关于面元计算和观测系统设计的思考
毕业设计基于干扰观测器的PID控制设计

邯郸学院本科毕业论文(设计)题目基于干扰观测器的PID控制设计专业电子信息工程邯郸学院信息工程学院郑重声明本人的毕业设计是在指导教师王洁丽的指导下独立撰写完成的。
如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督。
特此郑重声明。
毕业设计作者(签名):年月日摘要实际应用中的系统大多数都是非线性迟滞系统,因此不能满足系统对稳定性的要求,而在实际的过程控制中对系统的动态和静态特性都要求很高。
针对实际应用中系统的特点,采用基于干扰观测器的PID控制算法,在一个常规PID控制器的基础之上增加了干扰观测器,系统响应快,抗干扰性强,稳定性好,可以得到理想的控制效果。
因此,本文设计了基于干扰观测器的PID控制器。
其中首先介绍了PID的工作原理和干扰观测器的原理,进而对于未采用干扰观测器和采用干扰观测器的同一系统进行仿真,并将干扰观测器进行改进设计了低通滤波器,找出了低通滤波器的最佳串入位置,进而实现在在低频段使得实际对象响应与名义模型的响应一致,以实现对低频干扰的有效观测,从而保证较好的鲁棒性。
关键词干扰观测器 PID控制器低通滤波器鲁棒性外文页范例:Liu-Prof. /Lecturer )LiangYongguoAbstract The essence of corporate personality is the intrinsic reason why a corporate can be an independent person in the law sense .After the establishment .In the recent two or three century, corporate .SO ,it is meaningful to the essence of corporate personality . We want to make a systematic about it. At first ,we will talk about history of the juridical person On the base Of that ,we will .We can make the Corporate可修改可编辑目录1外文页 (11)1222.. 3 2.3.1 **************** (3)2.3.2 ***************** (3)2.3.3 ******************* (4)3 ****************** (4)3.1*********** (5)3.2 ********** (5)3.2.1 ************* (5)3.2.2 **************** (6)3.2.3 **************** (6)3.3 ********** (7)注释 (7)参考文献 (8)致谢 ................................................................. ..9附录 (10)基于干扰观测器的PID控制设计1引言1.1 PID控制的发展PID控制历史悠久,生命力旺盛,并以其独特的优点在工业控制中发挥巨大作用。
基于“ADDIE”模型的数学单元教学设计的实践与思考

基于“ADDIE”模型的数学单元教学设计的实践与思考1. 引言1.1 背景介绍本文将结合ADDIE模型,探讨基于ADDIE模型的数学单元教学设计的实践与思考。
通过对ADDIE模型的概述,数学单元教学设计步骤,实践过程与反思,教学效果评估以及优化策略的讨论,旨在为数学教师提供一种系统性的教学设计方法,从而提高他们的教学效果和学生的学习成果。
也希望通过本文的研究,可以对今后的教学设计工作提供一定的参考和借鉴。
1.2 研究目的研究目的旨在探究基于“ADDIE”模型的数学单元教学设计对学生学习成绩和学习兴趣的影响,以及其在教学实践中的可行性和有效性。
具体目的包括:1.通过系统化的教学设计步骤,提高教学质量,促进学生对数学知识的深入理解和应用能力;2.评估教学过程中各个环节的效果,找出可能存在的问题和改进的空间,进一步完善教学设计模式;3.探讨优化策略,如何在教学过程中更好地引导学生,激发学习兴趣和主动性;4.为未来的研究提供参考和借鉴,探索更多针对性和有效的教学设计方法,推动数学教育的发展和改革。
通过研究实践,我们期待能够全面了解“ADDIE”模型在数学教学中的应用效果,为提升教学质量和促进学生学习提供理论和实践支持。
1.3 研究意义教育教学领域的研究一直在不断探索和完善,而基于“ADDIE”模型的数学单元教学设计在这一领域中具有重要的意义。
通过深入研究和实践,我们可以发现这种教学设计方法的优势和特点。
基于“ADDIE”模型的教学设计可以帮助教师更加系统和有序地进行教学活动的规划和设计。
这种模型注重教学过程中的评估和反思,能够帮助教师及时发现教学中存在的问题和改进的空间。
基于“ADDIE”模型的数学单元教学设计还可以有效提高学生的学习效果和学习兴趣。
通过合理设计教学活动和多样化教学方法的运用,可以激发学生的学习热情和潜能,使他们更好地掌握数学知识和技能。
这种教学设计方法也能够帮助学生培养解决问题的能力和思维方式,提高他们的综合素质和自主学习能力。
计算思维的作用和意义

