车辆路径问题优化算法
车辆调度与路径规划的优化方法

车辆调度与路径规划的优化方法在现代物流与运输领域,车辆调度与路径规划的效率对于降低成本、提高服务质量至关重要。
随着信息技术的发展,优化车辆调度与路径规划成为提高运输效率的重要手段。
本文将介绍一些常用的车辆调度与路径规划的优化方法,以期为物流企业提供参考和借鉴。
一、动态规划方法动态规划方法是一种解决多阶段决策问题的优化方法,其核心思想是将问题分解为一系列子问题,并通过对中间结果的存储与利用,最终得到全局最优解。
在车辆调度与路径规划中,可以将整个运输过程划分为多个时间段,每个时间段内选择最优的车辆调度与路径规划方案,然后依次进行下一时间段的决策。
二、遗传算法遗传算法是一种模拟自然进化过程的优化方法,通过模拟生物进化中的遗传、交叉和变异等过程,从而搜索问题的最优解。
在车辆调度与路径规划中,可以将每个车辆的调度与路径规划方案看作一个个体,通过遗传算法对这些个体进行进化和优胜劣汰,最终得到最优的车辆调度与路径规划方案。
三、人工智能算法人工智能算法是一种模拟人类智能行为的优化方法,利用机器学习、神经网络等技术对问题进行建模和求解。
在车辆调度与路径规划中,可以利用人工智能算法对大量的历史数据进行分析和学习,从而提取出规律和模式,并根据这些规律和模式制定车辆调度与路径规划方案。
四、蚁群算法蚁群算法是一种模拟蚂蚁觅食行为的优化方法,通过模拟蚁群的集体智慧来求解优化问题。
在车辆调度与路径规划中,可以将每个车辆看作一只蚂蚁,通过模拟蚂蚁在路径选择过程中释放信息素和跟随信息素的行为,从而找到最优的车辆调度与路径规划方案。
五、混合算法混合算法是将多种优化方法进行结合的一种方法,通过充分利用各个方法的优势,提高求解效率和求解质量。
在车辆调度与路径规划中,可以将动态规划、遗传算法、人工智能算法和蚁群算法等方法进行优化方案的动态调整,从而得到更加合理和高效的车辆调度与路径规划方案。
在实际应用中,不同的车辆调度与路径规划问题可能需要采用不同的优化方法,并根据具体情况进行合理的调整和改进。
车辆路径问题的求解方法

车辆路径问题的求解方法
车辆路径问题是指在给定的地图或路网上,寻找一条最优路径或最短路径,使得车辆从起点到终点能够在最短时间或最小代价内到达目的地。
常见的车辆路径问题包括最短路问题、最小生成树问题、最优化路径问题等。
以下是常见的车辆路径问题的求解方法:
1. Dijkstra算法:Dijkstra算法是求解单源最短路径问题的经典算法,它通过不断更新起点到各个节点的最短距离来求解最短路径。
该算法适用于路网较小的情况。
2. Floyd算法:Floyd算法是一种求解任意两点间最短路径的算法,它通过动态规划的思想,逐步计算出任意两点之间的最短路径。
该算法适用于路网较大的情况。
3. A*算法:A*算法是一种启发式搜索算法,它通过估计每个节点到终点的距离,来选择最优的扩展节点。
该算法适用于需要考虑路况等因素的情况。
4. 蚁群算法:蚁群算法是一种模拟蚂蚁觅食行为的算法,它通过模拟蚂蚁在路径上的行走过程,来寻找最优路径。
该算法适用于需要考虑多个因素的情况。
5. 遗传算法:遗传算法是一种模拟生物进化过程的算法,它通过不断交叉、变异、选择等操作,来寻找最优解。
该算法适用于需要考虑多个因素的情况。
以上是常见的车辆路径问题的求解方法,不同的问题需要选择不同的算法来求解。
物流配送优化模型及算法综述

物流配送优化模型及算法综述一、物流配送问题概述物流配送问题是指在给定的时间窗口内,从指定的供应点或仓库将货物分配到指定的需求点或客户,并通过最优路线和车辆载重量进行配送的问题。
