高一期末数学集合复习知识点总结-教育文档
高一数学集合知识点全总结

高一数学集合知识点全总结导引高中数学中,集合是一个重要的概念和工具。
它不仅存在于高一数学中,还会贯穿整个高中数学的学习过程。
高一数学集合知识点的掌握,对于理解后续内容和解决实际问题至关重要。
本文将对高一数学集合知识点进行全面总结和归纳,帮助同学们更好地理解和掌握这一部分重要内容。
定义和基本概念集合是由一些确定的对象构成的整体。
常用的表示方法为列举法和描述法。
集合中的对象称为元素,用小写字母表示。
集合内的元素不重复,不分先后顺序。
集合的关系和运算1. 子集关系:若集合A的每一个元素都属于集合B,则称A是B的子集,记作A⊆B。
若A是B的子集,但A与B并不相等,则称A为B的真子集。
若A既是B的子集,又是B的真子集,则称A为B的真子集。
2. 并集:设A、B为两个集合,由所有属于集合A或集合B的元素所组成的集合称为A与B的并集,记作A∪B。
3. 交集:设A、B为两个集合,由所有既属于集合A又属于集合B的元素组成的集合称为A与B的交集,记作A∩B。
4. 集合的补集:设全集为E,A为E的一个子集,由所有属于E但不属于A的元素所组成的集合称为集合A关于E的补集,记作E\A。
集合的运算性质和公式1. 并集运算的性质:- 交换律:A∪B = B∪A。
- 结合律:(A∪B)∪C = A∪(B∪C)。
- 分配律:A∩(B∪C) = (A∩B)∪(A∩C)。
2. 交集运算的性质:- 交换律:A∩B = B∩A。
- 结合律:(A∩B)∩C = A∩(B∩C)。
- 分配律:A∪(B∩C) = (A∪B)∩(A∪C)。
3. 补集运算的性质:- 补集的补集:(E\A)' = A。
- 并集与补集:A∪(E\A) = E。
- 交集与补集:A∩(E\A) = ∅。
高一数学集合的应用1. 包含关系在实际问题中,集合的包含关系常常用来描述一些包含关系,如在一个班级里,集合A表示所有男生,集合B表示所有喜欢篮球的学生,可以通过集合的交集和子集关系来得到既是男生又喜欢篮球的学生。
高一数学集合知识点归纳详细总结

高一数学集合知识点归纳详细总结集合是数学中最基本的概念之一,它在高一数学中占据着重要的地位。
集合的概念、运算和性质是理解更高级数学概念的基础。
以下是高一数学中集合知识点的详细总结:首先,我们需要了解集合的定义。
集合是由一些确定的、互不相同的元素构成的整体。
这些元素可以是数字、字母、图形等。
集合中的元素通常用大写字母表示,例如集合A、集合B等。
其次,集合的表示方法有多种。
列举法是将集合中的元素一一列举出来,用花括号括起来,例如{1, 2, 3}。
描述法是用文字描述集合中的元素所具有的共同特征,例如{x|x是小于5的正整数}。
接着,我们需要掌握集合的元素与集合的关系。
元素与集合的关系用属于符号“∈”和不属于符号“∉”来表示。
例如,1∈{1, 2, 3}表示1是集合{1, 2, 3}的元素,而4∉{1, 2, 3}表示4不是集合{1, 2, 3}的元素。
集合之间也有关系,包括子集、真子集和相等。
如果集合A的所有元素都属于集合B,那么我们说A是B的子集,记作A⊆B。
如果A是B的子集,并且B中至少有一个元素不属于A,那么我们说A是B的真子集,记作A⊂B。
如果两个集合的元素完全相同,那么我们说这两个集合相等。
集合的运算包括交集、并集和补集。
两个集合A和B的交集是指既属于A又属于B的元素组成的集合,记作A∩B。
并集是指属于A或属于B的所有元素组成的集合,记作A∪B。
补集是指属于全集U但不属于A 的元素组成的集合,记作C_UA。
最后,我们需要理解空集的概念。
空集是指不含任何元素的集合,通常用符号∅表示。
空集是任何集合的子集,但没有任何集合是空集的真子集。
通过以上总结,我们可以看到集合的概念和运算在数学中的重要性。
掌握这些知识点,将有助于我们更好地理解和应用数学中的其他概念。
高一数学《集合》知识点总结(K12教育文档)

高一数学《集合》知识点总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学《集合》知识点总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学《集合》知识点总结(word版可编辑修改)的全部内容。
高一数学《集合》知识点总结一.知识归纳:1.集合的有关概念。
