【3套打包】重庆市人教版初中数学七年级下册第8章《二元一次方程组》单元测试(含答案)
新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案解析)

人教版数学七年级下册同步单元复习卷:第 8 章 二元一次方程组一、填空题(本大题共 8 小题,共 32 分)1.写出一个解为x 1y的二元一次方程组 __________.22.方程 mx - 2y=x+5 是二元一次方程时,则 m________.3.若 2a - 5b a - 3b2x+y =0 是二元一次方程,则 a=______,b=______ .4.若 a 1 是对于 a , b 的二元一次方程 ax+ay - b=7 的一个解,则代数式( x+y ) 2- 1?的b2值是 _________5.若 5a b+41-2b2a2x y 与- xy 是同类项,则 b=________.6.已知都是 ax+by=7 的解,则 a=_______, b=______.7. 甲队有 x 人,乙队有 y 人,若从甲队调出10 人到乙队,则甲队人数是乙队人数的一半,可列方程为 ______________.8.在等式 y = kx + b 中,当 x = 1 时,y =1;当 x = 2 时,y = 4,则 k = __________,b = __________.二、选择题(本大题共 8 小题,每题4 分,共 32 分。
)9.表示二元一次方程组的是()x y 3, xy5,x y 3,x y 11,A 、xB 、y 2C 、xy2;D 、 2 2xy x 2z 5;4;x 10.已知 2 x b + 5y 3a 与- 4 x 2a y 2 -4b 是同类项,则 b a 的值为()A . 2B .- 2C .1D .- 1x y3k 2x +3y = 6,那么 k 的值为(11.若对于 x 、y 的方程组y的解知足方程 )x7k33 C .-2 3A .-B .D .-222312.以下图,宽为 50 cm 的矩形图案由 10 个全等的小长方形拼成,此中一个小长方形的面积为( ).2 2 2 2A . 400 cmB . 500 cmC . 600 cmD . 4 000 cm13.方程 2xy 8 的正整数解的个数是()A 、 4B 、 3C 、2D 、 1x + 2y = m ,14.已知对于 x ,y 的方程组的解为 3x + 2y =14 的一个解,那么 m 的值为 ().x - y = 4mA . 1B .- 1C . 2D .- 215.六年前, A 的年纪是 B 的年纪的3 倍,此刻 A 的年纪是 B 的年纪的 2 倍, A 此刻的年纪是 ( ).A .12 岁B .18 岁C .24 岁D .30 岁1 x 1 16.已知以下方程组: (1)x3y ,( 2) 3xy2,( 3)x3 3y ,( 4)y ,y2y z41 x1xy 0y此中属于二元一次方程组的个数为()A . 1B . 2C .3D .4三、解答题(本大题共6 小题,共 36 分)x 3y 5 y x 317.(1)y5( 2)2x 52xy2x y 5 x 2 y 0( 3)y 1(4)3y 1x x9m 2n 3 2 p 3q 13( 5)m1( 6)5 4q4n p18.若x 1 是对于 x , y 的二元一次方程 3x-y+a=0 的一个解,求 a 的值.y 219.小华不当心将墨水溅在同桌小丽的作业本上,3x y 11结果二元一次方程组2 y中第一x2个方程 y 的系数和第二个方程x 的系数看不到了,此刻已知小丽的结果是x1y ,你2能由此求出本来的方程组吗?20.某纸品加工厂为了制作甲、乙两种无盖的长方体小盒,利用边角余料裁出正方形和长方形两种硬纸片,长方形的宽和正方形的边长相等,现将 150 张正方形硬纸片和 300 张长方形硬纸片所有用来制作这两种小盒,能够制作甲、乙两种小盒各多少个人教版七年级下册第8 章二元一次方程组综合素质检测卷(分析版)人教版七年级下册第八章二元一次方程组单元检测题综合素质检测卷姓名: __________ 班级: __________ 考号: __________一、选择题(本大题共10 小题,每题 3 分,共 30 分。
人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)

人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)一、单选题 1.方程组的解是( )A .B .C .D .2.甲,乙,丙三人共解出100道题,每人都解对其中的60道题,将其中只有1人解出的题叫做难题,2人解出叫做中等题,3人都解出的题叫做容易题,试问:难题和容易题谁多,多几题( ) A .容易题比难题多20题 B .难题比容易题多20题 C .一样多D .无法确定3.已知(2x -3y +1)2与|4x -3y -1|互为相反数,则x ,y 的值分别是( ) A .-1,1B .1,-1C .-1,-1D .1,14.若21a b +-与()224a b ++互为相反数,则+a b 的值为( ) A .1-B .0C .1D .25.下列方程组中不是二元一次方程组的是( ) .A .215x y y +=⎧⎨=⎩B .23x y =⎧⎨=⎩C .21214x y y ⎧-=⎪⎨⎪+=⎩D .220x y y x -=⎧⎨-=⎩6.某果园现有桃树和杏树共500棵,计划一年后桃树增加3%,杏树增加4%,这样果园里这两种果树将增加3.6%,如果设该果园现有桃树和杏树分别为x 棵,y 棵,可列方程组为( )A .500(13%)(14%)500 3.6%x y x y +=⎧⎨+++=⨯⎩B .5003%4%500 3.6%x y x y +=⎧⎨+=⨯⎩C .500(13%)(14%)500 3.6%x y x y +=⎧⎨-+-=⨯⎩D .5003%4%500(1 3.6%)x y x y +=⎧⎨+=+⎩7.一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是()A.容易题和中档题共60道B.难题比容易题多20道C.难题比中档题多10道D.中档题比容易题多15道8.若方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x yx y+--=⎧⎨++-=⎩的解是()A.6.32.2xy=⎧⎨=⎩B.8.31.2xy=⎧⎨=⎩C.10.32.2xy=⎧⎨=⎩D.10.30.2xy=⎧⎨=⎩9.下列是二元一次方程的是()A.3x-6=x B.3x=2y C.5x+ 2y=3z D.2x-3y=xy 10.已知方程组中的,互为相反数,则的值为()A.B.C.D.11.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( )A.36,8 B.28,6 C.28,8 D.13,312.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.8374y xy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=-⎩C.8374y xy x-=-⎧⎨-=-⎩D.8374y xy x-=⎧⎨-=⎩二、填空题13.若x a y b=⎧⎨=⎩是方程20x y -=的解,则362a b -+=_______________________.14.已知235m n -=,则用n 的代数式表示m 为________________15.关于x,y 的方程组03x my x y +=⎧⎨+=⎩的解是1x y =⎧⎨=⊗⎩,其中y 的值被盖住了.不过仍能求出m ,则m 的值是___.16.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km .17.已知方程8mx ny +=的两个解是32x y =⎧⎨=⎩,12x y =⎧⎨=-⎩,则m =___________,n =___________18.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1 240本,则男生志愿者有___人 ,女生志愿者有___人.19.在平面直角坐标系xOy 中,对于点() A x y ,,若点B 的坐标为() ax y x ay ++,,则称点B 是点A 的“a a -演化点”.例如,点()26A -,的“1122-演化点”为()11262622B ⎛⎫⨯-+-+⨯ ⎪⎝⎭,,即()51B ,.(1)已知点(15)P -,的“33-演化点”是1P ,则1P 的坐标为________; (2)已知点()60T ,,且点Q 的“22-演化点”是()148Q ,,则1QTQ ∆的面积1QTQ S ∆为__________;(3)己知()00O ,,() 0 8A , ,() 50C ,,() 38D ,,且点()1K k -,的“k k -演化点”为1K ,当11K AD K OC S S ∆∆=时,k =___________.20.某旅馆的客房有三人间和二人间两种,三人间每人每天80元,二人间每人每天110元,一个40人的旅游团到该旅馆住宿,租住了若干房间,且每个客房正好住满,一天共花去住宿费3680元.求两种客房各租住了多少间?若设租住了三人间x 间,二人间y 间,则根据题意可列方程组为____.三、解答题21.解二元一次方程组34 3.4 64 5.2 x yx y+=-⎧⎨-=⎩22.已知二元一次方程组3521ax yx by+=⎧⎨-=⎩的解为121xy⎧=⎪⎨⎪=-⎩,求a与b的值.23.由于近期出现新冠肺炎疫情,口罩出现热卖.某药店用8000元购进甲、乙两种口罩,销售完后宫获利2800元.进价和售价如下表:求该药店购进甲、乙两种口罩各多少盒?24.用消元法解方程组35432x yx y-=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:由①-②,得33x =解法二:由②,得()332x x y +-=③ 把①代入③,得352x +=()1反思:上述两个解题过程中有无计算错误?若有误,哪种方法有错误? ()2请选择一种你喜欢的方法,完成解答.25.某种水果的价格如表:购买的质量(千克) 不超过10千克 超过10千克 每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?26.某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:当天他卖完这些黄瓜和茄子共赚了90元,这天他批发黄瓜和茄子分别多少千克?27.在等式y=kx+b中,当x=2时,y=-3;当x=4时,y=-7,求k,b的值.28.已知方程|2a+3b+1|+(3a-b-1)2=0,求a2+2ab+b2的值.29.本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展觉馆,每一名学只能参加其中一项活动,共支付票款2000元,票价信息如下:请问参观历史博物馆和民俗展难馆的人数各是多少人?参考答案1.A2.B3.D4.A5.C6.A7.B8.A9.B10.D11.A12.B13.214.532n m+ =15.1 2 -16.375017.4 -2 18.12 1619.(2,14) 2020.3240 38021103680 x yx y+⎧⎨⨯+⨯⎩==.21.0.21 xy=⎧⎨=-⎩22.该药店购进甲种口罩200盒,乙种口罩160盒.23.a=16,b=0.24.(1)解法一有误;(2)12 xy=-⎧⎨=-⎩25.张欣第一次、第二次购买这种水果的质量分别为7千克、18千克.26.这天他批发黄瓜15 kg,茄子25 kg.27.21 kb=-⎧⎨=⎩28.由已知得解得∴29.参观历史博物馆的有100人,参观民俗博物馆的有50人.。
