汽车转向系统设计计算匹配方式方法

合集下载

某客车转向系统匹配计算报告

某客车转向系统匹配计算报告

XXXXXXX转向系统计算书编制:审核:批准:前言XXXXXXXXXXXXXXXXXX市场的需求而开发的旅游客车。

转向系统设计既要满足整车设计要求,又要遵循以下原则:1.尽可能采用通用件,提高零部件的通用性;2.系统良好的可靠性、操纵性;3.系统及零部件调整及维修的便利性。

1、输入数据前轴负荷:N G 441008.945001=⨯≤。

转向器参数:转向泵参数:发动机参数:2、根据原地转向阻力矩R M 选择转向器根据半经验公式,原地转向阻力矩可由下式计算:PG f M R 313=--------------公式1 式中:R M 车轮转向阻力矩Nm ;f 轮胎与地面的滑动磨擦系数,一般取f =0.7; 1G 前轴负荷(N );P 前轮气压(MPa)(双钱轮胎气压830kPa ); 代入数据得:Nm M R 90.237183.04410037.03==转向器最大输出扭矩K M 选取时,要满足R K M M ≥,一般取Nm M M R K 9.211712.1=≥,这样可以较好发挥转向器的效率,并保持液压系统有一个良好的工况。

2.1原地转向时作用在转向盘上的手力如果忽略摩擦损失,根据能量守恒原理,h R M M 2为:+==sg w h R i d d M M ηβϕ0 -----------------公式2 式中:h M 为作用在转向盘上的力矩;0w i 为转向系角传动比;+sg η为转向器正效率,取0.85。

0w i 又由转向器角传动比w i 和转向传动机构角传动比'w i 所组成,其中27.23=w i 、12'w L L i =。

1L 为垂臂长210mm ,2L 为转向节臂长234mm 。

作用在转向盘上的手力h F 为:swhh D M F 2= -----------------公式3 式中:sw D 为转向盘直径。

将公式2代入公式3后得到: N i L D L M F sg w sw R h 795x 14.0x 0.850.45x 0.23421x 2371.9x 0.2221===+η按上式计算出的作用力超出了人的正常体力范围,但采用动力转向即可解决这一问题。

转向系统匹配

转向系统匹配

本人从事转向系统设计工作,今赋闲在家,偶然发现这个论坛,获益颇丰。

但见很多朋友所求助的问题得到的解答不是特别透彻,遂想从转向系统布置、匹配、零部件8D整改等方面分别做一个全面的总结。

希望对新手有所帮助,不对的地方也希望能得到各位前辈的指正。

言归正传,先介绍转向系统的匹配。

匹配篇:0 ? W6 I! m& P! \( A7 Q1、以循环球整体式转向器为例,首先要确定转向系统的载荷,根据转向系统的载荷确定出相应输出力矩的循环球转向器。

转向系的载荷计算方法多种多样,有公式计算法,也有图表法。

常用公式有原苏联半经验公式、雷雷索夫公式、塔布莱克公式等,各个公式的侧重点各有不同(不同的因素分别为有的考虑主销偏置距,轮胎静力半径,有的分别考虑计算左右轮的最大转向阻力矩然后叠加,有的考虑轮胎接地面积等)。

根据自己对各个方法的对比,载荷计算结果差别不是很大。

本人常用苏联半经验公式:Mr =[f×(G 13÷P)1/2]÷3: @# a# r" y. W; {0 N PMr-----在沥青或混凝土路面上的原地转向阻力矩,N.mm;+ ?/ e1 f7 a& P$ ]' Gf--------轮胎与地面间的滑动摩擦系数,取0.7;+ k3 M+ n' w. Z5 lG1-----转向轴负荷,N;P-------轮胎气压,MPa;9 h+ M9 }: J( Q该公式适用于中轻型汽车,其悬挂为钢板弹簧时,用于计算最大转向阻力矩(即汽车的原地转向阻力矩)。

该公式仅考虑了前桥负荷和轮胎气压的影响。

公式中,转向轴荷G一般按设计轴荷超载30%计算。

在计算载荷确定之后,可根据载荷选取适合的动力转向器。

这里顺便介绍下转向器的选型,现在的动力转向器配套供应商做了大量的研究和实验,提出了适应不同轴荷的其产品系列,你只要按照你计算出的前轴负荷提供给他,他即可推荐给你相匹配的型号的转向器。

