组合数学 ppt课件

合集下载

组合数学课件(第七章 生成函数)

组合数学课件(第七章 生成函数)
• • • • • 7.1生成函数的定义和性质 7.2多重集的r-组合数 7.3正整数的划分 7.4指数生成函数与多重集的排列问题 7.5Catalan数和Stiring
§7.1 生成函数概念
§4.1 生成函数的基本概念
4.1.1 生成函数
定义 4.1
给定一无穷序列(a0,a1,…an,…)(简记为{an}),称函
e
1! 2! 1 4 7 ... (3n 1) n x n! n0 4 7 ... 3n 1 3 3 3n x n 1 3 n! n 1 4 4 1 ... 4 n 1 3 3 3 1 ( 3 x )n n! n 1 4 1 3 ( 3 x )n n n 1
§7.1 生成函数的基本概念 7.1.2 指数生成函数
定义 7.2 给定一无穷序列(a0,a1,…an,…)(简记为{an}),称函 xi 数 f e ( x ) ai 为序列{an}的指数生成函数。 i! i 0 注: fe(x)也是形式幂函数。 经常可结合以下公式运算: 2 n x x x e x 1 2 ... n ... 1! 2! n! n x x2 x n x e 1 ... ( 1) ... 1! 2! n! x x3 x 2 n 1 e x e x sin x ... ... 1! 3! (2n 1)! 2
********************** 课程总结
第7章 生成函数
本章重点介绍生成函数(生成函数、指数生成函 数)的基本概念及其在排列组合中的应用 : 生成函数的基本概念 生成函数的基本运算 生成函数在排列、组合中的应用 整数拆分 生成函数在组合恒等式中的应用

组合数学-鸽巢原理讲义课件

组合数学-鸽巢原理讲义课件

超鸽巢原理
总结词
超鸽巢原理是鸽巢原理的一种扩展,它考虑 了多于两种元素的情况。
详细描述
超鸽巢原理是在鸽巢原理的基础上,进一步 推广到多于两种元素的情况。它涉及到多个 元素和多个鸽巢之间的关系,并用于解决一 些更为复杂的问题。超鸽巢原理的应用范围 广泛,包括组合计数、图论等领域。
鸽巢原理的变体
总结词
鸽巢原理与其他数学原理的结合
总结词
将鸽巢原理与其他数学原理结合使用,可以 产生更强大的理论工具。
ቤተ መጻሕፍቲ ባይዱ
详细描述
鸽巢原理是组合数学中的重要原理,但它的 应用范围有限。为了解决更复杂的问题,一 些数学家尝试将鸽巢原理与其他数学原理结 合使用。这种结合可以产生更强大的理论工 具,能够解决一些单独使用鸽巢原理无法解 决的问题。通过与其他数学原理的结合,鸽
鸽巢原理证明中的注意事项
在证明过程中,需要注意鸽巢原理的适用条件,即每个鸽 巢中的物体数量必须相同。如果每个鸽巢中的物体数量不 同,那么鸽巢原理就不适用。
另外,在证明过程中还需要注意逻辑推理的严密性,确保 每一步推理都是正确的,没有出现逻辑错误或遗漏。同时 ,还需要注意数学符号和公式的正确使用,以确保证明的 准确性和可读性。
鸽巢原理的变体是对原原理的某种修改或扩展,以适应特定的问题或情境。
详细描述
随着数学的发展,人们发现鸽巢原理在某些情况下可能并不适用,或者需要对它进行一 些修改以更好地解决问题。因此,一些数学家提出了鸽巢原理的变体。这些变体可能涉
及到对原原理的修改、扩展或与其他数学原理的结合,以适应更广泛的问题和情境。
02
在数学中,鸽巢原理常用于证明 一些组合数学和数论中的问题, 如整数分拆、集合的划分等。
鸽巢原理的适用范围

组合数学课件(第七章 生成函数)

组合数学课件(第七章 生成函数)



§ 7.1 生成函数例6 § 7.1指数 生成函数的基本概念
7.1.2 指数生成函数
例 题
例6、求序列(p(0,0), p(2,1), p(4,2),…, p(2n,n),…)的指数生成函数fe(x)。
解:由定义7.2及公式P(n,r)=r!C(n,r),以及例3的结论,有 x x2 xn f e ( x ) p(0, 0) p(2,1) p(4, 2) ... p(2n, n) ... 1! 2! n! 0 2 x 4 x 2 ... 2n x n ... 0 1 2 n (1 4 x )1 2