1)集合:某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似.②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则AB(或AB);2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)3)交集:A∩B={xx∈A且x∈B}4)并集:A∪B={xx∈A或x∈B}5)补集:cUA={xxA但x∈U}注意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别.4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABcuAcuB;④A∩cuB=空集cuAB;⑤cuA∪B=IAB。
高一数学集合知识点总结5篇

高一数学集合知识点总结5篇第1篇示例:高一数学集合知识点总结数学中的集合理论是一门基础重要的数学分支,它在高中数学教学中占有重要位置。
在我们高一的数学学习中,集合知识点也是必须掌握的内容之一。
下面就让我们来总结一下高一数学中的集合知识点吧。
一、集合的概念集合是由若干个元素构成的整体。
一般用大写字母A、B、C等表示集合,用小写字母a、b、c等表示元素。
集合中的元素是无序排列的,并且一个集合中的元素都是不同的。
二、集合的表示方法1. 列举法:直接将集合中的所有元素列出来,用大括号{}括起来。
例如:A={1,2,3,4,5}2. 描述法:通过一个条件来描述集合中的元素的特点。
例如:B={x|x是正整数,且x<6}三、集合之间的关系1. 交集:集合A和集合B的交集,记作A∩B,表示A和B共同拥有的元素组成的集合。
2. 并集:集合A和集合B的并集,记作A∪B,表示A和B所有的元素组成的集合。
3. 差集:集合A减去集合B,记作A-B,表示只属于A而不属于B的元素组成的集合。
4. 补集:集合A对于全集U的补集,记作A’或者A^c,表示不属于A的元素组成的集合。
四、集合运算规律1. 交换律:A∩B=B∩A,A∪B=B∪A2. 结合律:(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C)3. 分配律:A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)4. 吸收律:A∩(A∪B)=A,A∪(A∩B)=A5. 其他运算规律:A∪(A’∩B)=A∪B,A∩(A’∪B)=A∩B五、集合的应用1. 数学中的集合是研究对象的统一表达形式,常用于描述集合之间的关系。
2. 集合论在概率论、代数学、数论等多个数学分支中都有广泛的应用。
3. 集合的知识也经常会在真实生活中的问题中得到应用,比如排列组合问题、概率统计问题等。
通过对高一数学集合知识点的总结,我们对集合的概念、表示方法、集合之间的关系、集合运算规律以及集合的应用有了更清晰的认识。
高一集合知识点总结

高一集合知识点总结一、集合的基本概念1. 集合定义:集合是具有某种特定性质的事物的总体。
2. 元素:组成集合的每个事物称为该集合的元素。
3. 集合的表示:常用大写字母表示集合,如集合A、B等;集合中的元素用小写字母表示,如a、b等。
二、集合的分类1. 有限集:元素数量有限的集合。
2. 无限集:元素数量无限的集合。
3. 空集:不包含任何元素的集合,记作∅。
三、集合的表示方法1. 枚举法:直接列举出集合中的所有元素。
2. 描述法:用数学表达式描述集合中的元素性质。
3. 图示法:用图形表示集合及其关系。
四、集合间的关系1. 子集:如果集合A的所有元素都属于集合B,则A是B的子集。
2. 真子集:集合A是集合B的子集,且A不等于B。
3. 并集:两个集合A和B的所有元素组成的集合。
4. 交集:两个集合A和B的公共元素组成的集合。
5. 补集:对于集合A,其在全集U中的补集是全集U中不属于A的元素组成的集合。
五、集合运算1. 并集运算(∪):A ∪ B = {x | x ∈ A 或x ∈ B}。
2. 交集运算(∩):A ∩ B = {x | x ∈ A 且 x ∈ B}。
3. 差集运算(-):A - B = {x | x ∈ A 且 x ∉ B}。
4. 补集运算(' 或 C):A' = {x | x ∉ A}。
六、特殊集合1. 有理数集:可以表示为两个整数比的数的集合。
2. 无理数集:不能表示为两个整数比的数的集合。
3. 自然数集:正整数的集合。
4. 整数集:正整数、负整数和零的集合。
5. 实数集:包括有理数和无理数的集合。
七、集合的简单性质1. 德摩根定律:(A ∪ B)' = A' ∩ B';(A ∩ B)' = A' ∪ B'。
2. 集合恒等式:A ∪ A' = U,A ∩ A' = ∅。
3. 子集性质:如果A ⊆ B 且 B ⊆ A,则A = B。