20090525_转向系统匹配设计计算_V2_CH_YDX

20090525_转向系统匹配设计计算_V2_CH_YDX

转向系统匹配计算报告项目名称:GA6461E4轻型客车设计开发项目代码:GS-2编制:校对:审核:批准:吉奥汽车研究院年月日目录1. 概述………………………………………………………………..- 2 -1.1 任务来源........................................................................................ - 2 -1.2 转向系统基本介绍 ....................................................................... - 2 -2. 转向系统设计的输入条件………………………………………..- 2 -2.1 整车基本参数................................................................................ - 2 -2.2 转向系统选用件主要参数 ........................................................... - 2 -3. 转向系统的设计计算……………………………………………..- 3 -3.1 静态原地转向阻力矩.................................................................... - 3 -3.2 齿轮齿条式转向系的角传动比.................................................... - 4 -3.3 静态原地转向时作用于转向盘的力............................................ - 4 -3.4 转向油泵油压的计算.................................................................... - 5 -3.5 转向油泵流量的计算.................................................................... - 6 -4.转向系零件部分计算………………………………………………- 7 -4. 结论与分析………………………………………………………..- 9 -参考文献…………………………………………………….- 10 -1.概述1.1 任务来源根据GS-2车型开发计划及设计公司提供的数据及参数,对转向系统进行匹配设计计算,用以验证系统匹配的合理性并作为零部件强度计算的依据。

6.1转向系统匹配计算及设计

6.1转向系统匹配计算及设计

第六章 转向系统匹配计算及设计根据总布置设计提供的满载前轴荷、前轮定位参数(参考同类车型数据库),按照汽车转向系设计的要求,参照其它同类车型,进行汽车转向系设计。

6.1 转向角和传动比6.1.1 理论转向角-左右转角差大于实际汽车应设计值传统的理论转向角为纯滚动理论-阿克曼理论,没有考虑车轮弹性和高速应用,因此有些过时,现代轿车设计为了节省车内空间,一般在该理论算出左右转角差后,可以除以2~3作为设计数值更好。

如果通过所有4个车轮中心的车轮平面垂直线都相交于一点——转向中心M ,汽车在缓慢行驶时的转弯是精确的。

如果后轮不一定转向,则2个前轮的垂线必须与后轮中心连线的延长线相交于M 点(图6.1.1)。

如是在车身内外侧的前轮上出现不同的转向角i δ和Aa δ。

根据较大的内侧车轮转向角i δ可以算出外侧车轮的理论值,即所谓的阿克曼角:l j ctg ctg i Aa /+=δδ (6.1.1)式中:l 为在地面测得的两主销轴线延长线与地面交点交点的距离,即s v r b j ∙-=2 (6.1.2)在负的主销偏移距r S 的情况下,它在式中的运算符号变成加号。

图6.1.1 由阿克曼角确定的车轮转向角Aa δ之间的运动学关系 图6.1.2 r S 是在图示情况下为正的主销偏距 图6.1.1 由阿克曼角确定的车身外侧车轮转向角和内侧车轮转向角Aa δ之间的运动学关系。

图中还标出了转向角差A δ∆和转弯直径D s (亦见图6.1.1)。

图6.1.2 前悬架上的尺寸说明:b v 是前轮轮距,r S 是在图示情况下为正的主销偏距。

图6.1.1中标出的转向角差(也称弯角差)A δ∆在所获得理论值中必须始终为正值。

Aa i A δδδ-=∆ (6.1.3)根据角Aa δ可得出理论转弯直径D s (图6.1.1),即车身外侧前轮平面以最大的转向角转弯时经过的圆弧直径。

汽车的转弯圆应尽可能小,以易于转弯及停车方便。

依图示可推导出公式:)sin 1(2max s Aa S r D +=δ (6.1.4)这个要求是以轴距小和车身外侧车轮转向角大为前提的。

汽车电动助力转向系统匹配设计计算及验证

汽车电动助力转向系统匹配设计计算及验证

汽车电动助力转向系统匹配设计计算及验证作者:吕祥张晶韦锦佳刘春元杨魏绮来源:《时代汽车》2019年第02期摘要:转向系统是汽车重要的组成部分,本文根据实际工作情况,介绍了汽车电动助力转向系统计算匹配,并验证了该方法的实用可行性。