最新人教版初中数学七年级下册第8章《二元一次方程组》单元综合练习卷(含答案解析)(1)

人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。
1.已知下列方程组:(1)3{ 2x y y ==-,(2)32{ 24x y y +=-=,(3)1+3{ 10x y x y =--=,(4)1+3{ 10x y x y=-=,其中属于二元一次方程组的个数为( )A. 1B. 2C. 3D. 4 2.已知方程组54{58x y x y +=+=,则x ﹣y 的值为( )A. 2B. ﹣1C. 12D. ﹣43.用一根绳子环绕一棵大树,若环绕大树3周,绳子还多4尺,若环绕大树4周,绳子又少了3尺,则环绕大树一周需要绳子( )A. 5尺B. 6尺C. 7尺D. 8尺4.甲、乙、丙、丁四人到文具店购买同一种笔记本和计算器,购买的数量及总价分别如下表所示.若其中一人的总价算错了,则此人是( )A.甲B .乙C .丙D .丁5.如果是方程组 的解,那么下列各式中成立的是( )A. a +4c =2B. 4a +c =2C. 4a +c +2=0D. a +4c +2=06.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能计算出x ,y 的是( )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 7.二元一次方程组的正整数解有( )组解A. 0B. 3C. 4D. 6 8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. B. C. D.9.解方程组2{78ax by cx y +=-=时,一学生把c 看错得2{ 2x y =-=,已知方程组的正确解是3{2x y ==-,则a 、b 、c 的值是( )A. a 、b 不能确定,c=-2B. a 、b 、c 不能确定C. a=4,b=7,c=2D. a=4,b=5,c=-210.一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为( )A. 46B. 64C. 57D. 75 二、填空题(每小题3分,共15分)1.若2x a +1-3y b -2=10是一个二元一次方程,则a -b =________.2.若方程组⎩⎪⎨⎪⎧2x +y =*,3x -y =3的解为⎩⎨⎧x =2,y =#,则“*”“#”的值分别为________.象限.3.已知等式y =kx +b ,当x =1时,y =2;当x =2时,y =-3.若x =-1,则y =________.4.若m ,n 为实数,且|2m+n ﹣,则(m+n )2018的值为________ .5.若235,{ 323x y x y +=-=-则2(2x +3y)+3(3x -2y)=________.6.对于X 、Y 定义一种新运算“*”:X*Y=aX+bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=__________ . 三、解答题 1.解方程组:(1)(2);2.解关于x 、y 的方程组时,甲正确地解得方程组的解为,乙因为把c抄错了,在计算无误的情况下解得方程组的解为,求a、b、c的值.3.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?4.已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物请用含有b的式子表示a,并帮该物流公司设计租车方案;(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.5.某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.参考答案一、选择题。
新人教版初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案)

人教版七年级数学下册 第八章 二元一次方程组 单元综合测试卷含答案一、选择题(本大题共10小题,,共30分) 1.已知方程()()026281||2=++--+m n y n x m 是二元一次方程,则m+n 的值( )A.1B. 2C.-3D.32.用代入法解方程组⎩⎪⎨⎪⎧2y -3x =1,x =y -1,下面的变形正确的是( )A .2y -3y +3=1B .2y -3y -3=1C .2y -3y +1=1D .2y -3y -1=13.下列方程组,解为⎩⎨⎧-=-=21y x 是( ).A .⎩⎨⎧=+=-531y x y xB .⎩⎨⎧-=+=-531y x y x C .⎩⎨⎧=-=-133y x y x D .⎩⎨⎧=+-=-533y x y x4.已知x ,y 满足方程组45x m y m +=⎧⎨-=⎩,则x ,y 的关系式是( )A .x+y=1B .x+y=-1C .x+y=9D .x+y=9 5.根据图中提供的信息,可知一个杯子的价格是( )A .51元B .35元C .8元D .7.5元 6.已知21x y =⎧⎨=⎩是方程组51ax by bx ay +=⎧⎨+=⎩的解,则a b -的值是( ) A. -1 B. 2 C. 3 D. 47.在等式n mx x y ++=2中,当3.5,3;5,2=-=-===x y x y x 则时时时,=y ( )。
A.23 B.-13 C.-5 D.13 8.方程组⎩⎨⎧=-=-82352y x y x ,消去y 后得到的方程是( )A.01043=--x xB.8543=+-x xC.8)25(23=--x xD.81043=+-x x9.已知是方程组的解,则a+b+c 的值是( )A .3B .2C .1D .无法确定10.甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x 米/秒,乙的速度为y 米/秒,可列方程组正确的是( ) A .5510442x y x y y =+⎧⎨=+⎩ B .5510424x y x y y -=⎧⎨-=⎩ C .5+105442x y x y =⎧⎨-=⎩ D .5510424x y x y-=⎧⎨-=⎩二、填空题(本大题共6小题,每小题4分,共24分) 11.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.12.方程中,用含x 的式子表示y,则y=13.若2x 5a y b+4与-x 1-2by 2a 是同类项,则a+b=________.14.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+by -b=7的一个解,则代数式2x -4y+1•的值是_________.15.在△ABC 中,∠B -∠A =45°,∠A +∠B =135°.则∠C =____16.今年甲和乙的年龄和为24,6年后甲的年龄就是乙的年龄的2倍,则甲今年的年龄是 _________岁.三、解答题(本大题共6小题,,共66分) 17.解方程组(每题5分,共20分) (1)⎩⎨⎧=-=-22534y x y x(2)⎩⎨⎧-=+=-6321053y x y x人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组一、填空题(本大题共8小题,共32分) 1.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________. 2.方程mx -2y=x+5是二元一次方程时,则m________. 3.若2x 2a -5b+y a-3b=0是二元一次方程,则a=______,b=______.4.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+ay -b=7的一个解,则代数式(x+y )2-1•的值是_________5.若2x 5a y b+4与-x 1-2by 2a 是同类项,则b=________.6.已知都是ax+by=7的解,则a=_______,b=______.7.甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程为______________. 8.在等式y =kx +b 中,当x =1时,y =1;当x =2时,y =4,则k =__________,b =__________. 二、选择题(本大题共8小题,每小题4分,共32分。
最新人教版初中数学七年级下册第8章《二元一次方程组》单元测试(含答案)

人教版七年级数学下册第八章 二元一次方程组 单元复习测试题(含答案)一、选择题(每小题3分,共24分)1. 方程2130,21,328,20,10x y x xy x y x x x x y+=+=+-=-=-+=中,二元一次方程的个数是( )A .1个B .2个C .3个D .4个 2. 方程x +2y =5的非负整数解有( )A.1个B.2个C.3个D.无数个3.方程组224x y x y -=+=⎧⎨⎩,的解是( )A.12x y ==⎧⎨⎩ B.31x y ==⎧⎨⎩ C.02x y ==-⎧⎨⎩ D.20x y ==⎧⎨⎩4.买钢笔和铅笔共30支,其中钢笔的数量比铅笔数量的2倍少3支.若设买钢笔x 支,铅笔y 支,根据题意,可得方程组( ). A .⎩⎨⎧-==+3230x y y xB .⎩⎨⎧+==+3230x y y x C .⎩⎨⎧+==+3230y x y x D . ⎩⎨⎧-==+3230y x y x 5.下列结论正确的是( ).A .方程5=+y x 所有的解都是方程组⎩⎨⎧=+=+1835y x y x 的解B .方程5=+y x 所有的解都不是方程组⎩⎨⎧=+=+1835y x y x 的解C .方程组⎩⎨⎧=+=+1835y x y x 的解不是方程5=+y x 的一个解D .方程组⎩⎨⎧=+=+1835y x y x 的解是方程5=+y x 的一个解6.某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店( )A .赚8元B .赚32元C .不赔不赚D .赔8元 7.解方程组⎩⎨⎧=-=+534734y x y x 时,较为简单的方法是( )A .代入法B .加减法C .试值法D .无法确定 8.关于x 、y 的方程组⎩⎨⎧=-=+15x y ay x 有正整数解,则正整数a 为( ).A . 1、2B .2、5C .1、5D .1、2、5 二、填空(每小题3分,共24分) 9. 如果⎩⎨⎧-==13y x 是方程3x -ay =8的一个解,那么a =_________.10. 由方程3x -2y -6=0可得到用x 表示y 的式子是_________.11. 请你写出一个二元一次方程组,使它的解为⎩⎨⎧==21y x ,这个方程组是_________.12. 用加减消元法解方程组31,421,x y x y +=-=⎨+⎧⎩①②由①×2-②得__________.13. 方程mx -2y =x +5是关于x 、y 的二元一次方程,则m ________. 14.若2x 7a y b -2与-x 1+2b y a 是同类项,则b =________. 15.如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,求每个小长方形的长为x cm ,宽长为y cm 。
