圆锥曲线中的最值、范围、证明问题

合集下载

圆锥曲线的定点、定值、范围和最值问题

圆锥曲线的定点、定值、范围和最值问题

课题:圆锥曲线的定点、定值、范围和最值问题教学目标:会处理动曲线(含直线)过定点的问题;会证明与曲线上动点有关的定值问题;会按条件建立目标函数,研究变量的最值问题及变量的取值范围问题,注意运用“数形结合”“几何法”求某些量的最值.(一) 主要知识及主要方法:1.在几何问题中,有些几何量与参数无关,这就构成了定值问题,解决这类问题一种思路是进行一般计算推理求出其结果;另一种是通过考查极端位置,探索出“定值”是多少,然后再进行一般性证明或计算,即将该问题涉及的几何式转化为代数式或三角形式,证明该式是恒定的.如果试题以客观题形式出现,特殊方法往往比较奏效.2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决.3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值.(二)典例分析:问题1.在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O 的两不同动点A 、B 满足AO(Ⅰ)求AOB △得重心G 的轨迹方程;(Ⅱ)AOB △若不存在,请说明理由.问题2.已知椭圆22142x y +=上的两个动点,P Q 及定点M ⎛ ⎝,MF ,QF 成等差数列.()1求证:线段PQ 的垂直平分线经过一个定点A ;()2设点A 关于原点O 的对称点是B ,求PB 的最小值及相应的P 点坐标.问题3.已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且AF FB λ=(0λ>).过A 、B 两点分别作抛物线的切线,设其交点为M .(Ⅰ)证明FM AB ⋅为定值;(Ⅱ)设ABM △的面积为S ,写出()S f λ=的表达式,并求S 的最小值.问题4.直线m :1y kx =+和双曲线221x y -=的左支交于A 、B 两点,直线l 过点()2,0P -和线段AB的中点M ,求l 在y 轴上的截距b 的取值范围.(四)课后作业:1.已知椭圆22221x y a b+=(0a b >>)的右焦点为F ,过F 作直线与椭圆相交于A 、B 两点,若有2BF AF =,求椭圆离心率的取值范围.2.过抛物线22y px =的顶点任意作两条互相垂直的弦OA 、OB 求证:AB 交抛物线的对称轴上一定点.3.如图,在双曲线2211213y x -=的上支上有三点()11,A x y ,()2,6B x ,()33,C x y ,它们与点()0,5F 的距离成等差数列.()1求13y y +的值;()2证明:线段AC 的垂直平分线经过某一定点,并求此点坐标.4.已知椭圆1C 的方程为1422=+y x ,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(Ⅰ)求双曲线2C 的方程;(Ⅱ)若直线l :y kx =1C 及双曲线2C 都恒有两个不同的交点,且l 与2C 的两个交点A 和B 满足6<⋅(其中O 为原点),求k 的取值范围.5.P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值为 .A 6 .B 7 .C 8 .D 96.如图,中心在原点O 的椭圆的右焦点为()3,0F ,右准线l 的方程为:12x =.()1求椭圆的方程;()2在椭圆上任取三个不同点321,,P P P ,使133221FP P FP P FP P ∠=∠=∠证明:123111FP FP FP ++为定值,并求此定值.7.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OA OB + 与(3,1)a =-共线。

二轮复习Ⅴ3大题考法——直线与圆锥曲线的简单应用及最值范围问题课件(33张)