关键词:电动助力转向系统匹配;齿条力;电机匹配1 引言转向系统影响着汽车行驶中的操纵稳定性以及行车安全,是汽车重要的系统之一。

电动助力转向系统(Electric Power Steering,简称EPS)具有节能、环保、高效等诸多优势,成为目前转向系统发展的主流趋势。

电动助力系统基本工作原理:当驾驶员转动方向盘时,控制器接收外部输入信号进而控制电机产生适当的助力大小及方向,为汽车转向提供助力。

开发EPS系统首先需要对转向系统进行合理匹配,基于有刷电机技术成熟,控制器简单,成本低,国内生产的电动助力转向系统多为有刷电机管柱式助力(即C-EPS),本文根据实际需要对C-EPS系统(见图1)进行匹配。

2 转向器匹配转向器是汽车转向系统的核心部件,汽车上常用的转向器较多为齿轮齿条式转向器和循环球式转向器。

齿轮齿条转向器结构简单、紧凑,质量小,布置占用体积小,省去循环球式转向器的直拉杆和转向摇臂结构,传动效率高,制造成本低等优点,广泛应用于乘用车上[1]。

本文选用齿轮齿条式转向器。

2.1 转向器最大输出转矩汽车转向过程中主要克服原地转向阻力矩、重力回正力矩、转向系统内部摩擦阻力。

根据经验,汽车满载时原地转向到极限具有最大的转向阻力矩,转向器的最大输出转矩应根据这一工况满足下式:其中:R—轮胎静半径,mm;σ—主销内倾角,deg;rs—主销偏移距(见右图2),mm;δ—轮胎内转角,deg。

2.2 最大齿条力计算当汽车轮胎转到极限位置时,考虑转向系统内部摩擦阻力,此时最大齿条力计算如下公式:(2-4)其中:Fmax—最大齿条力,N;Ff—转向系统内部摩擦阻力,取Ff=200N;L—转向节臂有效长度(图3),mm。

转向系统校核计算与设计指南

转向系统校核计算与设计指南

怠速(r/min)
600 ~
7.转向拉杆规格
φ42X8钢拔管
球头一总成型号 33R13-01066
球头一球销直径(mm)
球销沿其中心摆角(°)
球头二总成型号 3303E-059/060
球头二球销直径(mm)
球销沿其中心摆角(°)
8.方向盘半径(mm)
9.悬架型式
纽威ASB-140气簧
300
21 14 16 3600 500 1
转向系统校核计算与设计指南
注:不同颜色背景说明
计算数据,需输入 标题,不建议修改 常用经验值,可以修改
计算结果,不能修改
整车型号
XXXXXXX系列旅游车
车型说明
在XXXXXXXXXXX系列旅游车基础上,进行底盘转向系统的优化设计
设计原则
产品零部件标准化和互换性
1.前桥型号
方盛JY30N
附表一、前悬架系统与转向拉杆系统的运动协调的校核:这
268
3.动力转向器型号
ZF8095 955 227
附表三、转向拉杆系统和方向盘圈数的校核:以转向拉杆的
角传动比 15.7 ~
18.5
三维空间尺寸不变原理,按照轮胎的内、外转向角算出转向
总圈数
4.4
垂臂的摆角参数
输出轴摆角(°)
94
1.转向拉杆位于中间位置状态
机械效率(%)
90
XZ二维坐标系长度(mm) 903.9
转向节臂计算力臂(mm) 259.6
转向垂臂计算力臂(mm)
211
原地阻力矩换算到当量杆上的阻力(N) 12990.07
动力转向器输出到当量杆的拉力(N) 21233.17 符合
转向助力泵作用,方向盘的转动力(N) 31.09952

转向系统设计规范

转向系统设计规范

转向系统设计规范1规范本规范介绍了转向系统的设计计算、匹配、以及动力转向管路的布置。

本规范适用于天龙系列车型转向系统的设计2.引用标准:本规范主要是在满足下列标准的规定(或强制)范围之内对转向系统设计和整车布置GB17675-1999 汽车转向系基本要求GB11557-1998防止汽车转向机构对驾驶员伤害的规定GB7258-1997 机动车运行安全技术条件GB9744-1997 载重汽车轮胎GB/T 6327-1996 载重汽车轮胎强度试验方法《汽车标准汇编》第五卷转向车轮3.概述:在设计转向系统时,应首先考虑满足零部件的系列化、通用化和零件设计的标准化。