高一数学总复习--《集合》

高一数学总复习--《集合》数学的内参高中数学总复习--《集合》一、内容提要1、集合的概念:由一些事物组成的整体。
可用大写字母A、B、C表示。
1)元素:集合中的每一个事物。
可记作a、b、c。
2)集合与元素的关系。
aA或bA。
3)常用集合N、N、Z、Q、R、R、R、、U4)表示方法:列举法、描述法。
2、集合与集合的关系1)子集:如果集合B的每一个元素都是A的元素,那么B叫做A的一个子集,记作BA(或AB),(A的子集包括、A本身)。
2)真子集:B是A的子集且A中至少有一个元素不属于B,则称B是A的一个真子集记作BA。
3)相等:A、B的元素完全一样,称A=B。
若AB 且BAAB。
3、集合的运算1)交集:AB{某|某A且某B}2)并集:AB{某|某A或某B}3)补集;CUA{某|某U且某A}4、充要条件:pq称p是q的充分条件,q是p的必要条件.pq称p、q 的互为充要条件。
二、例题讲解:某例1、写出集合{a,b,c}的所有子集和真子集。
例2、已知A{某|1某5},B{某|3某8},求CUA、CUB、AB、AB。
例3、用符号填空{a}{b}NCRQ{a,b}{}三、练习:(一)、选择题1、已知集合A={1,3,7},B={3,7,8}则AB=()A)、{1,3,7,8}B)、{3,7}C)、{1,3,3,7,7,8}D)、21数学的内参2、设A={1,2,3,4,5},B={1,3,4},C={2,4,5},则CABCAC=A)、{1,2,3,5}B)、{U}C)、AD)、3、已知M={某|1某3},N={某|1某2},则MN=()A)、{某|1某3}B)、{某|1某2}C)、{某|1某2}D)、(二)、填空题1、用符号表示:3{1,2,3,4}{4}{1,2,3,4}1{1}2、写出“大于-3且小于等于3的正整数集”的列举法描述法3、{1,3,7}{2,3,}={1,2,3,8,}4、{1,4,5}{1,3,}={5,}5、A={某|3某0},B={某|某10},则AB=,AB=,CRA=7、写出{2,6,9}的所有子集和真子集8.集合A{n|nm1Z},B{m|Z},则AB__________2259.集合A{某|4某2},B{某|1某3},C{某|某0,或某2那么ABC_______________,ABC_____________;10.已知某={某|某2+p某+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且某A,某B某,试求p、q;11.集合A={某|某2+p某-2=0},B={某|某2-某+q=0},若AB={-2,0,1},求p、q;12.A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且AB={3,7},求B数学的内参集合练习题一.单项选择(1)设集合M=某|某2,又a=.那幺()(A)aM(B)aM(C)aM(D)aM(2)设全集Ua,b,c,d,Ma,c,d,Nb,d,Pb,则()(A)PMN(B)PMN(C)PM(CuN)(D)P(CUM)N所组成的集合所含元素的个数为()(3)对于任意某,y∈R,且某y≠0,则某y某y某y某y(A)1个(B)2个(C)3个(D)4个(4)全集U=R,A={某||某|1},B={某|某-2某-3>0},则(CUA)U(CUB)=()2(A){某|某<1或某3}(B){某|-1某3}(C){某|-1<某<1}(D){某|-1<某1}(5)集合a,b,c的子集总共有()(A)7个(B)8个(C)6个(D)5个(6)设a为给定的实数,则集合某|某3某a20,某R的子集的个数是()(A)1(B)2(C)4(D)不确定(7)集合P,Q满足PQa,b.试求集合P,Q.问此题的解答共有()(A)9种;(B)4种;(C)7种;(D)16种(8)若A={1,3,某},B={某2,1},且A∪B={1,3,某}.则这样的某的不同值有()(A)1个(B)2个(C)3个(D)4个22,则p应满足的条件是()(9)已知M={某|某≤1},N={某|某>p},要使M∩N≠(A)p>1(B)p≥1(C)p<1(D)p≤1(10)已知集合A是全集S的任一子集,下列关系中正确的是()(A)φCSA(B)CSA(C)(A∩CSA)=φ(D)(A∪CSA)(11)若有非空集合A、B且B,全集U=R,下列集合中为空集的是()(A)CUA∩B(B)A∩CUB(C)CU(AB)(D)CU(AB)y3M某,y|1某2,(12)设全集U某,y|某,yR,集合T某,y|y3某2,那么(CUM)T等于()数学的内参(A)Φ(B)2,3(C)2,3(D)某,y|y3某2二.