同分子的包合效果也有不同。
因此,选择不同环糊精来制备环糊精包合物需要依据研究目的和实验需要来选择。
其次,模板分子的种类和浓度也会影响环糊精包合物的稳定性和选择性。
模板分子越与环糊精结构相似,则其配位能力越强,包合效率也越高。
所以在选择模板分子时也需要仔细考虑和筛选。
除此之外,制备环糊精包合物时,还需要考虑pH值和温度等参数。
当pH值适当时,可以促进分子与环糊精之间的包合作用。
而温度则对环糊精包合物的稳定性有影响,一般来说,较低的温度有助于环糊精包合物的稳定。
二、实验方法在制备环糊精包合物时,可以采用不同的实验方法,包括滴定法、溶液共混法、沉淀法、过滤法等等。
滴定法是一种简单的制备环糊精包合物的方法,这种方法可以在恒定的pH值和温度下,逐滴加入环糊精溶液和模板分子溶液,使其产生包合作用。
溶液共混法则是将环糊精和模板分子一起溶于溶剂中,然后通过振荡、加热等方式激发其包合作用。
沉淀法和过滤法则是通过将环糊精和模板分子混合物与大分子沉淀或滤掉来制备环糊精包合物。
不同的实验方法适用于不同的研究目的和实验要求,因此需要在实验中根据需要选择。
三、分析技术制备好的环糊精包合物需要进行分析和鉴定,以确定其结构和性质。
基因表达载体的构建步骤

基因表达载体的构建步骤
基因表达载体的构建步骤:
①目的基因获取首先需从cDNA文库基因组DNA中PCR扩增出所需片段或通过化学合成方法得到纯净的目的基因;
②载体骨架选择根据后续实验需求如原核表达真核细胞表达植物动物体内表达等挑选合适质粒作为载体骨架;
③双酶切处理使用限制性内切酶对载体DNA进行特异性切割产生与目的基因相同的粘性末端或平末端便于连接;
④凝胶电泳检测将酶切产物加入琼脂糖凝胶中通过电泳分离出预期大小片段并用EB染色紫外灯照射观察;
⑤回收纯化利用商业化试剂盒或自制酚氯仿异丙醇沉淀法回收去除杂蛋白小分子RNA等杂质获得高纯度DNA;
⑥DNA连接取等摩尔浓度的目的基因与载体在T4DNA连接酶缓冲液中孵育过夜使两者以磷酸二酯键相连;
⑦大肠杆菌转化将连接产物热击转入感受态细胞中涂布含相应抗生素的选择平板37度培养箱过夜长出克隆;
⑧阳性克隆筛选挑取单菌落PCR鉴定插入片段大小测序比对确认无误后扩大培养提取质粒保存备用;
⑨启动子匹配根据目的基因表达调控需要从启动子文库中选出与宿主细胞相容性好诱导性强的启动子片段;
⑩多顺反子构建有时为了实现联合表达还需将多个基因串联起来形成多顺反子结构其间用IRES元件连接;
⑪终止子添加在多顺反子3'端加上终止子序列帮助RNA聚合酶识别转录终止位点防止下游基因串扰;
⑫安全评估构建好完整表达载体后还需对其遗传稳定性毒性免疫原性进行评估确保对人体环境友好无害。