其目标是通过合理的路线安排、货物装载和车辆调度,使得整个物流系统的运营成本最小化,同时满足各种约束条件。
二、物流配送优化模型1.车辆路径问题(VRP)车辆路径问题是物流配送问题的经典模型,主要考虑如何确定最佳配送路线和货物装载方案,以最小化总行驶成本或最大化配送效率。
其中常用的模型包括TSP(Traveling Salesman Problem)、CVRP(Capacitated Vehicle Routing Problem)和VRPTW(Vehicle Routing Problem with Time Windows)等。
2.货车装载问题(BPP)货车装载问题是指在给定的车辆装载容量限制下,如何合理地将货物装载到车辆中,以最大化装载效率或最小化装载次数。
该问题常常与VRP结合使用,以使得整个配送过程达到最优。
3.多目标物流配送问题多目标物流配送问题是指在考虑多种目标函数的情况下,如何找到一个平衡的解决方案。
常见的多目标函数包括成本最小化、配送时间最短化、节能减排等。
解决该问题常常需要使用多目标优化算法,如遗传算法、粒子群算法等。
三、物流配送优化算法1.精确求解算法精确求解算法是指通过穷举所有可能的解空间,找到最优解的方法。
常用的精确求解算法包括分支定界法、整数规划法、动态规划法等。
这些算法可以保证找到最优解,但在规模较大的问题上效率较低。
2.启发式算法启发式算法是指通过设定一些启发式规则和策略,寻找近似最优解的方法。
常用的启发式算法包括贪心算法、模拟退火算法、遗传算法等。
这些算法在求解复杂问题时效率较高,但不能保证找到最优解。
3.元启发式算法元启发式算法是指将多种启发式算法结合起来,形成一种综合的解决方案。
常用的元启发式算法包括蚁群算法、粒子群算法等。
车辆路径规划算法优化研究

车辆路径规划算法优化研究随着现代化社会快速发展,交通运输事业成为人们日常工作、生活、娱乐中不可缺少的一部分。
在这个过程中,车辆越来越成为人们出行的主要交通工具,车辆路径规划算法也愈加重要。
车辆路径规划算法是指在现有地图和路况信息的基础上,通过数学模型计算出最短、最优解的算法,能够为人们的驾车出行提供更加顺畅、高效的服务。
然而,目前普遍使用的车辆路径规划算法还存在着一些问题,如计算复杂度大、精度低、实时性差等。
因此,本文将以车辆路径规划算法优化研究为主题,探讨如何优化算法,提高车辆路径规划的精度、速度和实用性。
一、车辆路径规划算法的基本原理车辆路径规划算法的基本原理主要是通过提前建立数字化地图和实时监测路况,根据车辆当前位置和目的地,计算出最短的行驶路线,并且尽可能地避开重要的道路交叉口,减少车辆行驶的拥堵、浪费时间等现象。
其中,算法主要包括适应性启发式搜索、A星搜索等。
适应性启发式搜索是一种计算机科学中的搜索技术,即从初始状态开始,通过合理的启发函数,带领搜索于可能的目标状态,以解决问题或找到最佳行为。
其过程主要分为两个阶段:首先,算法遍历地图,并将地图格点加入开放列表和封闭列表;然后,算法使用贪心搜索的方式,在加减地图格点的代价函数的基础上,寻找到达目标的最优路径。
A星搜索是一种常用的图搜索算法,可以在图中找到从起点到终点的最短路径。
其过程主要包含估值函数、优先队列、搜寻方法等,通过对路程和时间进行权衡,最终得出最优的路径。
优化算法的主要方法包括减少计算量和提高精度,这些方法的实现需要集成多种技术手段,如加速技术、地图处理技术、算法增强等。
其中,最为常见的优化方法包括基于规则的方法、基于统计的方法和深度学习方法。
下面将分别介绍各种方法的优化原理和应用。