计算思维的作用和意义摘要:一、计算思维的定义和特点二、计算思维在现实生活中的应用三、计算思维对个人和社会的影响四、如何培养和提高计算思维能力正文:随着科技的飞速发展,计算思维正逐渐成为一种重要的思维方式。
所谓计算思维,就是运用计算机科学的基础概念进行问题求解、系统设计以及人类行为理解等涵盖计算机科学之广度的一系列思维活动。
计算思维具有以下特点:1.抽象性:计算思维能够将复杂的问题进行抽象,提炼出关键信息,有助于更好地理解和解决问题。
2.逻辑性:计算思维强调逻辑推理和证据支持,有助于分析问题、找出解决方案。
3.系统性:计算思维注重从整体角度思考问题,寻求系统中各个部分之间的联系和相互作用。
4.迭代性:计算思维倡导通过不断尝试、迭代优化来解决问题,具有很强的实践性。
计算思维在现实生活中有着广泛的应用。
在学术领域,计算思维有助于解决复杂的科学问题,如数据分析、人工智能等;在工程领域,计算思维被应用于软件开发、系统设计等方面;在商业领域,计算思维有助于优化企业运营和管理。
此外,计算思维在教育、医疗、金融等领域也发挥着重要作用。
计算思维对个人和社会的影响不容忽视。
对于个人而言,掌握计算思维有助于提高解决问题的能力,增强创新意识和团队合作精神。
对于社会而言,计算思维的普及和应用有助于推动科技创新,促进经济社会发展,提高国家竞争力。
那么,如何培养和提高计算思维能力呢?以下几点建议供大家参考:1.学习计算机科学基础知识:掌握计算机科学的基本概念和原理,如编程语言、算法、数据结构等。
2.多参与实践活动:通过实践锻炼自己的问题求解和系统设计能力,如参加编程比赛、加入科技创新项目等。
3.培养数学和逻辑思维:加强数学和逻辑方面的学习,提高自己的推理和分析能力。
4.学会跨学科交叉思考:将计算思维与其他学科知识相结合,开拓思维,提高创新能力。
5.注重团队合作:计算思维的应用往往需要多学科、多领域的合作,学会与他人合作共同解决问题。
《Verilog数字系统设计教程》夏宇闻第四版思考题答案(第2章)

《Verilog数字系统设计教程》夏宇闻第四版思考题答案(第2章)1.Verilog语⾔有什么作⽤?可描述顺序执⾏和并⾏执⾏的程序结构;⽤延迟表达式或事件表达式来明确的控制过程的启动时间;通过命名的事件来触发其它过程⾥的激活⾏为或停⽌⾏为;提供了条件如if-else,case等循环程序结构;提供了可带参数且⾮零延续时间的任务程序结构;提供了可定义新的操作符的函数结构;提供了⽤于建⽴表达式的算术运算符,逻辑运算符,位运算符;Verilog HDL语⾔作为⼀种结构化的语⾔⾮常适⽤于门级和开关级的模型设计;提供了⼀套完整的表⽰组合逻辑的基本元件的原话;提供了双向通路和电阻器件的原话;可建⽴MOS器件的电荷分享和电荷衰减动态模型;Verilog HDL的构造性语句可以精确地建⽴信号的模型;2.构成模块的关键词是什么?module,endmodule。
3.为什么说可以⽤Verilog构成⾮常复杂的电路结构?因为Verilog可描述顺序执⾏和并⾏执⾏的程序结构;⽤延迟表达式或事件表达式来明确的控制过程的启动时间;通过命名的事件来触发其它过程⾥的激活⾏为或停⽌⾏为;提供了条件如if-else,case等循环程序结构;提供了可带参数且⾮零延续时间的任务程序结构;提供了可定义新的操作符的函数结构;提供了⽤于建⽴表达式的算术运算符,逻辑运算符,位运算符;Verilog HDL语⾔作为⼀种结构化的语⾔⾮常适⽤于门级和开关级的模型设计;提供了⼀套完整的表⽰组合逻辑的基本元件的原话;提供了双向通路和电阻器件的原话;可建⽴MOS器件的电荷分享和电荷衰减动态模型Verilog HDL的构造性语句可以精确地建⽴信号的模型;4.为什么可以⽤⽐较抽象的描述来设计具体的电路结构?因为有可以⽤⽐较抽象描述设计电路结构的语⾔,⽽这种语⾔是适合数字系统设计的语⾔。
5.是否任意抽象的符合语法的Verilog模块都可以通过综合⼯具转变为电路结构?不能。
《verilog_数字系统设计课程》(第二版)思考题答案