§7.1 指数生成函数例7 §7.1 生成函数的基本概念
7.1.2 指数生成函数
例 题
例7、求序列{1,α,α2,…,αn,…}的指数生成函 数fe(x)。其中α是实数。
2 n x x x fe ( x ) 1 2 ... n ... e x 1! 2! n!
组合数学课件
制作讲授:王继顺
目录(1)

第1章 什么是组合数学 1.1引例 1.2组合数学研究对象、内容和方法 第2章 鸽巢原理 2.1 鸽巢原理:简单形式 2.2 鸽巢原理:加强形式 2.3 Ramsey定理 2.4 鸽巢原理与Ramsey定理的应用 本章小结 习题 第3章 排列与组合 3.1 两个基本的计数原理 3.2 集合的排列与组合 3.3 多重集的排列与组合 本章小结 习题
例 题
例2、求序列(C(n-1,0), -C(n,1), C(n+1,2), …, (1)kC(n+k-1,k), … )的生成函数。
§7.1 生成函数例2
解:由定义7.1及二项式定理的推论3.10.2有

组合数学课件-第一章:排列与组合

组合数学课件-第一章:排列与组合

积分性质
若G(x)是母函数,则它的不定积分∫G(x)dx (其中C为常数)也是母函数。
线性性质
若G1(x)和G2(x)是两个母函数,则它们的 线性组合k1*G1(x)+k2*G2(x)(k1和k2是 常数)也是母函数。
微分性质
若G(x)是母函数,则它的导数G'(x)也是母 函数。
乘积性质
若G1(x)和G2(x)是两个母函数,则它们的 乘积G1(x)*G2(x)也是母函数。
对称性
C(n,m) = C(n,n-m),即从n个元素中取出m个元 素的组合数与从n个元素中取出n-m个元素的组 合数相等。
递推关系
C(n,m) = C(n-1,m-1) + C(n-1,m),即当前组合 数等于前一个元素在组合中和不在组合中的两种 情况之和。
边界条件
C(n,0) = C(n,n) = 1,即从n个元素中取出0个或 n个元素的组合数均为1。
典型例题解析
例1
从10个数中任取4个数,求其中最大数为6的组合数。
解析
此问题等价于从6个数(1至6)中取4个数的组合数,即 C(6,4)。
例2
在所有的三位数中,各位数字之和等于10的三位数有 多少个?
解析
此问题可转化为从9个数字(1至9)中取3个数字的组合 数,即C(9,3),然后考虑三个数字的全排列,即3!,因此 总共有C(9,3) × 3!个符合条件的三位数。
组合与排列的关系
组合数可以看作是从n个元素中取出m个元素进行排 列的种数除以m的阶乘,即C(n,m)=A(n,m)/m!。 因此,在计算组合数时也可以利用排列数和容斥原 理来进行计算。
THANKS
隔板法
将n个相同的元素分成r组的方法数可以用母函数表示为 C(n+r-1,r),其中C表示组合数。

组合数学课件:反演公式

组合数学课件:反演公式
Δ[x]n=[x+1]n-[x]n =(x+1)[x]n-1-(x-n+1)[x]n-1 =n[x]n-1
反演公式

使用[x]n的Taylor公式展开φ(x)=[x+y]n, Δkφ(0)=n(n-1) …(n-k+1)[y]n-k
就有Δ二项式公式:
n n
[ x
y ]n
k0 k
[x]k [ y]nk
证明 易证每个n次多项式φn(x)都可以唯一地表示为
n ( x) ak Pk ( x) anPn ( x) an P 1 n1( x) a0P0 ( x)
0k n
其中an, an-1, …, a0是常数。事实上,取an为φn(x)中xn的系数除以 Pn(x)中xn的系数所得的商,则φn-1(x)=φn(x)-anPn(x)至多是n-1次的, 再取an-1为φn-1(x)中xn-1的系数除以Pn-1(x)中xn-1的系数所得的商, 接着考虑
常 的 微 商 d/dx , 上 述 命 题 中 的 公 式 , 就 是 标 准 的 Taylor-
Maclaurin展开式。
反演公式 1.
令y为一常数,考虑多项式φ(x)=(x+y)n,
Pn(x)=xn (P0(x)=1, Pn(0)=0, n≥1) 这时,伴随族Pn(x)的微分算子就是通常的微商:
a=(αnk)b
b=(βnk)a
其中,a
{an
}m n0
,
b
{bn
}m n0


m+1










(4.1.6)式成立。
反演公式

组合数学课件(第五章 容斥原理)

组合数学课件(第五章 容斥原理)