二、基于规则的算法优化方法基于规则的方法主要是通过先验知识、规则和人类经验对于问题领域进行建模,在此基础上采用推理和运算规则进行计算。
通常的方式包括基于策略(最优先搜索)、基于静态预测模型、基于动态预测模型和状态空间方法。
车辆路径问题概念、模型与算法(五星推荐)

总的说来,精确性算法基于严格的数学手段,在可 以求解的情况下,其解通常要优于人工智能算法。
但由于引入严格的数学方法,计算量一般随问题规
模的增大呈指数增长,因而无法避开指数爆炸问题,
从而使该类算法只能有效求解中小规模的确定性 VRP,并且通常这些算法都是针对某一特定问题设 计的,适用能力较差,因此在实际中其应用范围很有 限。
一般第一阶段常用构造算法,在第二阶段常用的改 进技术有2-opt(Lin,1965),3-opt(Lin Kernighan,1973)和Or-opt (Or,1976)交换法,这是一 种在解的邻域中搜索,对初始解进行某种程度优化 的算法,以改进初始解。
在两阶段法求解过程中,常常采用交互式优化技术, 把人的主观能动作用结合到问题的求解过程中,其 主要思想是:有经验的决策者具有对结果和参数的 某种判断能力,并且根据知识直感,把主观的估计 加到优化模型中去。这样做通常会增加模型最终实 现并被采用的可能性。
2023最新整理收集 do something
车辆路径问题概念、模型及算法
1、定义
车辆路径问题(VRP)一般定义为:对一系列装货点 和卸货点,组织适当的行车线路,使车辆有序地通 过它们,在满足一定的约束条件(如货物需求量、 发送量、交发货时间、车辆容量限制、行驶里程限 制、时间限制等)下,达到一定问题的目标(如路程 最短、费用最少、时间尽量少、使用车辆数尽量少 等)。
网络流算法(Network Flow Approach)
图论中的一种理论与方法,研究网络上的一类最优化 问题 。1955年 ,T.E.哈里斯在研究铁路最大通量时首 先提出在一个给定的网络上寻求两点间最大运输量的 问题。1956年,L.R. 福特和 D.R. 富尔克森等人给出了 解决这类问题的算法,从而建立了网络流理论。所谓 网络或容量网络指的是一个连通的赋权有向图 D= (V、 E、C) , 其中V 是该图的顶点集,E是有向边(即弧)集, C是弧上的容量。此外顶点集中包括一个起点和一个终 点。网络上的流就是由起点流向终点的可行流,这是 定义在网络上的非负函数,它一方面受到容量的限制, 另一方面除去起点和终点以外,在所有中途点要求保 持流入量和流出量是平衡的。
路径优化算法

路径优化算法
路径优化算法是一种算法,它可以用来解决车辆路径规划问题,即一
组车辆如何最快地在有限时间内从一个存储点安排好最终路径到另一个位置。
该算法主要分为三个基本步骤:。
1、规划路线:通过使用地图和路网规划路径,路线规划系统根据原
始地图、途径点及实时信息,计算车辆沿最佳路径的时间和距离。
2、路径优化:首先,基于路网规划出来的路线,可以采用算法如贪
婪算法,动态规划算法和迭代解算等,进行路径优化,以达到更有效的搜
索结果。
3、实时监控:最后,基于路径优化出来的路线,可以使用实时监控
技术如GPS、三维地图和多视图视觉等,动态监督车辆行驶过程中的位置、方向及时间,实时反馈行驶信息,以保证车辆按照规划路线行驶,并按时
到达目的地。
面向城市物流配送的车辆路径优化算法研究