七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)

七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)一、单选题(本大题共12小题,每小题3分,共36分)1.中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x个,甜果有y个,则可列方程组为()A.100041199979x yx y+=⎧⎪⎨+=⎪⎩B.100079909411x yx y+=⎧⎪⎨+=⎪⎩C.100079999x yx y+=⎧⎨+=⎩D.1000411999x yx y+=⎧⎨+=⎩2.如图,某农家乐老板计划在一块长130米,宽60米的空地开挖两块形状大小相同的垂钓鱼塘,它们的面积之和为5750平方米,两块垂钓鱼塘之间及周边留有宽度相等的垂钓通道,则垂钓通道的宽度为()A.4.5m B.5m C.5.5m D.6m3.已知方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,则()()()()2213313230.951x yx y⎧-=++⎪⎨-=-+⎪⎩的解是()A.8.31.2xy=⎧⎨=⎩B.10.32.2xy=⎧⎨=⎩C.6.32.2xy=⎧⎨=⎩D.10.30.2xy=⎧⎨=⎩4.若关于x,y的二元一次方程组2245x y kx y k+=⎧⎨-=⎩的解满足1x y-=,则k的值是()A.1B.2C.3D.45.方程组233730x yx zx y z+=⎧⎪-=⎨⎪-+=⎩的解为()A .211x y z =⎧⎪=⎨⎪=-⎩B .211x y z =⎧⎪=-⎨⎪=⎩C .211x y z =⎧⎪=-⎨⎪=-⎩D .211x y z =⎧⎪=⎨⎪=⎩6.已知21x y =⎧⎨=-⎩是方程23x y m -=的解,则m 的值为( ) A .7 B .7- C .1 D .1-7.若关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是23x y =⎧⎨=-⎩,则关于m ,n 的二元一次方程组()()()()111222a m n b m n c a m n b m n c ⎧-++=⎪⎨-++=⎪⎩的解是( ) A .1252m n ⎧=-⎪⎪⎨⎪=-⎪⎩ B .1252m n ⎧=-⎪⎪⎨⎪=⎪⎩ C .5212m n ⎧=-⎪⎪⎨⎪=-⎪⎩ D .5212m n ⎧=⎪⎪⎨⎪=⎪⎩8.若等式||2(1)3m x m y +-=,是关于x ,y 的二元一次方程,则m 的值是( )A .1±B .1C .1-D .2±9.已知关于x ,y 的二元一次方程组=12+=3ax by ax by -⎧⎨⎩的解为=1=1x y ⎧⎨-⎩,那么代数式2a b -的值为( ) A .-2 B .2 C .3 D .- 310.若关于x 、y 的二元一次方程组3749ax y x y +=⎧⎨+=⎩与5358x y x by -+=⎧⎨+=⎩) A .1 B .1± C .2 D .2±11.若关于x ,y 的方程组()()()()111222a x y b x y c a x y b x y c ⎧+--=⎪⎨+--=⎪⎩,解为20222023x y =⎧⎨=⎩.则关于x ,y 的方程组1112221515a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩的解是( )A .80915x y =⎧⎪⎨=⎪⎩B .40451x y =⎧⎨=⎩C .20222023x y =⎧⎨=⎩D .2022520235x y ⎧=⎪⎪⎨⎪=-⎪⎩12.已知21x y =⎧⎨=-⎩是关于x ,y 的二元一次方程组522ax by bx ay +=-⎧⎨-=⎩的解,则a +b 的值为( ) A .﹣5 B .﹣1 C .3 D .7二、填空题(本大题共8小题,每小题3分,共24分)13.若实数m ,n 满足5240m n m n --+-=∣∣,则3m n +=__________.14.若关于x ,y 的二元一次方程组9876x y m x y n -=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()()()91827162a b m a b n ⎧--+=⎪⎨-++=⎪⎩的解为_______. 15.已知x ,y ,z 满足438324x y z +++==,且212x y z -+=,则x =____________. 16.若关于x ,y 的方程()12m m x y --=是一个二元一次方程,则m 的值为_____________.17.若方程组2439x y ax y -=⎧⎨+=⎩无解,则a 的值为________ 18.重庆某大学对重庆某村实施“技术助农”.该村种植有A 、B 、C 三种经济作物,助农前,A ,B ,C 三种作物亩数比例为2:5:3;助农后,三种经济作物的亩数都得以增加,其中B 作物增加的亩数占总增加亩数的16.助农前,C 作物的亩产量是B 作物亩产量的2.5倍,A ,B 两种作物的亩产量之和恰好是C 作物的亩产量;助农后,A ,B 两种作物的亩产量分别增加了13和12,A ,B 两种作物的亩产量之和恰好仍是C 作物的亩产量.若助农后,B 作物的产量比助农前A ,B 产量之和多332,而C 作物的产量比助农前A ,B ,C 三种作物产量的总和还多5%,则助农前后A 作物的产量之比为__________.19.已知关于x ,y 的二元一次方程组21346x y a x y a +=-+⎧⎨-=+⎩(a 是常数),若不论a 取什么实数,代数式kx y -(k 是常数)的值始终不变,则k =______.20.已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是49x y =⎧⎨=⎩,则与方程组111222234234a x b y c a x b y c +=⎧⎨+=''''⎩ 有关的2x y ''-的值为_____.三、解答题(本大题共5小题,每小题8分,共40分)21.解下列二元一次方程组:(1)=23+10=0y x x y -⎧⎨⎩(2)2+3=53+2=5x y x y -⎧⎨⎩22.“冰墩墩”和“雪容融”分别是北京2022年冬奥会和冬残奥会的吉祥物.某冬奥官方特许商品零售店购进了一批同一型号的“冰墩墩”和“雪容融”玩具,连续两个月的销售情况如表:求此款“冰墩墩”和“雪容融”玩具的零售价格.23.解方程组:(1)231915x yx y+=-⎧⎨=-⎩(用代入消元法)(2)49231x yx y-=⎧⎨+=⎩(用加减消元法)24.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)请自行写出一个除上述你方程外的“和解方程”:______(3)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.25.已知一个三位数=m abc,如果它的百位数字加上2与十位数字加上5的和等于个位数字加上8,则称这个三位数叫“258数”.如:245,∵()()22455813+++=+=,∵245是“258数”;437,∵()()423514+++= 7815+=,14≠15,∵437不是“258数”.(1)请根据材料判断526和738是不是“258数”,并说明理由;(2)若“258数”=m abc (19a b c ≤<<≤,且a ,b 、c 均为整数)能被3整除,请求出所有符合题意的m 的值.参考答案:1.A2.B3.D4.A5.C6.A7.A8.C9.B10.C11.A12.B13.714.20a b =⎧⎨=⎩ 15.1416.-117.-618.90:27119.-120.16-21.(1)24x y =⎧⎨=⎩;(2)55x y =-⎧⎨=⎩.22.此款“冰墩墩”玩具的零售价格为118元,“雪容融”玩具的零售价格为75元23.(1)143x y =-⎧⎨=⎩ (2)21x y =⎧⎨=-⎩24.(1)92m=-(2)1643x(答案不唯一)(3)23,3m n=-=-25.(1)526是“258数”,738不是“258数”,(2)267、627、357、537。
新人教版初中数学七年级下册第8章《二元一次方程组》检测试卷(含答案)
人教版数学七年级下册第八章《二元一次方程组》测试题一、选择题(每小题只有一个正确答案)1.下列各方程组中,属于二元一次方程组的是( )A. B. C. D.2.下列各组数中,方程2x-y=3和3x+4y=10的公共解是( )A. B. C. D.3.用代入法解方程组有以下步骤:①由(1),得y=(3);②由(3)代入(1),得7x-2×=3;③整理得3=3;④∴x可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是( )A.① B.② C.③ D.④4.一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则x,y的值为( )A. B. C. D.5.|3x-y-4|+|4x+y-3|=0,那么x与y的值分别为( )A. B. C. D.6.从方程组中求x与y的关系是( )A.x+y=-1 B.x+y=1 C. 2x-y=7 D.x+y=97.如果ax+2y=1是关于x,y的二元一次方程,那么a的值应满足( )A.a是有理数 B.a≠0 C.a=0 D.a是正有理数8.已知甲数的60%加乙数的80%等于这两个数的和的72%,若设甲数为x,乙数为y,则下列方程中符合题意的是( )A. 60%x+80%y=x+72%y B. 60%x+80%y=60%x+yC. 60%x+80%y=72%(x+y) D. 60%x+80%y=x+y9.下列各组数中,不是方程2x+y=10的解是( )A .B .C .D .10.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm2C .600 cm 2D .4 000 cm 211.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨,3辆大车与5辆小车一次可以运货为(单位:吨)( ) A . 25.5 B . 24.5 C . 26.5 D . 27.512.一文具店的装订机的价格比文具盒的价格的3倍少1元,购买2把装订机和6个文具盒共需70元,问装订机与文具盒价格各是多少元?设文具盒的价格为x 元,装订机的价格为y 元,依题意可列方程组为( )A .B .C .D . 二、填空题 13.在括号内填写一个二元一次方程,使其与二元一次方程5x -2y =1组成方程组的解是 你所填写的方程为______________.14.已知方程3x -2y =5的一个解中,y 的值比x 的值大1,则这个方程的这个解是________. 