A B

500 15

33.
根据容斥原理,从1到500的整数中不能被3和5整除的数的个数为
| A B || S | | A | | B | | A B | 267
§5.1 包含排§斥原5.理1 例包2含排斥原理 5.1.3 包含排斥原理
习题训练
练2、求a,b,c,d,e,f六个字母的全排列中不 允许出现ace和df图像的排列数。

1000 [5,6,8]
8;
根据容斥原理,不能被5,6,8中任何一个数整除的数目为
A B C 1000 (200 166 125) (33 41 25) 8 600.
§5.1 包含排§斥原5.理1 例包9含排斥原理
5.1.3 包含排斥原理
5.1.3 包含排斥原理 例6、证明以下等式:§5.1 包含排斥原理例8

题 nr

m m



m 0

n r



m
1


n
1
r



(1)m

m m


n
r
m

.
其中n,r,m为正整数,m≤r ≤ n.
组合数学课件
制作讲授:王继顺
第5章 包含排斥原理
本章重点介绍包含排斥原理及其在排列组合 中的应用:
• §5.1包含排斥原理 • §5.2 多重集的r-组合数 • §5.3错位排列 • §5.4 有限制条件的排列问题 • §5.5有禁区的排列问题
第5章 包含排斥原理
教学目标:

卢开澄组合数学--组合数学第二章幻灯片

卢开澄组合数学--组合数学第二章幻灯片
H(x) A B A(12x)B(1x) 1x 12x (1x(12x)
(A B)2-A(B)x (1x)1(2x)
( A B ) ( 2 A B ) x x
§2.2 递推关系
由上式可得:
{ A 2 A B B 01 A 1 , B1 .
即:H(x) 1 1 12x 1x
(12x22x223x3)(1xx2) (21)x(21)x(21)x
C(mn,mn)xmn
§2.1 母函数
比较等号两端项对应系数,可得一等式
C ( m n ,r ) C ( m , 0 ) C ( n ,r ) C ( m , 1 ) C ( n ,r 1 ) C ( m ,r ) C ( n , 0 )
§2.1 同母样函对数于
,〔设
用类似的方法可得等式:
§2.2 递推关系
Hanoi问题是个典型的问题,第一步要设 计算法,进而估计它的复杂性,集估计工作量。
算法: N=2时 第最第一后二步把步先B上把把的下最圆面上盘的面移一的到个一C圆个上盘圆移盘到套C在上B上 到此转移完毕
A
B
C
§2.2 递推关系
假定n-1个盘子的转移算法已经确定。 对于一般n个圆盘的问题,
x 2 x 3 x 2 /1 ( x )
§2.2 递推关系
整理得
(1 2 x)H (x)x2 xx 1 x 1 x
这两种做法得到的结果是一样的。即:
H(x) x (1x)1(2x)
§2.2 递推关系
如何从母函数得到序列h(1 )h ,(2) , ?下 面介绍一种化为局部分数的算法。 令
以依次求得h(2)h ,(3) , ,这样的连锁反应关
系,叫做递推关系。
§2.2 递推关系

组合数学课件--第一章第二节 允许重复的组合与不相邻的组合

组合数学课件--第一章第二节 允许重复的组合与不相邻的组合
11
一、序数法
怎样建立a(3)a(2)a(1)p(1)p(2)p(3)p(4)
a(3) 确定4的位置,a(2)确定3的位置
a(1)确定2的位置,剩余的位置就是1的位置 例3:021, 3 2 1 4 例3: 201, 2 4 1 3
12
一、序数法
求n个不同的数的全排列,主要有以下两步:
1、求出0到n!-1之间各数对应的序列{an-1, an-2,…, a1} m=an-1(n-1)!+an-2(n-2)!+…a2 * 2!+a1*1! 2、由{an-1, an-2,…, a1}确定排列序列p1p2…pn an-1,确定n的位置, an-2确定n-1的位置, ……………………… a1确定2的位置, 剩下的是1的位置。
9
一、序数法
推论 从0到n!-1的n!个整数与序列{an-1, an-2,…, a1} 一一对应。这里 0a1 1,0 a2 2, …, 0 an-1 n-1 算法: int a[]={0}; int m,n;// 0=<m<=n!-1 int b=m; int index =1; do { a[index]=b%(index+1); b = b/(index+1); index++; } while(b);
14
一、序数法
2、对于0,1,2,…,n!-1共n!个数求序列a[i]
for( i = 0; i < fact; i++ ) { int b=i, index =1; do { a[index]=b%(index+1); b = b/(index+1); index++; } while(b);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档