面向城市物流配送的车辆路径优化算法研究目录一、内容概要 (3)1.1 研究背景与意义 (3)1.2 国内外研究现状 (5)1.3 研究内容与方法 (6)二、城市物流配送问题概述 (7)2.1 城市物流配送特点 (8)2.2 车辆路径优化在物流配送中的作用 (10)2.3 车辆路径优化问题的挑战 (11)三、车辆路径优化算法基础理论 (12)3.1 车辆路径优化模型 (13)3.2 车辆路径优化算法分类 (14)3.3 优化算法的性能评价指标 (15)四、基于遗传算法的车辆路径优化 (16)4.1 遗传算法基本原理 (17)4.2 遗传算法在城市物流配送中的应用 (18)4.3 遗传算法参数优化策略 (20)五、基于蚁群算法的车辆路径优化 (21)5.1 蚁群算法基本原理 (23)5.2 蚁群算法在城市物流配送中的应用 (24)5.3 蚁群算法参数优化策略 (26)六、基于禁忌搜索算法的车辆路径优化 (27)6.1 禁忌搜索算法基本原理 (28)6.2 禁忌搜索算法在城市物流配送中的应用 (29)6.3 禁忌搜索算法参数优化策略 (30)七、基于模拟退火算法的车辆路径优化 (30)7.1 模拟退火算法基本原理 (32)7.2 模拟退火算法在城市物流配送中的应用 (33)7.3 模拟退火算法参数优化策略 (34)八、多智能体协同优化算法在车辆路径优化中的应用 (36)8.1 多智能体系统基本原理 (38)8.2 多智能体协同优化算法在城市物流配送中的应用 (39)8.3 多智能体协同优化算法性能分析 (40)九、实验与结果分析 (41)9.1 实验设计 (43)9.2 实验结果分析 (43)9.3 结果对比与讨论 (45)十、结论与展望 (46)10.1 研究结论 (47)10.2 研究不足与展望 (48)10.3 未来研究方向 (49)一、内容概要本文主要针对城市物流配送过程中车辆路径优化问题展开研究。
车辆行驶路径规划与优化算法研究

车辆行驶路径规划与优化算法研究随着城市交通的日益拥堵和汽车数量的快速增长,车辆行驶路径规划和优化算法成为研究的热点。
该领域的发展对于城市交通运输、物流供应链管理等领域具有重要意义。
本文将对车辆行驶路径规划和优化算法进行综述,分析其原理、方法和应用,并展望未来的研究方向。
路径规划是指在车辆行驶过程中,通过选择合适的路径来实现出行目的地的一种决策过程。
其目标是尽量减少行驶时间、降低行驶成本,并兼顾车辆行驶的安全性和舒适度。
路径规划问题的核心在于如何找到一条最优路径,以及如何将路径规划与其他因素(如交通状况、车辆类型等)相结合。
在车辆行驶路径规划中,常常会面临多种约束条件,如交通状况、道路限速、交通管制等。
为了解决这些问题,研究者提出了多种算法和方法。
其中,最经典的算法包括Dijkstra算法、A*算法和Floyd-Warshall算法等。
这些算法将车辆行驶路径规划问题转化为图论中的最短路径问题,通过遍历网络图中的节点和边,寻找最短路径。
除了传统的路径规划算法外,近年来还涌现了许多基于人工智能和机器学习的新算法。
这些算法可以通过学习历史数据和实时交通信息,自主地选择最佳路径。
例如,基于蚁群算法的路径规划算法模拟了蚂蚁在寻找食物过程中的行为,通过模拟退火算法不断优化路径。
此外,还有基于遗传算法、神经网络等方法的路径规划算法。
在车辆行驶路径优化方面,目标是在已有路径的基础上进一步优化行驶路径,提高整体效益。
路径优化问题涉及到多个因素的综合考虑,如交通流量、交叉口拥堵、车辆负载等。
研究者提出了多种优化算法,如模拟退火算法、遗传算法、粒子群算法等。
这些算法通过多次迭代和优化,不断更新路径,并逐步优化路径的效果。
路径规划和优化算法在实际应用中广泛应用于交通运输、物流配送等领域。
例如,通过合理的路径规划和优化,可以降低物流成本、提高交通效率,减少能源消耗和环境污染。