15.已知方程组则x -y =______,x +y =______.16.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,所列方程组为______. 17.已知方程2x 2n -1-3y 3m -n +1=0是二元一次方程,则m =______,n =______. 三、解答题18、用代入消元法解方程组 20.用加减消元法解方程组⎩⎨⎧-=-=+54032y x y x 3410,490;x y x y +=⎧⎨+-=⎩19、用适当的方法解下列方程组(1)20328x y x y -=⎧⎨+=⎩ (2)23533x yx y -⎧=⎪⎪⎨+⎪=⎪⎩20.甲、乙两人共同解方程组⎩⎨⎧-=-=+ ②by x ①y ax 24155,由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧-=-=13y x人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组(1) 一、选择题(每小题3分,共42分)请将正确答案的代号填涂在答题卡上 1.下列各数中,既是分数又是负数的是( ) A .1B .﹣3C .0D .2.252.﹣2019的相反数是( ) A .﹣2019B .2019C .﹣D .3.“2017中国企业跨国投资研讨会”于11月17日在长沙召开,共同聚焦“‘一带一路’跨国投资与服务新时代”,该研讨会表示,在2016年,中国企业对7961家境外企业累计实现投资约170100000000美元,170100000000用科学记数法可表示为( ) A .1.701×1011B .1.701×1010C .17.01×1010D .170.1×1094.下列各组数中,互为倒数的是( ) A .2与﹣2B .﹣与C .﹣1与(﹣1)2016D .﹣与﹣5.计算﹣100÷10×,结果正确的是( ) A .﹣100B .100C .1D .﹣16.下列说法正确的是()A.整式就是多项式B.﹣的系数是C.π是单项式D.x4+2x3是七次二项式7.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx28.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=69.下列运用等式的性质,变形正确的是()A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若3x=2,则x=D.若a=b,则a﹣c=b﹣c10.若|a+3|+(b﹣2)2=0,则a b的值为()A.﹣6B.﹣9C.9D.611.多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣412.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)13.有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A.(l﹣2t)t B.(l﹣t)t C.(﹣t)t D.(l﹣)t 14.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.4二、填空题(每小题3分,共15分)15.临沂某天的最高温度为8℃,最大温差11℃,该天最低温度是.16.在数轴上,点A表示的数是5,若点B与A点之间距离是8,则点B表示的数是.17.若2a﹣3b2=5,则2018﹣4a+6b2的值是.18.关于x的方程mx+4=3x﹣5的解是x=1,则m=.19.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由个基础图形组成.三、解答题(本题共7个小题,共计63分)20.(12分)计算下列各题:(1)(﹣5)﹣(﹣6)+(+1)(2)﹣12×(﹣+)(3)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2]21.(6分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a ﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.22.(12分)先化简,再求值.(1)﹣x2+5x+4﹣7x﹣4+2x2,其中x=﹣2.(2)m﹣2(m﹣n2)+(﹣m+n2),其中m=﹣2,n=﹣23.(7分)2017年12月,旗团委号召各校组织开展捐赠衣物的“暖冬行动”.某校七年级六个班参加了这次捐赠活动,若每班捐赠衣物以100件为基准,超过的件数用正数表示,不足的件数用负数表示,记录如下:(1)捐赠衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐赠多少件衣物?该校七年级学生平均每人捐赠多少件衣物?24.(7分)为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L,警车出发时,油箱中有油20L,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.25.(7分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为1,2,第3个正方形的边长=;第5个正方形的边长=;(2)如果标注1、2的正方形边长分别为x,y,第10个正方形的边长=.(用含x、y的代数式表示)26.(12分)开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.2018-2019学年山东省临沂市临沭县七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)请将正确答案的代号填涂在答题卡上1.下列各数中,既是分数又是负数的是()A.1B.﹣3C.0D.2.25【分析】根据有理数的分类即可求出答案.【解答】解:既是分数又是负数的是故选:B.【点评】本题考查有理数的分类,解题的关键是正确理解有理数的分类,本题属于基础题型.2.﹣2019的相反数是()A.﹣2019B.2019C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2019的相反数是:2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.3.“2017中国企业跨国投资研讨会”于11月17日在长沙召开,共同聚焦“‘一带一路’跨国投资与服务新时代”,该研讨会表示,在2016年,中国企业对7961家境外企业累计实现投资约170100000000美元,170100000000用科学记数法可表示为()A.1.701×1011B.1.701×1010C.17.01×1010D.170.1×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:170100000000=1.701×1011.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各组数中,互为倒数的是()A.2与﹣2B.﹣与C.﹣1与(﹣1)2016D.﹣与﹣【分析】根据倒数的定义,可得答案.【解答】解:﹣与﹣互为倒数,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.5.计算﹣100÷10×,结果正确的是()A.﹣100B.100C.1D.﹣1【分析】直接利用有理数的乘除运算法则计算得出答案.【解答】解:﹣100÷10×=﹣10×=﹣1.故选:D.【点评】此题主要考查了有理数的乘除运算,正确掌握运算法则是解题关键.6.下列说法正确的是()A.整式就是多项式B.﹣的系数是C.π是单项式D.x4+2x3是七次二项式【分析】根据整式的定义,单项式的系数,单项式的定义以及多项式概念对各选项分析判断即可得解.【解答】解:A、整式就是多项式,错误,因为单项式和多项式统称为整式,故本选项错误;B、﹣的系数是﹣,故本选项错误;C、π是单项式,故本选项正确;D、x4+2x3是四次二项式,故本选项错误.故选:C.【点评】本题考查了多项式,单项式,熟练掌握相关概念是解题的关键.7.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx2【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、所含字母相同且相同字母的指数也相同,故B正确;C、所含字母相同且相同字母的指数也相同,故C正确;D、所含字母相同且相同字母的指数也相同,故D正确;故选:A.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.8.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=6【分析】根据合并同类项的法则解答即可.【解答】解:A、3a与2b不是同类项,错误;B、3x2y﹣yx2=2x2y,正确;C、5x+x=6x,错误;D、6x﹣x=5x,错误;故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.9.下列运用等式的性质,变形正确的是()A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若3x=2,则x=D.若a=b,则a﹣c=b﹣c【分析】根据等式的性质解答.【解答】解:A、当x=0时,该等式的变形不成立,故本选项错误;B、若2x=2a﹣b,则x=a﹣b,故本选项错误;C、在等式3x=2的两边同时除以2,等式仍成立,即x=,故本选项错误;D、在等式a=b的两边同时减去c,等式仍成立,即a﹣c=b﹣c,故本选项正确.故选:D.【点评】考查的是等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.10.若|a+3|+(b﹣2)2=0,则a b的值为()A.﹣6B.﹣9C.9D.6【分析】根据非负数的性质列式求出ab的值,然后再代入代数式进行计算.【解答】解:根据题意得,a+3=0,b﹣2=0,解得a=﹣3,b=2,∴a b=(﹣3)2=9.故选:C.【点评】本题主要考查了非负数的性质,几个非负数相加等于0,则每一个算式都等于0.11.多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣4【分析】先把两多项式的二次项相加,令x的二次项为0即可求出m的值.【解答】解:∵多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含x的二次项,∴﹣8x2+2mx2=(2m﹣8)x2,∴2m﹣8=0,解得m=4.故选:C.【点评】本题考查的是整式的加减,根据题意把两多项式的二次项相加得到关于m的方程是解答此题的关键.12.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)【分析】先提价的价格是原价+20,再降价的价格是降价前的1﹣15%,得出此时价格即可.【解答】解:根据题意可得:(1﹣15%)(x+20),故选:D.