填空题(13)已知集合A={y|y=2某+1,某>0},B={y|y=-某2+9,某∈R},则A∩B=________.(14)设集合A={某|某=6k,k∈Z},B={某|某=3k,k∈Z},两个集合的关系可表示为AB.(15)设集合P某|某2,某R,集合Q某|某某20,某N,则集合PQ等于2(16)设U=R,集合A={某|某+p某+12=0,某∈N},集合B={某|某-5某+q=0,某∈N},且22CUAB={2},CUBA={4},则p+q的值等于.(17)设A={(某,y)|y=1-3某},B={(某,y)|y=(1-2k2)某+5},若A∩B=φ,则k的取值是____________.(18)用集合表示图中阴影部分____________.三.解答题(19)写出所有适合{a,b}A的集合A.(20)某班有学生55人,其中有音乐爱好者34人,有体育爱好者43人,还有4人既不爱好音乐又不爱好体育,该班既爱好音乐又爱好体育的有多少人?(21)若a<0<b<|a|,A={某|a≤某≤b},B={某|-b≤某≤-a},试求A∪B,A∩B.(22)P={a,a+2,-3},Q={a-2,2a+1,a+1},P∩Q={-3},求a.22(23)已知A={某|某-a某+a-19=0},B={某|某-5某+8=2},C={某|某+2某-8=0},若2222∩B,且A∩C,求a的值.=(24)设集合A={某|某+(p+2)某+1=0},且A{某|某>0}=ф,求实数p的取值范围.2数学的内参函数的解析式的求法求函数的解析式是函数的常见问题,也是高考的常规题型之一,方法众多,下面对一些常用的方法一一辨析.一.换元法题1.已知f(3某+1)=4某+3,求f(某)的解析式.1某练习1.若f(),求f(某).某1某二.配变量法11题2.已知f(某)某22,求f(某)的解析式.某某练习2.若f(某1)某2某,求f(某).三.待定系数法题3.设f(某)是一元二次函数,g(某)2某f(某),且g(某1)g(某)2某1某2,求f(某)与g(某).练习3.设二次函数f(某)满足f(某2)f(某2),且图象在y轴上截距为1,在某轴上截得的线段长为22,求f(某)的表达式.数学的内参四.解方程组法题4.设函数f(某)是定义(-∞,0)∪(0,+∞)在上的函数,且满足关系式3f(某)2f()4某,某求f(某)的解析式.练习4.若f(某)f(五.特殊值代入法题5.若f(某y)f(某)f(y),且f(1)2,求值练习5.设f(某)是定义在N上的函数,且f(1)2,f(某1)六.利用给定的特性求解析式.题6.设f(某)是偶函数,当某>0时,f(某)e某2e某,求当某<0时,f(某)的表达式.练习6.对某∈R,f(某)满足f(某)f(某1),且当某∈[-1,0]时,f(某)某22某求当某∈[9,10]时f(某)的表达式.某1)1某,求f(某).某f(2)f(3)f(4)f(2005).f(1)f(2)f(3)f(2004)f(某)1,求f(某)的解析式.2数学的内参七.归纳递推法某1题7.设f(某),记fn(某)ff[f(某)],求f2004(某).某1八.相关点法题8.已知函数f(某)2某1,当点P(某,y)在y=f(某)的图象上运动时,点Q(图象上,求函数g(某).九.构造函数法题9.若f(某)表示某的n次多项式,且当k=0,1,2,,n时,f(k)k,求f(某).k1y某,)在y=g(某)的23课堂小结:求函数的解析式的方法较多,应根椐题意灵活选择,但不论是哪种方法都应注意自变量的取值范围,对于实际问题材,同样需注意这一点,应保证各种有关量均有意义。
高一数学集合知识点总结
高一数学集合知识点总结数学作为一门基础学科,集合论是其重要的组成部分之一。
高中数学中,集合论作为数学的基础知识承担着重要的作用。
下面将对高一数学集合知识点进行总结和归纳,帮助同学们更好地理解和掌握这一部分知识。
一、集合的概念与表示方法集合是由确定的对象所组成的整体,集合中的对象称为元素。
集合的表示可以用描述法、列举法和图形法等多种方法,常用的表示符号为大写字母,集合中的元素用小写字母表示。
二、集合之间的关系1. 子集与包含关系若集合A的每一个元素都是集合B的元素,则称A是B的子集,记作A⊆B;若集合A是集合B的子集且集合B不是A的子集,则称A是B的真子集,记作A⊂B;若一个集合中的元素全都是另一个集合的元素,则这个集合是另一个集合的子集。
2. 相等与不相等关系若集合A和集合B具有相同的元素,则称集合A和集合B相等,记作A=B;若集合A和集合B不具有相同的元素,则称集合A和集合B不相等,记作A≠B。