二轮复习Ⅴ3大题考法——直线与圆锥曲线的简单应用及最值范围问题课件(33张)
Ⅴ-3 大题考法——直线与圆锥曲线的简单应用及最值、范围问题 题型(一) 直线与圆锥曲线的简单应用
方法例解 [典例] (2021·全国甲卷)抛物线C的顶点为坐标原点O,焦点在x 轴上,直
线l:x=1交C于P,Q两点,且OP⊥OQ.已知点M(2,0),且⊙M与l相切. (1)求C,⊙M的方程; (2)设A1,A2,A3是C上的三个点,直线A1A2,A1A3均与⊙M相切.判断直
2.已知椭圆E:xa22+by22=1(a>b>0)的四个顶点中的三个是边长为2 3的等边三角 形的三个顶点.
(1)求椭圆E的方程;
(2)设直线y=kx+m与圆O:x2+y2=
2b2 3
相切且交椭圆E于M,N两点,求
|MN|的最大值.
解:(1)由题意得,椭圆上、下两顶点与左、右顶点中的一个是边长为2 3 的
所以当―M→Q =3―N→Q ,即y1=3y2时,结合③得a2=2>43,所以椭圆C的方程为x22+y2=1; 当―M→Q =-3―N→Q ,即y1=-3y2时,结合③得a2=12>43,所以椭圆C的方程为1x22+y62=1. 综上,椭圆C的方程为x22+y2=1或1x22 +y62=1.
题型(二) 圆锥曲线中的最值问题
-4(5k2+4)×25=400(k2-1)>0,
故k>1或k<-1.
由根与系数的关系, 得x1+x2=-5-k23+0k4=5k320+k 4,x1x2=5k22+5 4, 进而可得y1+y2=k(x1+x2)-6=-5k22+4 4, y1y2=(kx1-3)(kx2-3)=k2x1x2-3k(x1+x2)+9=356k-2+204k2. 直线AB的方程为y+2=y1x+1 2x,令y=-3, 则x=-y1x+1 2,故点M-y1x+1 2,-3.

圆锥曲线中的最值和取值范围

圆锥曲线中的最值和取值范围

2解得X"或…泞,则AM k28k2 -63 4k2=1 k2123 4k2因为AM _AN,所以圆锥曲线中的最值和范围圆锥曲线是高考数学压轴题之一,是有效区分学生层次不可或缺的一个题型,能否解决圆锥曲线问题,对提高学生的数学成绩某种程度上至关重要。

回顾几年高考中的圆锥曲线试题,其核心问题大概有两大类型,一是定值、定点、存在性问题,二是最值和范围问题。

本文就第二问题进行归纳和分析。

最值和范围一般有两个求解方法:一是几何方法,所求最值量具有明显几何意义时可利用几何性质结合图形直观求解;二是代数方法,选择适当变量,建立函数模型,按照求最值的方法求解,求最值方法中:利用基本不等式、函数单调性、分离常数、配方法等是常用方法。

对目标函数的的整理和恰当变形是难点。

所涉及的量有斜率、面积、离心率、线段长度等。

一.近几年高考试题回顾。

X y21.(2017全国2)已知椭圆E: 1的焦点在x轴上,A是E的左顶点,斜率为k(k 0)的t 3直线交E于A, M两点,点N在E上,MA丄NA. (I)当t =4 , AM| | AN时,求△ AMN的面积;(II)当2 AM二AN时,求k的取值范围•2 2X y【解析】⑴当t =4时,椭圆E的方程为 1 , A点坐标为-2 , 0,4 3则直线AM的方程为y =k X • 2 .'2 2£ I 二1联立 4 3 " 并整理得, 3 4k2 x2 16k2x 16k2 -1^0y -k X 2厂匚2 12厂〒2 12因为 AM 二 AN , k 0,所以 1 kFTk^= 1 k3I 7^,k整理得k -1 4k —k ・4产0 , 4k 2_k ・4=0无实根,所以k.⑵直线AM 的方程为y 二k x • ..t ,r 22x y1联立 t 3并整理得,3 tk 2 x 2 2x t 2k ^3^-0 y =k (X + JT )解得 3 2 ::: k ::: 2 .2.(2015高考真题山东理21 )在平面直角坐标系 xOy 中,F 是抛物线C:x 2=2py (p 0) 的焦点,M 是抛物线C 上位于第一象限内的任意一点,过 M,F,0三点的圆的圆心为 Q ,点Q 到抛物线C 的准线的距离为 3 .[来源学科网](I)求抛物线 C 的方程;(n)是否存在点 M , 4使得直线MQ 与抛物线C 相切于点M ?若存在,求出点 M 的坐标;若不存在,说明理由; (川)若点M 的横坐标为 2 ,直线l : ^kx 4与抛物线C 有两个不同的交点 A, B , l 与 圆Q 有两个不同的交点 D, E ,求当g 乞k 乞2时,|AB|2J DE|2的最小值 分析:(I )由题意,OF 为圆Q 的弦,y^— , ••• yQ — = 3 =o抛物线方程x 2 =2y4 2 41 2所以△ AMN 的面积为| AM | =144 79解得 ^-F 或x =曲昇,3 +tk 2所以 AM23 tk26 tAN = 1 亠 k 2—―—"k E 所以3k 」k因为2 AM | | AN 所以 2T k6・口隹,整理得,k3 tk2t 6k -3k t3k -2因为椭圆E 的焦点在x 轴,所以t 3,即1 k —2 k3_2 ::(n)设存在点2X。