【点评】本题考查了列代数式,解答本题的关键是读懂题意,列出代数式.13.有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A.(l﹣2t)t B.(l﹣t)t C.(﹣t)t D.(l﹣)t 【分析】表示出长,利用长方形的面积列出算式即可.【解答】解:园子的面积为t(l﹣2t).故选:A.【点评】此题考查列代数式,利用长方形的面积计算方法是解决问题的关键.14.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.4【分析】将x=2代入,然后依据程序进行计算,依据计算结果得到其中的规律,然后依据规律求解即可.【解答】解:当x=2时,第一次输出结果=×2=1;第二次输出结果=1+3=4;第三次输出结果=4×=2,;第四次输出结果=×2=1,…2018÷3=672…2.所以第2018次得到的结果为4.故选:D.【点评】本题主要考查的是求代数式的值,熟练掌握相关方法是解题的关键.二、填空题(每小题3分,共15分)15.临沂某天的最高温度为8℃,最大温差11℃,该天最低温度是﹣3℃.【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:∵临沂某天的最高温度为8℃,最大温差11℃,∴该天最低温度是:8﹣11=﹣3(℃).故答案为:﹣3℃【点评】此题主要考查了有理数的加减,正确掌握运算法则是解题关键.16.在数轴上,点A表示的数是5,若点B与A点之间距离是8,则点B表示的数是﹣3或13.【分析】分点B在点A的左边与右边两种情况讨论求解.【解答】解:①当点B在点A的左边时,5﹣8=﹣3,②当点B在点A的右边时,5+8=13,所以点B表示的数是﹣3或13.故答案为:﹣3或13.【点评】本题考查了数轴,注意分点B在点A的左右两边两种情况讨论.17.若2a﹣3b2=5,则2018﹣4a+6b2的值是2008.【分析】首先把2018﹣4a+6b2化成2018﹣2(2a﹣3b2),然后把2a﹣3b2=5代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a﹣3b2=5,∴2018﹣4a+6b2=2018﹣2(2a﹣3b2)=2018﹣2×5=2018﹣10=2008故答案为:2008.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.关于x的方程mx+4=3x﹣5的解是x=1,则m=﹣6.【分析】把x=1代入方程mx+4=3x﹣5,得到关于m的一元一次方程,解之即可.【解答】解:把x=1代入方程mx+4=3x﹣5得:m+4=3﹣5,解得:m=﹣6,故答案为:﹣6.【点评】本题考查了一元一次方程的解,正确掌握代入法是解题的关键.19.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由(3n+1)个基础图形组成.【分析】观察图形很容易看出每加一个图案就增加三个基础图形,以此类推,便可求出结果.【解答】解:第一个图案基础图形的个数:3+1=4;第二个图案基础图形的个数:3×2+1=7;第三个图案基础图形的个数:3×3+1=10;…∴第n个图案基础图形的个数就应该为:(3n+1).故答案为:(3n+1).【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(本题共7个小题,共计63分)20.(12分)计算下列各题:(1)(﹣5)﹣(﹣6)+(+1)(2)﹣12×(﹣+)(3)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2]【分析】(1)运用加减运算律和运算法则计算可得;(2)运用乘法分配律计算可得;(3)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=(﹣5+1)+6=﹣4+6=2;(2)原式=(﹣12)×﹣(﹣12)×+(﹣12)×=﹣4+3﹣6=﹣7;(3)原式=﹣1﹣××(3﹣9)=﹣1﹣×(﹣6)=﹣1+1=0.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则及其运算律.21.(6分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a ﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.【分析】(1)根据新定义计算可得;(2)根据数轴得出a<0<b且|a|>|b|,从而得出a+b<0、a﹣b<0,再根据绝对值性质解答可得.【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算法则和运算顺序及绝对值的性质.22.(12分)先化简,再求值.(1)﹣x2+5x+4﹣7x﹣4+2x2,其中x=﹣2.(2)m﹣2(m﹣n2)+(﹣m+n2),其中m=﹣2,n=﹣【分析】(1)直接合并同类项,进而计算得出答案;(2)直接去括号进而合并同类项,再把已知代入求出答案.【解答】解:(1)﹣x2+5x+4﹣7x﹣4+2x2=x2﹣2x,当x=﹣2,原式=8;(2)原式=﹣3m+n2,当m=﹣2,n=﹣,原式=6+=.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.23.(7分)2017年12月,旗团委号召各校组织开展捐赠衣物的“暖冬行动”.某校七年级六个班参加了这次捐赠活动,若每班捐赠衣物以100件为基准,超过的件数用正数表示,不足的件数用负数表示,记录如下:(1)捐赠衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐赠多少件衣物?该校七年级学生平均每人捐赠多少件衣物?【分析】(1)求出捐赠衣物最多的班额,捐赠衣物最少的班额,然后相减即可;(3)用标准捐赠衣物数加上记录的各班捐赠衣物数的和,计算即可得解.【解答】解:(1)19﹣(﹣7)=26,答:捐赠衣物最多的班比最少的班多26件;(2)18﹣3+19+14+9﹣7+6×100=50+600=650,答:该校七年级学生共捐赠650件衣物,平均每人捐赠2.6件衣物.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.(7分)为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L,警车出发时,油箱中有油20L,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.【分析】(1)把行驶记录求和,若结果为正,则B地在出发地的正东,若结果为负,再B地再出发点的正西;(2)计算各个记录的绝对值的和,计算出耗油量,根据邮箱里的油量判断是否需要加油,计算至少需要加多少升油.【解答】解:(1)18﹣19﹣13+15+10﹣14+19﹣20=(18+15+10)﹣(13+14+20)+(19﹣19)=43﹣47=﹣4即B地在A地的西方,距A地4千米.(2)因为(18+19+13+15+10+14+19+20)×0.2=128×0.2=25.6(L)因为25.6>20,所以途中至少加油5.6L答:途中警车需加油,至少需加油5.6L.【点评】本题考查了正负数的意义和有理数的混合运算,解决本题的关键是根据题意列出代数式,并能根据计算结果作答.25.(7分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为1,2,第3个正方形的边长=3;第5个正方形的边长=7;(2)如果标注1、2的正方形边长分别为x,y,第10个正方形的边长=3y﹣3x.(用含x、y的代数式表示)【分析】(1)根据正方形的性质即可解决问题;(2)根据各个正方形的边的和差关系分别表示出第(3)(4)(5)(6)(7),第10个正方形的边长=第7个正方形的边长﹣第一个正方形的边长﹣第3个正方形的边长;【解答】解:(1)观察图象可知第3个正方形的边长=3;第5个正方形的边长=7;故答案为3,7;(2):(1)第(3)个正方形的边长是:x+y,则第(4)个正方形的边长是:x+2y;第(5)个正方形的边长是:x+2y+y=x+3y;第(6)个正方形的边长是:(x+3y)+(y﹣x)=4y;第(7)个正方形的边长是:4y﹣x;第(10)个正方形的边长是:(4y﹣x)﹣x﹣(x+y)=3y﹣3x;故答案为3y﹣3x.【点评】本题考查了列代数式,正确理解各个正方形的边之间的和差关系是关键.26.(12分)开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x 的式子表示); (2)若小敏按方案二购买,需付款多少元(用含x 的式子表示); (3)当x =10时,通过计算说明此时按哪种方案购买较为合算;(4)当x =10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.【分析】(1)根据题意列出算式即可;(2)根据题意列出算式即可;(3)把x =10分别代入求出结果,即可得出答案;(4)先在方案一买6把扫帚,再在方案二买4块抹布即可.【解答】解:(1)∵方案一:买一把扫帚送一块抹布,∴小敏需要购买扫帚6把,抹布x 块(x >6),若小敏按方案一购买,需付款25×6+5(x ﹣6)=(5x +120)元;(2)∵方案二:扫帚和抹布都按定价的90%付款,∴小敏需要购买扫帚6把,抹布x 块(x >6),若小敏按方案二购买,需付款25×6×0.9+5x •0.9=(4.5x +135)元;(3)方案一需:5×10+120=170元,方案二需4.5×10+135=180元, 故方案一划算;(4)其中6把扫帚6块抹布按方案一买,剩下4块抹布按方案二买,共需168元.【点评】本题考查了求代数式的值,列代数式的应用的应用,能正确根据题意列出算式是解此题的关键.人教版七年级下册 第八章二元一次方程组单元试题一、选择题(共10小题,每小题3分,共30分)1.二元一次方程组⎩⎨⎧ x +y =7,3x -y =5的解是( ) A.⎩⎨⎧ x =4,y =3B .⎩⎨⎧ x =5,y =2 C .⎩⎨⎧ x =3,y =4 D .⎩⎨⎧ x =-2,y =92.已知方程组⎩⎨⎧ 2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .33.下列各方程中,是二元一次方程的是( )A.x 3-2y=y +5x B .3x +1=2xy C .15x =y 2+1 D .x +y =14.已知x 2m -1+3y 4-2n =-7是关于x ,y 的二元一次方程,则m ,n 的值是( ) A.⎩⎨⎧ m =2,n =1B .⎩⎨⎧ m =1,n =-32 C .⎩⎨⎧ m =1,n =52D .⎩⎨⎧ m =1,n =325.方程kx +3y =5有一组解是⎩⎨⎧ x =2,y =1,则k 的值是( )A .1B .-1C .0D .2 6.二元一次方程x +2y =10的所有正整数解有( )A .1个B .2个C .3个D .4个7.“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,答错了y 道题(不答视为答错),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是( )A.⎩⎨⎧ x +y =60,x -7y =4B .⎩⎨⎧ x +y =60,y -7x =4C .⎩⎨⎧ x =60-y ,x =7y -4D .⎩⎨⎧ y =60-x ,y =7x -48.关于x ,y 的方程组⎩⎨⎧ x +py =0,x +y =3的解是⎩⎨⎧ x =1,y =■,其中y 的值被盖住了,不过仍能求出p ,则p 的值是( )A .-12B .12C .-14D .149.若|x +y -5|与(x -y -1)2互为相反数,则x 2-y 2的值为( )A .-5B .5C .13D .1510.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为( )A.⎩⎨⎧ 8x -3=y ,7x +4=yB .⎩⎨⎧ 8x +3=y ,7x -4=yC .⎩⎨⎧ y -8x =3,y -7x =4D .⎩⎨⎧ 8x -y =3,7x -y =4二、填空题(共5小题,每小题4分,共20分)11.方程组⎩⎨⎧ x +y =1,3x -y =3的解是 .12.“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需 元.13.已知关于x ,y 的二元一次方程组⎩⎨⎧ 2x +y =k ,x +2y =-1的解互为相反。