先从《产品开发项目设计定义书》上猎取新车型在设计转向系统所必须的信息。

然后布置转向传动装置,动力转向器、垂臂、拉杆系统。

再进行拉杆系统的上/下跳动校核、与轮胎的位置干涉校核,以及与悬架系统的位置干涉、运动干涉校核。

最小转弯半径的估算,方向盘圈数的计算。

最后进行动力转向器、动力转向泵,动力转向油罐的计算与匹配,以满足整车与法规的要求;确定了动力转向器、动力转向泵,动力转向油罐匹配之后,再完成转向管路的连接走向。

4车辆类型:以EQ33868X4为例,6X4或4X2类似5杆系的布置:根据《产品开发项目设计定义书》上所要求的、车辆类型、车驾宽、高、轴距、空/满载整车重心高坐标、轮距、前/后桥满载轴荷、最小转弯直径、最高车速、发动机怠速、最高转速,空压机接口尺寸,轮胎规格等,确定前桥的吨位级别、轮胎气压、花纹等。

考虑梯形机构与第一轴、第二轴、第三轴、第四轴之间的轴距匹配及各轴轮胎磨损必需均匀的原则,确定第一前桥、第二前桥内外轮转角、第一垂臂初始角、摆角与长度、中间垂臂的长度、初始角、摆角,确定上节臂的坐标、长度等确定的参数如下第一、二轴选择7吨级规格轮胎型号:12.00-20、轮胎气压0.74Mpa花纹第一轴外轮转角35°;内轮转角44°第二轴外轮转角29°;内轮转角34°第一轴上节臂参数上节臂球销坐标上节臂有效长度垂臂参数垂臂长度315mm中间球销长度187m(接中间拉杆),初台角向后2°第二轴上节臂参数上节臂球销坐标上节臂有效长度中间垂臂参数中间垂臂长度330 mm(接第二直拉杆),中间球销长度230m(接中间拉杆),中间球销长度269.5mm (接助力油缸活塞),初台角向后6°上述主要参数确定后,便可布置转向机支架、第一直拉杆、第二直拉杆、中间拉杆。

汽车电动助力转向系统的设计

汽车电动助力转向系统的设计

汽车电动助力转向系统的设计概述汽车电动助力转向系统是一种电子辅助转向系统,为驾驶员提供操纵方向盘的力量辅助,以改善驾驶操控性和舒适性。

该系统通过电动助力装置来替代传统的液压助力转向系统,具有更高的效率和响应性。

本文将详细介绍汽车电动助力转向系统的设计原理和关键技术。

设计原理汽车电动助力转向系统的设计基于电动助力装置和转向控制单元的协同工作。

电动助力装置负责提供对转向系统的力量辅助,转向控制单元那么负责监测车辆的转向情况并根据驾驶员的输入进行控制。

电动助力装置电动助力装置由电机、减速器、传感器和控制单元组成。

电机负责提供动力,减速器那么用于降低电机的转速并增加转力。

传感器用于监测转向力和转向角度,并向控制单元提供反应信息。

控制单元根据传感器的反应信号来确定输出力的大小和方向。

转向控制单元转向控制单元由微处理器和控制算法组成。

微处理器负责处理传感器的数据和执行控制算法。

控制算法根据驾驶员的转向输入,计算出相应的助力输出指令,并通过电动助力装置将助力传递给转向系统。

关键技术功率电子技术汽车电动助力转向系统需要提供足够的力量辅助,因此需要采用功率电子技术来实现高效能的能量转换和控制。

功率电子技术包括电机驱动技术、功率开关技术和电源管理技术,它们的协同工作可以有效提高电动助力转向系统的效率和可靠性。

传感器技术传感器技术在汽车电动助力转向系统中起到了至关重要的作用。

传感器可以实时监测转向力和转向角度,从而提供准确的反应信息给控制单元。

常用的传感器包括转向力传感器和转向角度传感器,它们需要具有高精度和可靠性,以确保系统的准确性和稳定性。

控制算法控制算法是汽车电动助力转向系统的核心局部,它决定了系统的性能和操控性。

控制算法根据传感器的反应信息和驾驶员的转向输入,计算出相应的助力输出指令。

常用的控制算法包括比例-积分-微分〔PID〕控制算法和模糊控制算法,它们能够确保系统的稳定性和响应性。

设计考虑功率和效率汽车电动助力转向系统需要提供足够的助力,同时也要确保系统的功率和效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 汽车转向系统的功能1.1 驾驶者通过方向盘控制转向轮绕主销的转角而实现控制汽车运动方向。