2022届数学圆锥曲线题型归纳讲义 (3)

2022届数学圆锥曲线题型归纳讲义  (3)

高考中的圆锥曲线问题题型一范围问题例1 已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率e=√32,直线x+√3y-1=0被以椭圆C的短轴为直径的圆截得的弦长为√3.(1)求椭圆C的标准方程;(2)过点M(4,0)的直线l交椭圆于A,B两个不同的点,且λ=|MA|∙|MB|,求λ的取值范围思维总结:解决圆锥曲线中的取值范围问题需要从以下几个方面考虑:(1)利用圆锥曲线的几何关系或判别式构造不等关系,确定参数的取值范围(2)利用已知的范围求新参数范围时,着重去寻找并建立两个参数之间的等量关系式(3)利用题目中隐含的不等关系构造不等式,确定参数的取值范围(4)利用题目中已知的不等关系构造不等式,确定参数的取值范围(5)利用函数中求值域的方法,把需要求的量表示为其他相关变量的函数,求函数的值域,确定出参数的取值范围。

变式1 已知F1,F2是椭圆C:x 2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△PO F2为等边三角形,求C的离心率(2)如果存在点P,是的P F1⊥P F2,且△F1P F2的面积等于16,求b的值和a 的取值范围.题型二最值问题例2(几何法求最值)已知抛物线C1:y²=4x和C2:x²=2py(p>0)的焦点分别为F1,F2,点P(-1,-1)且F1F2⊥OP(O为坐标原点).(1)求抛物线C2的方程;(2)过点O的直线交C1的下半部分于点M,交C2的左半部分于点N,求△PMN 面积的最小值.例3(代数法求最值)在平面直角坐标系中,O为坐标原点,圆O交x轴于点F1,F2,交y轴于点B1,B2,以B1,B2为顶点,F1,F2分别为左右焦点的椭圆E恰好).经过点(1,√22(1)求椭圆E的标准方程;(2)设经过点(-2,0)的直线l与椭圆E交于M、N两点,,求△F2MN面积的最大值.思维总结:圆锥曲线最值问题的两种求解方法1.利用几何法,利用圆锥曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;2.利用代数法,把要求最值的几何量或代数表达式表示为某个(某些)参数的函数(或解析式),利用函数方法或不等式等方法进行求解.变式2 已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y²=4x上一动点P到直线l1和直线l2的距离之和的最小值是 .变式3 椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√63,短轴一个端点到右焦点的距离为√3.(1)求椭圆C的方程(2)设斜率存在的直线l与椭圆C交于A,B两点,坐标原点O到直线l的距离为√32,求△AOB面积的最大值.题型三定点问题例4 已知椭圆C:x 2a2+y2b2=1(a>b>0)的左右焦点分别为F1(−√3,0),F2(√3,0),且经过点A(√3,12).(1)求椭圆C的标准方程;(2)过定点B(4,0)的一条斜率不为0的直线l与椭圆C相交于P、Q两点,记点P关于x轴对称的点为P′,证明:直线P′Q经过x轴上一定点D,并求出定点D的坐标.思维总结:求圆锥曲线综合问题的一般步骤(1)求出圆锥曲线方程(一般根据待定系数法或定义法);(2)设直线方程并于曲线方程联立,得到关于x或y的一元二次方程;(3)写出根与系数的关系(或求出交点坐标);(4)将第三步得出的关系式代入,解决范围、最值或定点、定值等问题;(5)反思回顾,考虑方程有解条件和图形的完备性.变式4 已知椭圆C:x 22+y2=1的右焦点为F,过点F的直线(不与x轴重合)与椭圆C相交于A,B两点,直线l:x=2与x轴相交于点H,过点A作AD⊥l,垂足为D.(1)求四边形QAHB(O为坐标原点)的面积的取值范围;(2)证明:直线BD过定点E,并求出点E的坐标.题型四定值问题例5 设F1,F2为椭圆x 24+y2b2=1(b>0)的左、右焦点,M为椭圆上一点,满足M F1⊥M F2,已知△M F1F2的面积为1.(1)求椭圆C的方程;(2)设C的上顶点为H,过点(2,-1)的直线与椭圆交于R,S两点(异于H),求证:直线HR和HS的斜率之和为定值,并求出这个定值.思维总结:圆锥曲线定值问题的常见类型及解题思路(1)求代数式为定值:根据题意设出条件,得到与代数式中参数相关的等式,代入代数式中,从而化简得出定值.(2)求点到直线的距离为定值:利用点到直线的距离公式得到相关的解析式,利用题设条件化简、变形得出定值.(3)求线段长度为定值:利用长度公式求得解析式,再根据题目中的条件对解析式进行化简、变形得出定值.变式5 已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,且过点A(2,1).(1)求C的方程;(2)点M、N在C上,且AM⊥AN,AD⊥MN,D为垂足,证明:存在定点Q,使得|DQ|为定值.题型五证明问题例6 设椭圆E:x 2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过点F1的直线交椭圆E于A,B两点.若椭圆E的离心率为√22,△AB F2的周长为4√6. (1)求椭圆E的方程;(2)设不经过椭圆的中心而平行于弦AB的直线交椭圆E于点C,D,设弦AB,CD的中点分别为M,N,证明:O,M,N三点共线.思维总结:圆锥曲线中证明问题常见的有以下两种:(1)位置关系:如证明直线与曲线相切,直线间的平行,垂直,直线过定点等;(2)数量关系:如存在定值,恒成立,相等等。