新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案解析)
人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组一、填空题(本大题共8小题,共32分)1.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.2.方程mx -2y=x+5是二元一次方程时,则m________.3.若2x 2a-5b +y a -3b =0是二元一次方程,则a=______,b=______. 4.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+ay -b=7的一个解,则代数式(x+y )2-1•的值是_________5.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________. 6.已知都是ax+by=7的解,则a=_______,b=______.7.甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程为______________.8.在等式y =kx +b 中,当x =1时,y =1;当x =2时,y =4,则k =__________,b =__________.二、选择题(本大题共8小题,每小题4分,共32分。
)9.表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y xD 、⎩⎨⎧+=-+=222,11xy x x y x 10.已知2 x b +5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为( )A .2B .-2C .1D .-1 11.若关于x 、y 的方程组⎩⎨⎧=-=+k y x k y x 73的解满足方程2x +3y =6,那么k 的值为( ) A .-23 B .23 C .-32 D .-23 12.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm 2C .600 cm 2D .4 000 cm 213.方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、114.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =m ,x -y =4m 的解为3x +2y =14的一个解,那么m 的值为( ). A .1 B .-1 C .2 D .-215.六年前,A 的年龄是B 的年龄的3倍,现在A 的年龄是B 的年龄的2倍,A 现在的年龄是( ).A .12岁B .18岁C .24岁D .30岁16.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,其中属于二元一次方程组的个数为( )A .1B .2C .3D .4三、解答题(本大题共6小题,共36分)17.(1)⎩⎨⎧=+=-5253y x y x (2) ⎩⎨⎧=--=523x y x y(3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 45133218.若12x y =⎧⎨=⎩是关于x ,y 的二元一次方程3x -y +a=0的一个解,求a 的值.19.小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组31122x yx y+=⎧⎨+=-⎩中第一个方程y的系数和第二个方程x的系数看不到了,现在已知小丽的结果是12xy=⎧⎨=⎩,你能由此求出原来的方程组吗?20.某纸品加工厂为了制作甲、乙两种无盖的长方体小盒,利用边角余料裁出正方形和长方形两种硬纸片,长方形的宽和正方形的边长相等,现将150张正方形硬纸片和300张长方形硬纸片全部用来制作这两种小盒,可以制作甲、乙两种小盒各多少个人教版七年级下册第8章二元一次方程组综合素质检测卷(解析版)人教版七年级下册第八章二元一次方程组单元检测题综合素质检测卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
最新人教版初中数学七年级下册第8章《二元一次方程组》测试题(含答案)
人教版七年级数学下册第八章 二元一次方程组单元检测试题(有答案)一、选择题1 . 下列各方程组中,属于二元一次方程组的是( )A .B .C .D .2 .将方程 2 x + y =3 写成用含 x 的式子表示 y 的形式,正确的是 ( ) A . y = 2 x - 3 B . y = 3 - 2 x C . x = 2y-3D . x =3-2y3 .若方程组 的解为 ,则被 “☆” 、 “ K ” 遮住的两个数分别是 ( )A . 10 , 3B . 3 , 10C . 4 , 10D . 10 , 44 .已知 x , y 满足方程组 则 x + y 的值为 ( )A . 9B . 7C . 5D . 35 .已知甲、乙两数的和是 7 ,甲数是乙数的 2 倍,设甲数为 x ,乙数为 y ,根据题意,列方程组正确的是 ( )A. B. C. D.6 .按如图所示的运算程序,能使输出结果为 5 的 x , y 的值是 ( )A . x = 5 , y =- 5B . x =- 1 , y = 1C . x = 2 , y = 1D . x = 3 , y = 27.若2310x y z ++=,43215x y z ++=,则x y z ++的值为( ) A .5 B .4 C .3 D .28.若方程组431(1)3x yax a y+=⎧⎨+-=⎩的解x与y相等,则a的值等于()A.4 B.10 C.11 D.129. 两个水池共储水40吨,如果甲池注进水4吨,乙池注进水8吨,甲池水的吨数就与乙池水的吨数相等.甲、乙水池原来各储水的吨数是()A.甲池21吨,乙池19吨B.甲池22吨,乙池18吨C. 甲池23吨,乙池17吨D.甲池24吨,乙池16吨10.某校七年级(2)班40表格中捐款2元和32元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( )A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩二、填空题1.方程组的解是________ .2.已知关于x ,y 的二元一次方程2 x +■ y =7 中,y 的系数已经模糊不清,但已知是这个方程的一个解,那么原方程是________ .3.某旅行社组织甲、乙两个旅游团分别到庐山、婺源旅游,已知这两个旅游团共有55 人,甲旅游团的人数比乙旅游团的人数的2 倍少5 人,问甲、乙两个旅游团各有多少人?设甲、乙两个旅游团分别有x 人、y 人,根据题意可列方程组为__________ .4.已知+( x +2 y -5) 2 =0 ,则x +y =________ .5.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票________张,儿童票___ _ 张.三、计算题1.解方程组:(1) (2)2.已知与都是方程kx -b =y 的解,求k 和b 的值.3.已知方程组小马由于看错了方程① 中的m ,得到方程组的解为小虎由于看错了方程② 中的n ,得到方程组的解为请你根据上述条件求原方程组的解.4.请你根据王老师所给的内容,完成下列各小题.(1) 若x =-5 ,2 ◎ 4 =-18 ,求y 的值;(2) 若1 ◎ 1 =8 ,4 ◎ 2 =20 ,求x ,y 的值.5. “ 六一” 儿童节有一投球入盆的游戏,深受同学们的喜爱,游戏规则如下:如图,在一大盆里放一小茶盅( 叫幸运区) 和小茶盅外大盆内( 环形区) 分别得不同的分数,投到大盆外不得分;每人各投 6 个球,总得分不低于30 分得奖券一张.现统计小刚、小明、小红三人的得分情况如下图.(1) 每投中“ 幸运区” 和“ 环形区” 一次,分别得多少分?(2) 根据这种得分规则,小红能否得到一张奖券?请说明理由.6.数学方法:解方程组若设x +y =A ,x -y =B ,则原方程组可变形为解方程组得所以解方程组得我们把某个式子看成一个整体,用一个字母去代替它,这种解方程组的方法叫作换元法.(1) 请用这种方法解方程组(2) 已知关于x ,y 的二元一次方程组的解为那么关于m ,n 的二元一次方程组的解为________ ;(3) 已知关于x ,y 的二元一次方程组的解为则关于x ,y 的方程组的解为________ .答案与解析一、选择题。
人教版七年级下册数学《第8章 二元一次方程组》单元测试卷01试卷含答案