对方向盘的输入有两种方式:对方向盘的角度输入和对方向盘的力输入。

装有动力转向系统的汽车低速行驶时,操作方向盘的力很轻,却要产生很大的方向盘转角输入,汽车的运动方向纯粹是由转向系统各杆件的几何关系所确定。

这时,基本上是角输入。

而在高速行驶时,可能出现方向盘转角很小,汽车上仍作用有一定的侧向惯性力,这时,主要是通过力输入来操纵汽车。

1.2 将整车及轮胎的运动、受力状况反馈给驾驶者。

这种反馈,通常称为路感。

驾驶者可以通过手—---感知方向盘的震动及运转情况、眼睛—---观察汽车运动、身体—---承受到的惯性、耳朵—---听到轮胎在地面滚动的声音来感觉、检测汽车的运动状态,但最重要的的信息来自方向盘反馈给驾驶者的路感,因此良好的路感是优良的操稳性中不可缺少的部分。

反馈分为力反馈和角反馈从转向系统的功能可以得知:人、车通过转向系统组成了人车闭环系统,是驾驶者对汽车操纵控制的一个关键系统。

2 转向系统设计的基本要求转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。

转向系的基本要求如下:2.1 汽车转弯时,全部车轮应绕瞬时回转中心(瞬心)旋转,任何车轮不应有侧滑。

不满足这项要求会加剧轮胎磨损,并降低汽车的操作稳定性。

实际上,没有哪一款汽车能完全满足这项要求,只能对转向梯形杆系进行优化,一般在常用转向角(轮15°~25°围)使转向外轮运动关系逼近上述要求。

2.2 良好的回正性能汽车转向动作完成后,在驾驶者松开方向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。

转向轮的回正力矩的大小主要由悬架系统所决定的前轮定位参数确定,一般来说,影响汽车回正的因素有:轮胎侧偏特性、主销倾角、主销后倾角、前轮外倾、转向节上下球节的摩擦损失、转向节臂长、转向系统的逆效率等。

2.3汽车在任何行驶状态下,转向轮不得产生自振,方向盘没有摆动。

2.4 转向机构与悬架机构的运动不协调所造成的运动干涉应尽可能小,由于运动干涉使转向轮产生的摆动应最小。

汽车转弯行驶时,作用在汽车质心处的离心力的作用,轮载荷减小,外轮载荷增加,使悬架上的载荷发生相应变化。

若转向桥采用非独立悬架、钢板弹簧机构时,则侧板簧因载荷减小而长度缩短,外侧板簧因载荷增加而长度增加,导致车轴在水平面相对车身转过一个角度,产生轴转向效应。

转向直拉杆和纵拉杆的运动关系必须与之适应,使轴转向效应趋于不足转向。

当转向桥为独立悬架、螺旋弹簧机构时,侧弹簧因载荷减小而长度增加,车轮相对车身下跳,外侧弹簧因载荷增加而长度减小,车轮相对车身上跳,因转向横拉杆外球头从运动学上来说,是转向轮的一部分,球头属于车身的一部分,外球头随车轮上下跳动所形成的轨迹必须与球头所在中心点相适应。

这就是传统转向理论中所说的断开点校核。

实际上,现代汽车设计中,合理利用这个运动轨迹的干涉,使得运动干涉造成的车轮偏转方向(侧倾转向)与转向方向相反,有助于实现不足转向。

2.5 良好的机动性为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,并要达到按前外轮轨迹计算,使其最小转弯半径能达到汽车轴距的2~2.5倍。

最小转弯直径是汽车机动性的评价指标。

影响最小转弯直径的因素有:汽车轮距、轴距、轮胎侧偏刚度、有效转向节臂长,转向器行程(齿轮齿条式转向器)、转向摇臂摆角(循环球式转向器)、转向摇臂长(循环球式转向器)、转向梯形的布置形式等。