同时,也可以提高城市交通的安全性和便利性,提升居民的出行体验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
车辆路径问题优化算法美国物流管理学会(Council of Logistics Management,CLM)对物流所作的定义为:“为符合顾客的需要,对原料、制造过程中的存货与制成品以及相关信息,从其起运点至最终消费点之间,做出的追求效率与成本效果的计划、执行与控制过程。
”而有关资料显示,物流配送过程(包含仓储、分拣、运输等)的成本构成中,运输成本占到52%之多。
因此,如何在满足客户适当满意度的前提下,将配送的运输成本合理地降低,成为一个紧迫而重要的研究课题,车辆路径问题正是基于这一需求而产生的。
2.1车辆路径问题的定义车辆路径问题可以描述为:给定一组有容量限制的车辆的集合、一个物流中心(或供货地)、若干有供货需求的客户,组织适当的行车路线,使车辆有序地通过所有的客户,在满足一定的约束条件(如需求量、服务时间限制、车辆容量限制、行驶里程限制等)下,达到一定的目标(如路程最短、费用极小、时间尽量少、使用车辆数尽量少等)。
[4]因此研究车辆的路径问题,就是要研究如何安排运输车辆的行驶路线,使运输车辆依照最短的行驶路径或最短的时间费用,依次服务于每个客户后返回起点,总的运输成本实现最小。
车辆路径问题已被证明是NP-Hard问题,因此求解比较困难。
然而,由于其在现实生活中应用非常广泛,使得它无论在理论上还是在实践上都有极大的研究价值。
Penousal Machado等人[5]指出车辆路径问题(vehicle routing problem,简称VRP)是一个复杂的组合优化问题,是古老的旅行商问题和背包问题的综合。
实际上,车辆路径问题通常可被分解或转化成一个或几个已经研究过的基本问题,再采用相应比较成熟的基本理论和方法,以得到最优解或满意解。
这些与车辆路径问题相关的常用基本问题有;旅行商问题、运输问题、背包问题、最短路问题、最小费用最大流问题、中国邮路问题、指派问题等。
旅行商问题可被描述为:一个推销员欲到n个城市推销商品,每2个城市之间的距离是已知的。
如何选择一条路径使推销员依次又不重复地走遍每个城市后,回到起点且所走的路径最短。
运输问题关心的是(确实的或是比喻的)以最低的总配送成本把供应中心(称为出发地,sources)的任何产品运送到每一个接受中心(称为目的地,destinations)。
运输问题需要的数据仅仅是供应量、需求量和单位成本。
背包问题是指有一只固定容量的背包和若干体积、重量不等的物品,背包的容量不允许装下这所有的物品,那么如何选择适当的物品装入背包,使得背包的装载量(所装物品的重量之和)最大。
最短路径问题解决的是在一个网络中,如何寻找两点之间的最短路径。
这两点之间通常没有直接的通路可达,但可经由若干中间结点相通。
最小费用流问题主要解决如何以最小成本在一个配送网络中运输货物。
最小费用流问题又称为网络配送问题。
最大流问题和最小费用流问题一样,也与网络中的流有关。
但是它们的目标不同,最大流问题不是使得流的成本最小化,而是寻找一个流的方案,使得通过网络的流量最大。
中国邮路问题是由我国管梅谷同志在1962年首先提出的,它可描述为:一个邮递员负责某一个地区的信件投递。
每天要从邮局出发,走遍该地区所有的街道再返回邮局,问应该怎样安排送信路线可以使所走的路程最短。
指派问题解决将n件工作安排给m个人完成的问题。
已知不同人完成不同工作的效率(或成本)不同,指派问题要求以最高的效率(或最小的人工成本)完成工作的安排。