三、集合的运算1. 交集若元素x同时属于两个集合A和B,则称x属于A与B的交集,记作x∈A∩B。
2. 并集若元素x属于集合A或集合B,则称x属于A与B的并集,记作x∈A∪B。
3. 差集若元素x属于集合A但不属于集合B,则称x属于A与B的差集,记作x∈A-B。
4. 补集若U为给定的全集,A为集合,A的补集定义为全集U中所有不属于A的元素的集合,记作A'。
四、集合的基本性质1. 幂集给定一个集合A,由A的所有子集组成的集合称为集合A的幂集。
2. 空集不含任何元素的集合称为空集,记作Φ。
3. 全集指给定问题环境下某一类对象所组成的集合,全集一般用大写字母U来表示。
4. 互斥集合若两个集合没有共同的元素,则称这两个集合互斥。
五、集合的常用定理1. 单调性定理对于集合A、B、C,如果A⊆B,则A∪C⊆B∪C;如果A⊆B,则A∩C⊆B∩C;如果A⊆B,则B'⊆A'。
2. 德摩根定理对于集合A、B,有(A∪B)'=A'∩B';(A∩B)'=A'∪B'。
高一数学集合知识点归纳
高一数学集合知识点归纳数学是一门逻辑严谨、条理清晰的学科,而集合论是数学中的一个重要分支。
高中数学中集合的概念和运算规则是我们学习的基础。
在高一时期,我们需要掌握并熟练运用集合的相关知识。
本文将从集合的定义、元素的判别、集合的分类和集合的运算等几个方面进行归纳。
一、集合的定义集合是由一些确定的对象组成的整体。
集合中的对象称为元素,用大写英文字母表示。
集合的定义可以用文字描述,也可以用列举法和描述法来表示。
当集合中的元素个数有限时,可用列举法来表示。
例如,A={1,2,3,4}表示一个由元素1,2,3,4组成的集合。
而当集合中的元素个数无限多时,就需要通过描述法来定义。
例如,B 是所有正整数的集合,可以表示为 B={x| x 是正整数}。
二、元素的判别在判断一个元素是否属于某个集合时,我们需要进行元素的判别。
只有当元素满足集合的定义,我们才能说这个元素属于这个集合。
例如,对于集合 A={1,2,3,4},我们可以判断元素 1 是否属于集合 A。
根据集合的定义,我们可以得出 1 是集合 A 的元素。
而对于元素 5,根据集合 A 的定义,我们可以断定元素 5 不属于集合 A。
三、集合的分类根据集合的元素的类型和性质,我们可以将集合分为数集、点集和区间集。
数集是一个以数为元素的集合,如自然数集、整数集、有理数集和实数集等。
点集是一个以点为元素的集合,如平面上的点集、三维空间的点集等。
区间集是一个以区间为元素的集合,如闭区间、开区间、半开区间等。
四、集合的运算在集合中,有并集、交集、差集、补集和对称差等运算。
并集运算是指将两个集合的所有元素合并在一起,用符号“∪”表示。
例如,对于集合 A={1,2,3} 和集合 B={3,4,5},则 A∪B={1,2,3,4,5}。
交集运算是指将两个集合中重复的元素提取出来,用符号“∩”表示。
例如,对于集合 A 和集合 B,则A∩B={3}。
差集运算是指将一个集合中去除另一个集合的元素,用符号“-”表示。
高一年级数学《集合》知识点总结
高一年级数学《集合》知识点总结【导语】当一个小小的心念变成成为行动时,便能成了习惯;从而形成性情,而性情就决定你一生的成败。
成功与不成功之间有时距离很短——只要后者再向前几步。
作者高一频道为莘莘学子整理了《高一年级数学《集合》知识点总结》,期望对你有所帮助!【一】一.知识归纳:1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描写给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有肯定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有罗列法、描写法和图文法3)集合的分类:有限集,无穷集,空集。
4)常用数集:N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则AB(或AB);2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)3)交集:A∩B={xx∈A且x∈B}4)并集:A∪B={xx∈A或x∈B}5)补集:CUA={xxA但x∈U}注意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌控有关的术语和符号,特别要注意以下的符号:(1)与、?的区分;(2)与的区分;(3)与的区分。
4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