人教版七年级下册数学《第八章二元一次方程组》单元测试题一、单选题1.二元一次方程2x+y=5的正整数解有()A.一组B.2组C.3组D.无数组2.下列方程组中,是二元一次方程组的是()A.4237x yx y+=⎧⎨+=⎩B.2311546a bb c-=⎧⎨-=⎩C.292xy x⎧=⎨=⎩D.284x yx y+=⎧⎨-=⎩3.用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣①B.①×(﹣3)﹣①C.①×(﹣2)+①D.①﹣①×34.方程组33814x yx y-=⎧⎨-=⎩的解为A.12xy=-⎧⎨=⎩B.12xy=⎧⎨=-⎩C.21xy=-⎧⎨=⎩D.21xy=⎧⎨=-⎩5.若关于x,y的方程组10,20x aybx y a++=⎧⎨-+=⎩没有实数解,则()A.ab=-2 B.ab=-2且a≠1 C.ab≠-2 D.ab=-2且a≠26.若|321|0x y--=,则x,y的值为()A.14xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.2xy=⎧⎨=⎩D.11xy=⎧⎨=⎩7.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,列方程组正确的是()A.523220x yx y+=⎧⎨+=⎩B.522320x yx y+=⎧⎨+=⎩C.202352x yx y+=⎧⎨+=⎩D.203252x yx y+=⎧⎨+=⎩8.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A .5152x y x y =+⎧⎪⎨=-⎪⎩B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y ==9.已知一个两位数,十位上的数字x 比个位上的数字y 大1,若互换个位与十位数字的位置,得到的新数比原数小9,求这个两位数所列出的方程组中,正确的是( )A .1()()9x y x y y x -=⎧⎨+++=⎩B .1109x y x y y x =+⎧⎨+=++⎩C .110109x y x y y x +=⎧⎨+=++⎩D .110109x y x y y x =+⎧⎨+=++⎩10.方程组23x y x y +=⎧⎨+=⎩■的解为2x y =⎧⎨=⎩■,则被遮盖的前后两个数分别为( )A .1、2B .1、5C .5、1D .2、411.已知=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,则2m n -的算术平方根为( )A .±2BC .2D .412.已知关于x 、y 的方程组22331x y kx y k +=⎧⎨+=-⎩以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;①存在实数k ,使得0x y +=;①当1y x ->-时,1k >;①不论k 取什么实数,3x y +的值始终不变,其中正确的是( ) A .①①① B .①①①C .①①①D .①①①二、填空题13.已知二元一次方程组2728x y x y +=⎧⎨+=⎩,则x ﹣y =_____,x +y =_____.14.若231043215x y z x y z ++=++=,,则x y z ++的值为_____.15.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.16.若关于x ,y 的二元一次方程组322218x y x y m +=⎧⎨+=-⎩的解x 、y 互为相反数,则点()P m y ,在第_______象限.17.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是6{8x y ==, 则方程组111222345{345a x b y c a x b y c +=+=的解是_________. 三、解答题18.解方程组:(1)20328x yx y-=+=⎧⎨⎩;(2)2+13-2-9x yx y=⎧⎨=⎩;(3)237342x yx y+=⎧⎨-=⎩;(4)233210+1-1yxxy+=⎧=⎪⎨⎪⎩.19.已知关于x,y的方程组54522x yax by+=⎧⎨+=-⎩与2180x yax by-=⎧⎨--=⎩有相同的解,求a,b的值.20.甲、乙两名同学在解方程组5{213mx yx ny+=-=时,甲解题时看错了m,解得7{22xy==-;乙解题时看错了n,解得3{7xy==-.请你根据以上两种结果,求出原方程组的正确解.21.已知2辆A型车和1辆B型车载满货物一次可运货10吨.用1辆A型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆和B型车b辆,一次运完,且每辆车都满载货物.根据以上信息解答下列问题:(1)1辆A型车和1辆B型车载满货物一次分别可运货物多少吨?(2)请帮助物流公司设计租车方案.(3)若A型车每辆车租金每次100元,B型车每辆车租金每次120元.请选出最省钱的租车方案,并求出最少的租车费.22.阅读材料:善思考的小军在解方程组2534115x yx y①②+=⎧⎨+=⎩时,采用了一种“整体代入”的解法:解:将方程①变形:4x+10y+y=5,即2(2x+5y)+y=5①;把方程①代入①,得:2×3+y=5,所以y=-1;把y=-1代入①得,x=4,所以方程组的解为41 xy=⎧⎨=-⎩.请你模仿小军的“整体代入”法解方程组325 9419 x yx y-=⎧⎨-=⎩①②23.已知关于x,y的方程组260250 x yx y mx+-=⎧⎨-++=⎩(1)请直接写出方程x+2y-6=0的所有正整数解;(2)若方程组的解满足x+y=0,求m的值;(3)无论实数m取何值时,方程x-2y+mx+5=0总有一个固定的解,求出这个解.(4)若方程组的解中x恰为整数,m也为整数,求m的值.参考答案1.B 2.A 3.D 4.D 5.A 6.D 7.D 8.A 9.D 10.C 11.C 12.B 13.-1 5 14.5 15.25 16.四17.1010x y =⎧⎨=⎩解析:根据题意,把方程组的解6{8x y ==代入111222{a x b y c a x b y c +=+=,可得11122268{68a b c a b c +=+=①②,把①和①分别乘以5可得11122230405{30405a b c a b c +=+=,和所求方程组111222345{345a x b y c a x b y c +=+=比较,可知1112223104105{3104105a b c a b c ⨯+⨯=⨯+⨯=,因此方程组的解为10{10x y ==. 18.(1)21x y ⎧⎨⎩==;(2)13x y ⎩-⎧⎨==;(3)21x y ⎧⎨⎩==;(4)312x y ⎧⎪⎨⎪⎩==;解析:(1)①+①得,4x=8, 解得,x=2,把x=2代入①得,y=1, 即方程组的解为21x y ⎧⎨⎩== ;(2)①×2+①,得7x=-7, 解,得x=-1把x=-1代入①,得y=3, 即方程组的解为13x y ⎩-⎧⎨==;(3)①×4+①×3得,8x+9x=28+6, 解得x=2把x=2代入①得y=1, 即方程组的解为21x y ⎧⎨⎩== ;(4)原方程组整理得3283210x y x y -+⎧⎨⎩==①+①得6x=18, 解得x=3,①-①得4y=2,解得y=12,即方程组的解为312xy⎧⎪⎨⎪⎩==;19.12ab=⎧⎨=-⎩.解析:由题意可将x+y=5与2x-y=1组成方程组521x yx y+=⎧⎨-=⎩,解得:23xy=⎧⎨=⎩.把23xy=⎧⎨=⎩代入4ax+5by=-22,得:8a+15b=-22.①把23xy=⎧⎨=⎩代入ax-by-8=0,得:2a-3b-8=0.①①与①组成方程组,得:81522 2380a ba b+=-⎧⎨--=⎩,解得:12ab=⎧⎨=-⎩.20.n = 3,m = 4,2 {3 xy==-解析:由题意可知722xy⎧=⎪⎨⎪=-⎩是方程213x ny-=的解,①72(2)132n⨯--=,解得n=3;37xy =⎧⎨=-⎩是方程5mx y+=的解,①375m-=,解得m=4;①原方程组为:452313x yx y+=⎧⎨-=⎩,解此方程组得23xy=⎧⎨=-⎩,①m=4,n=3,原方程组的解为:23 xy=⎧⎨=-⎩.21.(1)1辆A型车载满货物每次可运货物3吨,1辆B型车载满货物一次可运货物4吨.(2) 有三种租车方案:方案一,租用A型车9辆,B型车1辆;方案二,租用A型车5辆,B型车4辆;方案三,租用A型车1辆,B型车7辆.(3)选择方案三最省钱,最少的租车费为940元.解析:(1)设A、B型车都装满货物一次每辆车装x吨、y吨,则210211x yx y+=⎧⎨+=⎩,解得:34xy=⎧⎨=⎩,(2)结合题意和上一问得:3a+4b=31,①a=3143b-,因为a,b都是正整数,①91xy=⎧⎨=⎩或54xy=⎧⎨=⎩或17xy=⎧⎨=⎩,有三种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆;(3)A型车每辆车租金每次100元,B型车每辆车租金每次120元,方案一:9⨯100+1⨯120=1020;方案二:5⨯100+4⨯120=980;方案三:1⨯100+7⨯120=940;①1020>980>940,①方案三最省钱,费用为940元.22.32 xy=⎧⎨=⎩解析:325 9419 x yx y-⎧⎨-⎩=①=②将方程①变形:3(3x-2y)+2y=19.将方程①代入①,得3×5+2y=19.y=2把y=2代入①得x=3①方程组的解为32 xy=⎧⎨=⎩.23.(1)22xy=⎧⎨=⎩,41xy=⎧⎨=⎩(2)m=136-(3)2.5xy=⎧⎨=⎩(4)1-3m=-或解析:(1)22xy=⎧⎨=⎩41xy=⎧⎨=⎩(2)0260x y x y +=⎧⎨+-=⎩ 解得66x y =-⎧⎨=⎩ 把66x y =-⎧⎨=⎩代入250x y mx -++=,解得m=136-(3)02.5x y =⎧⎨=⎩(4)260250x y x y mx +-=⎧⎨-++=⎩①② ①+①得:()2+1m x = 解得12x m=+, ①x 恰为整数,m 也为整数, ①2+m=1或2+m=-1, 解得1-3m =-或。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学七年级下册第八章 二元一次方程组 能力提升检测卷 一.选择题(共10小题) 1.下列方程是二元一次方程的是( )
A.2x-4=x B.x-2y=6 C.x+ 2y=3 D.xy=5 2.以方程组 x+y=102x+y=6的解为坐标的点(x,y)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.在方程组 = = 中,代入消元可得( ) A.3y-1-y=7 B.y-1-y=7 C.3y-3=7 D.3y-3-y=7 4.若2x|k|+(k-1)y=3是关于x,y的二元一次方程,则k的值为( ) A.-1 B.1 C.1或-1 D.0
5.若关于x,y的二元一次方程组 = = 的解为 = = ,则a+4b的值为( )
A.17 B.197 C.1 D.3 6.如果方程x-y=3与下面的方程组成的方程组的解为 = = ,那么这一个方程可以是( )
A.2(x-y)=6y B.3x-4y=16 C.14x+2y=5 D.12x+3y=8 7.某加工厂有工人50名,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺
栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,能使生产出的螺栓和螺母刚好配套?设应安排x人生产螺栓,y人生产螺母,则所列方程组为( )
A. = = B. = =
C. = = D. = =
8.关于x,y的方程组 = = 的解是 = = ,其中y的值被盖住了,不过仍能求出p,
则p的值是( ) A.- 12 B.12 C.- 14 D.14 9.A、B两地相距900km,一列快车以200km/h的速度从A地匀速驶往B地,到达B地后立
刻原路返回A地,一列慢车以75km/h的速度从B地匀速驶往A地.两车同时出发,截止到它们都到达终点时,两车恰好相距200km的次数是( ) A.5 B.4 C.3 D.2 10.如图所示是最近微信朋友圈常被用来“醒醒盹,动动脑”的图片,请你一定认真观察,
动动脑子想一想,图中的?表示什么数( ) A.25 B.15 C.12 D.14
二.填空题(共5小题) 11.把方程5x+y=3改写为用含x的式子表示y的形式是 .