2.2车辆路径问题的分类车辆路径问题当不考虑时间要求,仅根据空间位置安排路线时称为车辆路线安排问题(Vehicle Routing Problem简记VRP);当考虑时间要求安排路线时称为车辆调度问题(Vehicle Scheduling Problem简记VSP);当同时考虑空间位置和时间要求时称为路线和调度混合问题[6]。
车辆调度问题即有时间要求的车辆路径问题(VSP)又被称为带时间窗的车辆路径问题(Vehicle Routing Problem with Time Windows,简记为VRPTW)。
VRPTW 是在VRP的基础上增加了客户要求访问的时间窗口,是一般车辆路径问题的扩展。
其简单的描述如下:用于服务的若干车辆从站点出发,为处在不同地理位置、具有不同货物需求和不同服务时间窗要求的所有顾客提供服务,然后返回站点,其中为每个顾客仅提供一次服务。
其目标是在时间窗内为顾客提供服务时,使车辆的行驶时间和等待时间之和最短。
根据时间约束的严格与否,带时间窗的车辆路径问题被分为两类:软时间窗车辆路径问题和硬时间窗车辆路径问题。
软时间窗车辆路径问题要求配送车辆尽可能在时间窗内到达访问,否则将给予一定的惩罚。
该惩罚包括两部分:(1)车辆在要求的最早到达时间之前到达,必须在任务点处等待而损失的成本;(2)车辆在要求的最迟到达时间之后到达,必须付给客户预先约定的罚金。
而硬时间窗车辆路径问题则要求必须在时间窗内到达访问,否则服务被拒绝。
Koskosidis等人(1992)[7]指出,软时间窗模式比硬时间窗更具优势是因为:第一、软时窗模式较传统硬时窗模式更为一般化,且软时窗的求解演算法较具弹性(因限制式较少)。
而且若要提高准点服务频率,只需适当的提高惩罚成本即可;第二、在现实世界中,时窗限制大多属于软时窗限制。
配送服务商没有在约定的时间内送达顾客端,并非一定不可服务,而是可以服务但必须付出双方约定的惩罚成本。
有较高准点送达要求的顾客的惩罚成本大,不准时但是在可以忍受的时间内送达的顾客的惩罚成本相对小些;第三、软时窗模式可以有效的反应配送商在车队营运成本、规模和服务水准两者之间的关系;第四、软时窗模式可以发现硬时窗模式无法找到的可行解。
特别是在小规模车队服务多数顾客以及严苛的时间限制条件状况下。
在上述的情形得到软时窗限制下的可行解后,可再调整时间窗让违反时间窗的情况得到改善。
车辆路径问题还有确定性(Deterministic)模式和随机性(Stochastic)模式之分[8]。
确定性模式假设:其一、客户的数目在配送开始前是已知且固定的;其二、客户的需求量在配送开始前是已知且固定的;其三、两点之间的旅行时间仅取决于这两点之间的距离。
而随机性模式不要求以上一个或多个假设。
随机性模式又称为随机需求车辆路径问题。
如果考虑装卸工人的调配问题,则车辆路径问题就称为带装卸工调配的车辆路径问题。
带装卸工调配的车辆路径问题描述如下[9]:设配送中心有n辆货车都要向b个客户装卸货物。
配送中心可以安排位装卸工跟着车辆,也可以安排位装卸工固定在客户处。
已知在客户处需要的装卸工人数是,配送中心应该考虑如何调配装卸工,使总的装卸工人数最少。
除了以上分类,车辆路径问题还可以按任务特征分为装货问题、卸货问题及装卸混合问题;按任务性质分为对弧服务问题(如中国邮递员问题)和对点服务问题(如旅行商问题)以及混合服务问题(如校车路线安排问题);按车辆载货状况分为满载问题和非满载问题;按车场数目分为单车场问题和多车场问题;按车辆类型数分为单车型问题和多车型问题;按车辆对车场的所属关系分为车辆开放问题(车辆可不返回车场)和车辆封闭问题(车辆必须返回车场);按优化目标可分为单目标问题和多目标问题,等等。