2.6 转向操纵轻便性转向操纵轻便性的评价指标通常有两项:驾驶者作用在方向盘上的切向力大小和方向盘总圈数。

机械转向系统的轿车,在行驶中转向时的切向力应为50~100N.有助力转向系统的轿车,此力为20~50N。

K1哈弗为27N±3N。

轿车方向盘总圈数不得大于4圈,货车不得大于6圈。

M11机械转向系统方向盘总圈数3.825,液压助力转向系统方向盘总圈数3.083。

对于无助力系统,方向盘上的切向力大小由转向系力传动比决定,方向盘总圈数等于转向器总圈数。

方向盘总圈数多和切向力越大都容易使驾驶者疲劳。

根据机械原理,方向盘总圈数越多,切向力就越小,两者成反比。

只有合理对方向盘总圈数和切向力取值,才能有一个好的转向操纵轻便性。

对于有助力转向系统,可以实现少的方向盘总圈数和小的方向盘切向力。

但需要注意助力特性,虽然实现了好的转向操纵轻便性,却容易出现转向高速发飘、转向发贼现象,破坏操纵稳定性。

2.7直线行驶稳定性转向系统和悬架系统密切相关,必须使转向系统与悬架系统合理匹配,使汽车具有良好的直线行驶稳定性,良好路面不得出现的行驶跑偏。

行驶跑偏与车辆的制造装配有很大关系。

当转向轮遇到一个小的障碍物时,车轮发生偏转,这时汽车应具有快速回到直线行驶位置的能力。

循环球式转向器设计成变传动比,摇臂轴扇齿的中间齿(转向器的中位)齿厚比两边的大,与螺母齿条啮合时,转向器中间位置有相当于锁紧的功能。

以达到维持直线行驶稳定的目的。

齿轮齿条式转向器将齿条中间常用几齿的齿间设计得比较小,与小齿轮啮合时,转向器中间位置有相当于锁紧的功能。

以达到维持直线行驶稳定的目的,同时也达到间隙补偿的目的。

2.8 转向轮碰到障碍物后,传递给方向盘的反冲力要尽可能小。

转向轮碰到障碍物后,传递给方向盘的反冲力要尽可能小,否则会出现“打手”现象。

避免“打手”现象的有效措施有:在转向操纵机构中增加挠性万向节,加装转向阻尼器(减振器),提高转向系统逆效率等手段。

2.9 应当有汽车碰撞时对驾驶者的防伤机构当发生车祸时,一方面,车辆前端被压溃,使得转向管柱和转向轴向上向后移动(也就是向窜向驾驶者头胸部)。

另一方面,驾驶者紧急制动或则被撞时汽车骤然停止,驾驶者在强大惯性力作用下,上半身冲向方向盘,伤害驾驶者。

为避免这种危害,就要求转向管柱在轴向不能是刚性的,在转向管柱两个方向应具有溃缩和吸能功能,缓冲车身前部的冲击和驾驶者的冲击。

顺便提一下,系安全带是非常有效的一个措施。

2.10 转向轮与方向盘偏转方向一致转向系统必须做运动分析,最起码要保证的是:汽车在前进时,往左转动方向盘时,汽车应向左转,右打右转。

2.11适宜的不足转向度(了解)汽车等速行驶时,迅速给方向盘一个角度输入,使转向轮迅速发生偏转,汽车进入一个稳态响应---等速圆周行驶。

这时,汽车产生一个绕Z轴线的横摆角速度,横摆角速度与转向轮转角的(或者方向盘的转角)的比值称为转向灵敏度。

横摆角速度增益---横摆加速度与车速成线性关系时,即它们函数关系为一直线,斜率为定值,称汽车具有中性转向特性。

表现为:保持相同的方向盘转角,提高车速,汽车的转弯半径维持在一个恒定值。

横摆加速度与车速成非线性关系,其斜率呈减小趋势,称汽车具有不足转向特性。

表现为:保持相同的方向盘转角,提高车速,汽车的转弯半径越来越大。

横摆加速度与车速成非线性关系,其斜率呈增加趋势,当车速度超过临界车速时,横摆角速度趋于无穷大,称汽车具有过多转向特性。

表现为:保持相同的方向盘转角,提高车速,汽车的转弯半径越来越小。

中性转向很容易转化为过多转向,过多转向汽车达到临界车速时将失去稳定性,由于其转弯半径越来越小,横摆加速度越来越大,汽车将发生激转而侧滑摔尾或者翻车,因此汽车都应具有适宜的不足转向特性。