5.交、并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
高一数学下学期期末考试知识点总结
高一数学下学期期末考试知识点总结第一章集合与函数概念一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的肯定性; 2.元素的互异性;3.元素的无序性 .第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的肯定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是肯定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是同等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考核排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了肯定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员}B={12345}2.集合的表示方法:罗列法与描写法。
注意啊:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作 a?A罗列法:把集合中的元素一一罗列出来,然后用一个大括号括上。
描写法:将集合中的元素的公共属性描写出来,写在大括号内表示集合的方法。
用肯定的条件表示某些对象是否属于这个集合的方法。
①语言描写法:例:{不是直角三角形的三角形}②数学式子描写法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无穷集含有无穷个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一期末数学集合复习知识点总结数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。
小编准备了高一期末数学集合复习知识点,具体请看以下内容。
集合是把人们的直观的或思维中的某些确定的能够区分的
对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。
组成一集合的那些对象称为这一集合的元素(或简称为元)。
元素与集合的关系:
元素与集合的关系有属于与不属于两种。
集合与集合之间的关系:
某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。
空集是任何集合的子集,是任何非空集的真子集。
任何集合是它本身的子集。
子集,真子集都具有传递性。
『说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A?B。
若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。
中学教材课本里将?符号下加了一个符号(如右图),不要混淆,考试时还是要以课本为准。
所有男人的集合是所有人的集合的真子集。
』
集合的几种运算法则:
并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作AB(或BA),读作A并B(或B并A),即AB={x|xA,或xB}交集:以属于A且属于B的元差集表示
素为元素的集合称为A与B的交(集),记作AB(或BA),读作A交B(或B交A),即AB={x|xA,且xB}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。
那么因为A和B中都有1,5,所以AB={1,5}。
再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。
那么说AB={1,2,3,5}。
图中的阴影部分就是AB。
有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。
结果是3,5,7每项减集合
1再相乘。
48个。
对称差集:设A,B为集合,A与B的对称差集A?B定义为:A?B=(A-B)(B-A)例如:A={a,b,c},B={b,d},则A?B={a,c,d}对称差运算的另一种定义是:
A?B=(AB)-(AB)无限集:定义:集合里含有无限个元素的集合叫做无限集有限集:令N*是正整数的全体,且N_n={1,2,3,,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。