绪论1.什么是信号处理电路?它通常由哪两大部分组成?信号处理电路是进行一些复杂的数字运算和数据处理,并且又有实时响应要求的电路。
它通常有高速数据通道接口和高速算法电路两大部分组成。
2.为什么要设计专用的信号处理电路?因为有的数字信号处理对时间的要求非常苛刻,以至于用高速的通用处理器也无法在规定的时间内完成必要的运算。
通用微处理器芯片是为一般目的而设计的,运算的步骤必须通过程序编译后生成的机器码指令加载到存储器中,然后在微处理器芯片控制下,按时钟的节拍,逐条取出指令分析指令和执行指令,直到程序的结束。
微处理器芯片中的内部总线和运算部件也是为通用目的而设计,即使是专为信号处理而设计的通用微处理器,因为它的通用性也不可能为某一特殊的算法来设计一系列的专用的运算电路而且其内部总线的宽度也不能随便的改变,只有通过改变程序,才能实现这个特殊的算法,因而其算法速度也受到限制所以要设计专用的信号处理电路。
3.什么是实时处理系统?实时处理系统是具有实时响应的处理系统。
4.为什么要用硬件描述语言来设计复杂的算法逻辑电路?因为现代复杂数字逻辑系统的设计都是借助于EDA工具完成的,无论电路系统的仿真和综合都需要掌握硬件描述语言。
5.能不能完全用C语言来代替硬件描述语言进行算法逻辑电路的设计?不能,因为基础算法的描述和验证通常用C语言来做。
如果要设计一个专用的电路来进行这种对速度有要求的实时数据处理,除了以上C语言外,还须编写硬件描述语言程序进行仿真以便从电路结构上保证算法能在规定的时间内完成,并能通过与前端和后端的设备接口正确无误地交换数据。
6.为什么在算法逻辑电路的设计中需要用C语言和硬件描述语言配合使用来提高设计效率?首先C语言很灵活,查错功能强,还可以通过PLI编写自己的系统任务,并直接与硬件仿真器结合使用。
C语言是目前世界上应用最为广泛的一种编程语言,因而C程序的设计环境比Verilog HDL更完整,此外,C语言有可靠地编译环境,语法完备,缺陷缺少,应用于许多的领域。
地面气象观测业务改革后数据质量管理的思考

制, 关注 本 站各 数据 的气候 极值 关 联 、 各数 据 之 间时 革 是 基本 气象 工 作 的一 次 大转 折 .目的是 为 了进 一
间序 列关 联 、特 殊 情况 下各 数 据 与前后 5天数 据 的 步 提 升地 面气 象 观测 的 自动化水 平 、解 放基 层 台站 对 比关联 等 .只有 观测 员对 自己承 担 的观 测 任务 熟 观测 员 的工 作 量 练后 , 可 能对 观测 质量 有 一个 新 的认 识 和监 控 才 才
有待 提 高 . 观测 人员 和 管理 人员 高 技术 人 才 缺乏 . 仅 现 的 01 错 转 换 为时 监 控 自动 气 象 站 采集 数 据 的 .个
因 为人 为 原 因 不会 处 理 自动 气 象 站 的 简 单故 障 . 造 每 分钟 质 量 上 . 对 目标 的 不 同 . 定 出严 格 的 自动 针 制
制 、 理 办 法 、 作 流 程 等 系统 都 至关 重 要 , 管 工 质量 管 总故 障次 数 的 l .5%: 89 传感 器 故 障 7 2次 , 占总 故 障
理 体 系是认 证 的 核心 . 因此 . 各子 系 统完 备 的准 备工 次数 的 1 . 64 4%:雷 电故 障 4 1次 ,占总故 障次 数 的 作 则是 必备 的 条件 93 . 6%; 采集 器 故 障 3 5次 , 占总故 障 次 数 的 79 .9%;
地震勘探部署与设计