转向灵敏度和转向特性主要影响因素:悬挂系统、转向系统以及整车的质心位置、轴距、轮距等参数。

3 转向轮定位参数主销的概念:转向节绕车身(或车架)转动的轴线。

对于大多数货车客车的非独立悬挂,其主销是转向节与转向桥拳部连接的实实在在的主销。

对于独立悬挂的轿车,双摆臂结构的主销是下摆臂外球心与上摆臂球心的连线。

麦弗逊悬挂的主销是下摆臂外球心与前滑柱与车身铰接点的连线。

3.1 主销后倾角当汽车水平停放时,在汽车的纵向垂面,主销上部向后倾斜一个角度r,称为主销后倾角。

当主销具有后倾角时,主销轴线与路面交点A 将位于车轮与路面接触点的前面。

当汽车直线行驶时,若转向轮偶然受到外力作用而稍有偏转(例如向右偏转,如图中箭头所示),能产生回正作用。

也就是说,因为主销后倾角,汽车具有了维持直线行驶的能力。

轮胎接地点B向主销作垂线,B点与垂足点的距离L是车轮产生回正力矩的力臂,因主销后倾角一般不大,如K1为3°±30’,M11为2.5°±30’,在三维模拟技术尚不成熟的传统设计理论中,便于计算,一般以主销穿地点A与B点距离作为评价回正力矩的主参数。

这个距离叫做后倾拖距ξ。

回正力矩M=ξ* Fy 附加转角δ= Fy/CsFy----汽车受到的侧向力,与汽车质量、侧向加速度成正比。

Cs----转向系统刚度,包括转向节、转向器、转向管柱的刚度。

回正力矩M,附加转角δ就是转向系统的力反馈和角反馈。

ξ越大回正力矩越大,同时,车辆转向时,这个力矩就成了转向需要克服的阻力矩,转向也变得困难。

回正力矩与后倾拖距ξ和车速v的平方都成正比例关系。

汽车中高速的回正力矩主要来自于后倾拖距ξ。

3.2 主销倾角当汽车水平停放时,在汽车的横向垂面,主销轴线与地面垂线的夹角为主销倾角。

主销倾角的作用是使车轮自动回正。

通常车轮轴线不在水平面,为了方便说明,这里假设直线行驶时车轮轴线在水平面上。

对于车轮轴线不在水平面的情况,只要把下图的水平面改为锥面。

如下图所示,考虑该水平面上和主销有交点的直线,主销与这些直线的夹角有一个最大值。

而汽车直线行驶时,车轮轴线与主销的交角恰为这个最大值。

车轮轴线与主销夹角在转向过程中是不变的,当车轮转过一个角度,车轮轴线就离开水平面往下倾斜,致使车身上抬,势能增加。

这样汽车本身的重力就有使转向轮回复到原来中间位置的效果。

由于主销倾,前轮转向时将使车身有抬高的倾向,这种系统位能的提高产生回正力矩M'。

假设Q为轮荷,δ为前轮转角,有如下关系:M'=(Q*C*sin(2β)*sinδ)/2无关,有:M比M'在高速时大得多,低速时,M'可以看出,M'与侧向力Fy比M大得多。

所以说:汽车低速时回正主要由主销倾角决定。

同样主销倾角β越大,转向越困难。

3.3 车轮外倾角当汽车水平停放时,在汽车的横向垂面,车轮平面与地面垂线的夹角为前轮外倾角。

如果空车时车轮的安装正好垂直于路面,则满载时车桥因承载变形而可能出现车轮倾,这样将加速车轮胎的磨损。

另外,路面对车轮的垂直反力沿轮毂的轴向分力将使轮毂压向外端的小轴承,加重了外端小轴承及轮毂紧固螺母的负荷,降低它们的寿命。

因此,为了前轮有一个外倾角。

但是外倾角也不宜过大,否则也会使轮胎产生偏磨损。

现代汽车设计中也有将车轮外倾角α取为负值,比如M11的车轮外倾角α为-1°±30’,其目的是使转向轮在转向时,车轮上下跳动引起的车轮偏转方向与车身在离心力作用下的偏转方向一致,提高操作稳定性。

相关文档
最新文档