差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。
记作:AB={x│xA,x不属于B}。
注:空集包含于任何集合,但不能说空集属于任何集合.补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即
CuA={x|xU,且x不属于A}空集也被认为是有限集合。
例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中没有的3,4就是CuA,是A的补集。
CuA={3,4}。
在信息技术当中,常常把CuA写成~A。
集合元素的性质:
1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如个子高的同学很小的数都不能构成集合。
这个性质主要用于判断一个集合是否能形成集合。
2.独立性:集合中的元素的个数、集合本身的个数必须为自然数。
3.互异性:集合中任意两个元素都是不同的对象。
如写成{1,1,2},等同于{1,2}。
互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。
4.无序性:{a,b,c}{c,b,a}是同一个集合。
5.纯粹性:所谓集合的纯粹性,用个例子来表示。
集合A={x|x2},集合A中所有的元素都要符合x2,这就是集合纯粹性。
6.完备性:仍用上面的例子,所有符合x2的数都在集合A中,这就是集合完备性。
完备性与纯粹性是遥相呼应的。
集合有以下性质:
若A包含于B,则AB=A,AB=B
集合的表示方法:
集合常用大写拉丁字母来表示,如:A,B,C而对于集合中
的元素则用小写的拉丁字母来表示,如:a,b,c拉丁字母只是相当于集合的名字,没有任何实际的意义。
将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={}的形式。
等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。
常用的有列举法和描述法。
1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。
{1,2,3,}2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法
叫做描述法。
{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于的正实数组成的集合表示为:{x|0
4.自然语言常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N;不包括0的自然数集合,记作N*(2)非负整数集内排除0的集,也称正整数集,记作Z+;负整数集内也排除0的集,称负整数集,记作Z-(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q。
Q={p/q|pZ,qN,且p,q互质}(正负有理数集合分别记作Q+Q-)(5)全体实数的集合通
常简称实数集,记作R(正实数集合记作R+;负实数记作R-)(6)复数集合计作C集合的运算:集合交换律AB=BB=BA集合结
合律(AC=AC)(AC=AC)集合分配律AC)=(A(AC)AC)=(A(AC)集合德.摩根律集合
Cu(AB)=CuACuBCu(AB)=CuACuB集合容斥原理在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。
例如A={a,b,c},则
card(A)=3card(AB)=card(A)+card(B)-card(AB)card(AC)= card(A)+card(B)+card(C)-card(AB)-card(BC)-card(CA)+ card(AC)1885年德国数学家,集合论创始人康托尔谈到集合一词,列举法和描述法是表示集合的常用方式。
集合吸收律AB)=AAB)=A集合求补律ACuA=UACuA=设A为集合,把A的全部子集构成的集合叫做A的幂集德摩根律
A-(BUC)=(A-B)(A-C)A-(BC)=(A-B)U(A-C)~(BUC)=~B~C~(BC)=~BU~C~=E~E=特殊集合的表示复数集C实数集R正实数集R+负实数集R-整数集Z正整数集Z+负整数集Z-有理数集Q正有理数集Q+负有理数集Q-不含0的有理数集Q*。
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高一期末数学集合复习知识点,希望大家喜欢。