12.已知 = = 是方程ax+by=3的一组解(a≠0,b≠0),任写出一组符合题意的a、b值,
则a= ,b= . 13.已知方程组 = = 和 = = 的解相同,则2m-n= . 14.小明,小丽,小刚到同一个文具店买文具,小明买了2支钢笔,2本作业本,3个文件
袋共花了20元;小丽买了1支钢笔,2个文件袋共花了10元;那么小刚买了5支钢笔,4本作业本,8个文件袋共花了 元. 15.甲乙二人分别从相距20km的A,B两地出发,相向而行.如图是小华绘制的甲乙二人
运动两次的情形,设甲的速度是xkm/h,乙的速度是ykm/h,根据题意所列的方程组是 . 三.解答题(共10小题) 16.解下列方程(组)
(1) = =
(2)
=
=
(3) = =
=
17.已知 = = , = = 都是关于x,y的二元一次方程y=x+b的解,且m-n=b2+2b-4,求b的值.
18.甲、乙两人同求方程ax-by=7的整数解,甲求出一组解为 = = ,而乙把ax-by=7中的
7错看成1,求得一组解为 = = ,试求a、b的值.
19.阅读下列解方程组的部分过程,回答下列问题 解方程组 = ,① = ,②
现有两位同学的解法如下: 解法一;由①,得x=2y+5,③ 把③代入②,得3(2y+5)-2y=3.…… 解法二:①-②,得-2x=2.…… (1)解法一使用的具体方法是,解法二使用的具体方法是,以上两种方法的共同点是. (2)请你任选一种解法,把完整的解题过程写出来
20.某人沿着相同的路径上山、下山共用了2h.如果上山速度为3km/h,下山速度为5km/h,那么这条山路长是多少?
21.我校准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮
球的价格相同),若购买3个足球和2个篮球共需310元.购买1个足球和1个篮球共需130元.求购买足球、篮球的单价各是多少元? 22.【方法体验】已知方程组 = ① = ②求4037x+y的值.小明同学发现
解此方程组代入求值很麻烦!后来他将两个方程直接相加便迅速解决了问题.请你体验一下这种快捷思路,写出具体解题过程: 【方法迁移】根据上面的体验,填空:
已知方程组 = = 则3x+y-z=.
【探究升级】已知方程组 = = 求-2x+y+4z的值.小明凑出 "-2x+y+4z=2﹒(x+2y+3z)+(-1)﹒(4x+3y+2z)=20-15=5“,虽然问题获得解决,但他觉得凑数字
很辛苦!他问数学老师丁老师有没有不用凑数字的方法,丁老师提示道:假设-2x+y+4z=m﹒
(x+2y+3z)+n﹒(4x+3y+2z),对照方程两边各项的系数可列出方程组 = = = ,它的解就
是你凑的数! 根据丁老师的提示,填空: 2x+5y+8z=(x+2y+3z)+(4x+3y+2z) 【巩固运用】已知2a-b+kc=4,且a+3b+2c=-2,当k为时,8a+3b-2c为定值,此定值是.(直接写出结果)
23.《孙子算经》是中国古代重要的数学著作,其中记载:“今有甲、乙二人,持钱各不知
数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的23,那么乙也共有钱48文,问甲,乙二人原来各有多少钱?” 24.【阅读材料】 南京市地铁公司规定:自2019年3月31日起,普通成人持储值卡乘坐地铁出行,每个自然月内,达到规定消费累计金额后的乘次,享受相应的折扣优惠(见图).地铁出行消费累计金额月底清零,次月重新累计.
比如:李老师二月份无储值卡消费260元,若采用新规持储值卡消费,则需付费150×0.95+50×0.9+60×0.8=235.5元. 【解决问题】 甲、乙两个成人二月份无储值卡乘坐地铁消费金额合计300元(甲消费金额超过150元,但不超过200元).若两人采用新规持储值卡消费,则共需付费283.5元.求甲、乙二月份乘坐地铁的消费金额各是多少元? 答案: 1.B 2.B 3.D 4.A 5.D 6.A 7.B 8.A 9.B 10.B 11. y=-5x+3 12.1,1 13.5 14.50
15. 16.
解:(1) = ① = ② , ①+②×5,得:13x=26,x=2, 将x=2代入②,得:4-y=3,y=1,
所以方程组的解为 = = ;
(2)将方程组整理成一般式为 = ① = ② ,
①+②,得:6x=14,x=73, 将x=73代入①,得:7-2y=8,y=- 12, 所以方程组的解为 (3) = ① = ② = ③, ①+②,得:3x+4y=24 ④, ③+②,得:6x-3y= 人教版七年级下册第八章二元一次方程组培优综合卷
一、 选择题(共10题,每小题3分,共30分) 1.下列各式中是二元一次方程的是( )
A.3x2-2y=9 B.2x+y=6 C. +2 =3y D.x-3=4y2 2.在方程组 3x-y=7x=y-1中,代入消元可得( ) A.3y-l-y=7 B.y-1-y=7 C.3y-3=7 D.3y-3-y=7
3.已知 = = 是方程kx+2y=-2的解,则k的值为( ) A.-3 B.3 C.5 D.-5 4.将方程3x-4y=5变形为用含x的代数式表示y为( ) A.y= B.y= C.y= D.y=
5.以方程组 = = 的解为坐标的点(x,y)在平面直角坐标系中的位置是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 6.某校组织21名教师外出培训,宾馆可选2人间或3人间租住,若所租房间均需住满,则
不同的租房方案共有( ) A.5种 B.4种 C.3种 D.2种 7.解下面的方程组时,要使解法较为简便,应( ) = ① = ② = ③
A.先消去x B.先消去y C.先消去z D.先消去常数 8.关于x、y的方程组 = = 的解是 = =■,其中y的值被盖住了,不过仍能求出m,
则m的值是( ) A.-1 B.1 C.2 D.-2 9.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五
头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为( )
A. = = B. = =
C. = = D. = = 10.某厂第二车间的人数比第一车间的人数的45少30人.如果从第一车间调10人到第二车
间,那么第二车间的人数就是第一车间的34.问这两个车间原来各有多少人?设第一车间原来有x人,第二车间原来有y人,依题意可得( )
A. B.
C. D. 二.填空题(共6小题,每小题3分,共18分) 11.写出一个解为 = = 的方程组为
12.下列方程(组)中,①x+2=0 ②3x-2y=1 ③xy+1=0 ④2x- =1 ⑤ = = ⑥