地震勘探部署与设计1.勘探区域部署与设计的指标分析勘探区域部署与设计的指标分析,主要针对三维地震勘探设计的边缘处理,通常按照三维地震勘探,由观测系统,将不同炮点、接收点联系在一次的,对于一个特定的检波点,每接收一次地震信号,我们认为检波点被“激活”一次,在测区边界的检波点“激活”的次数不断地减少,要达到相同的覆盖次数,根据特定勘探区域面积大小及形状变化,必须增加不同数量的炮点,数量的多与少取决于部署的勘探面积的设计,直接影响到勘探费用。
分析内容:在三维地震观测系统一定的情况下,勘探部署(地质解释区域)面积的大小变化,使得满覆盖区域面积对地震资料总面积、覆盖次数渐减带区域面积的影响(变化)情况;在地质解释区域面积一定的情况下,地质解释区域面积拐点布设对覆盖次数渐减带区域面积的影响情况;地震测线方向与勘探部署面积的纵横比对覆盖次数渐减带区域的影响情况;三维地震滚动勘探,勘探各区块衔接问题对覆盖次数渐减带区域的影响情况。
在论述之前,阐述几个概念:(1)三维地震资料面积:三维地震资料面积一般为三个区域面积,内部为地质解释区域,也就是甲方(业主)部署的勘探面积,其面积为偏移前的满覆盖面积,甲方按照其面积支付给乙方的勘探费用;中部为三维地震资料的满覆盖区域,在不考虑偏移孔径(为了使任意倾斜同相轴能正确成像,而加到地质解释区域外的宽度)的情况下,满覆盖区域与地质解释区域面积大小相等;外部为未满覆盖区域,也就是覆盖区域的渐减带,设计者在此内布设炮点、检波点,以便保证满覆盖区域边界处达到满覆盖次数,最大的炮点、检波点面积为施工面积(见图2)。
(2)平均覆盖次数:将获取地下地震数据的勘探区域,按照网格(面元)大小进行划分,如地震采集的观测系统为6L*4S*120,即每放一炮共计720个地震道接收,每接收一道地震信息,获取地下地震反射一次,即覆盖次数为一次,地震采集总炮数×每炮的地震道接收总数/网格(面元)数,也就是地震资料面积内一个CMP面元内反射的射线数目。
领域建模的体系化思维与6种方法论

领域建模的体系化思维与6种方法论领域建模是一种系统化的思维方法,旨在将复杂的现实问题抽象化、模型化,以便更好地理解、分析和解决问题。
它通过提取关键概念、定义关系和规则,构建出一个代表该领域的模型,并利用这个模型来进行问题求解和决策。
在进行领域建模时,我们可以借鉴一些方法论,以帮助我们更加系统地思考和分析问题。
下面我将介绍6种常用的领域建模方法论。
1. 实体关系模型(ERM):ERM是最常用的一种领域建模方法论,它主要通过识别和定义实体(Entity)以及实体之间的关系(Relationship)来构建模型。
实体可以是具体的对象、人或概念,而关系则表示实体之间的连接和交互方式。
2. 事件溯源模型(ESM):ESM是一种面向事件的建模方法,它将领域中的事件作为建模的核心元素。
通过识别和描述事件的属性、状态和行为,ESM可以帮助我们深入理解事件的发生原因、影响和结果,从而更好地分析和解决问题。
3. 用例建模(UCM):UCM是一种以用户需求为出发点的建模方法,它通过描述用户在特定情境下的行为和目标,来帮助我们理解用户需求和系统功能。
UCM可以用来定义系统的功能边界、用户角色和功能需求,从而为系统设计和开发提供指导。
4. 状态机模型(FSM):FSM是一种描述系统状态和状态转换的建模方法。
它通过定义系统的状态和状态之间的转换条件,来描述系统的行为和状态变化。
FSM可以帮助我们分析系统的行为逻辑,识别潜在的问题和异常情况,并设计相应的处理流程。
5. 数据流程图(DFD):DFD是一种描述系统数据流动和处理过程的建模方法。
它通过绘制数据流和数据处理的过程,来揭示系统的数据流动路径、数据处理逻辑和数据存储方式。
DFD可以帮助我们理清系统的数据流程,识别数据处理的瓶颈和风险点,并设计有效的数据处理方案。
6. 责任驱动设计(DDD):DDD是一种以领域模型为核心的软件设计方法。
它通过识别领域内的关键概念和业务规则,来构建一个清晰、一致的领域模型,并将模型转化为可执行的软件系统。