针对上述不同的分类方法,车辆路径问题的模型构造及求解算法有很大差别。
2.3车辆路径问题的构成要素物流配送车辆路径问题的构成因素主要包括货物、车辆、配送中心、客户、运输网络、约束条件和目标函数等要素[10]。
2.3.1货物货物是配送的对象。
可将每个客户需求(或供应)的货物看成一批货物。
每批货物包括品名、包装、重量、体积、要求送到(或取走)的时间和地点、能否分批配送等属性。
货物的品名和包装,是选用配送车辆的类型以及决定该批货物能否与其他货物装在同一车辆内的依据。
例如,一些货物因性质特殊需要使用专用车辆装运;而一些货物虽然性质特殊,但由于包装条件很好,故也能与其它货物装在同一车辆内。
另外,货物的重量和体积也是进行车辆装载决策的重要依据。
当某个客户的需求量(供应量)的货物的重量或体积超过车辆的最大装载量或体积时,则对该客户需要采用多台车辆进行配送。
2.3.2车辆车辆是货物的运载工具,其主要包括:车辆的类型、装载量、一次配送的最大行驶距离、配送前以及完成任务后车辆的停放位置等。
其一、车辆的类型有通用车辆和专用车辆之分,通用车辆适于运载大多数普通货物,专用车辆适于载运一些性质特殊的货物。
其二、车辆的装载量是指车辆的最大装载重量和最大装载容积,是进行车辆装载决策的依据。
在某个配送系统中,车辆的装载量可以相同也可以不同。
其三、对每台车辆一次配送的行驶距离的要求可以分为以下几种情况: 第一、无距离限制; 第二、有距离限制; 第三、有距离限制,但可以不遵守。
其四、车辆在配送前可以是停放在某个停车场、配送中心或者是客户所在地。
完成任务后,其停放位置一般可以分为以下几种情形: 一是必须返回出发点; 二是必须某个停车场或配送中心; 三是可返回任意停车场; 四是可停放在任何地点。
2.3.3配送中心配送中心是从事货物配备(集货、加工、拣选、配货)和组织对客户的送货,以提高水平实现销售或供应的现代流通设施。
在某个配送系统中,配送中心的个数可以是一个也可以是多个,这涉及到配送网络问题,如在某些配送网点多而且配送范围广的情形下,往往采用多级配送中心进行配送,通过一级配送中心配送到下一级配送中心再配送,在多个二级配送中心下,究竟由哪个配送中心配送,这涉及到配送的优化问题。
其配送示意图见图2-1:图2-1 分级配送示意图2.3.4客户也称为用户,包括各盆景展览馆、陈列中心、公司、家庭用户等。
单个客户一次所需的盆景数量可能大于盆景配送车某车辆的最大装载量,也可能小于该车辆的最大装载量。
而该系统全部客户的货物需求(或供应)总量可能超过全部车辆的总装载量。
在以上情形下,当货物一次性需求(或供应)总量超过运输能力时,需要多次(多辆)分批配送;当货物一次性需求(或供应)量小于某车辆的最大装载量时,在可能的情况下,应进行货物配载。
客户的需求(或供应)盆景的时间,是指要求盆景送达(或取走)的时间,对配送时间的要求可分为以下几种情况: 第一、无时间限制;第二、要求在指定的时间区间(也称为时间窗)内完成运输任务;第三、有时间限制,但可以不遵守,只是不遵守时要给予一定的惩罚。
2.3.5运输网络运输网络是由顶点(指配送中心、客户、停车场等)、无向边和有向弧组成的,边、弧的属性包括方向、权值和交通流量限制等。
运输网络中边或弧的权值可以表示距离、时间或费用。
边或弧的权值变化可分为以下几种情况: 一是固定,即不随时间和车辆的不同而变化;二是随时间而变化;三是随车辆不同而变化;四是既随时间不同而变化,又随车辆不同而变化。