圆锥曲线—最值、范围问题-高考数学复习

圆锥曲线—最值、范围问题-高考数学复习

第八章 平面解析几何
高考一轮总复习 • 数学
返回导航
2.(2023·广东佛山市二模)双曲线 C:xa22-by22=1(a>0,b>0)的左顶点 为 A,焦距为 4,过右焦点 F 作垂直于实轴的直线交 C 于 B、D 两点, 且△ABD 是直角三角形.
(1)求双曲线 C 的方程; (2)M、N 是 C 右支上的两动点,设直线 AM、AN 的斜率分别为 k1、 k2,若 k1k2=-2,求点 A 到直线 MN 的距离 d 的取值范围.
第八章 平面解析几何
高考一轮总复习 • 数学
圆锥曲线最值问题答题模板.
返回导航
第八章 平面解析几何
高考一轮总复习 • 数学
返回导航
【变式训练】 (2024·湖南三湘创新发展联合体联考)在直角坐标系xOy中,动点P到 直线x=4的距离是它到点M(1,0)的距离的2倍,设动点P的轨迹为曲线
C.
(1)求曲线C的方程; (2)直线l:x=my-1与曲线C交于A,B两点,求△MAB面积的最大 值.
则 y1+y2=-3m6m2-n 1,y1y2=33mn22--11(*)
第八章 平面解析几何
高考一轮总复习 • 数学
返回导航
由 k1k2=-2,得 y1y2+2(x1+1)(x2+1)=0, 即 y1y2+2(my1+n+1)(my2+n+1)=0, 整理得(2m2+1)y1y2+2m(n+1)(y1+y2)+2(n+1)2=0, 将(*)式代入得 3(n2-1)(2m2+1)-12m2n(n+1)+2(n+1)2(3m2-1)= 0. 化简可消去所有的含 m 项,解得 n=5 或 n=-1(舍去). 则直线 MN 的方程为 x-my-5=0,则 d= m62+1,

圆锥曲线范围问题含详解

圆锥曲线范围问题含详解

圆锥曲线取值范围问题一、圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.二、解决圆锥曲线中的范围或最值问题时,若题目的条件和结论能体现出明确的函数关系,则可先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求出新参数的范围,解题的关键是建立两个参数之间的等量关系; ③利用基本不等式求出参数的取值范围; ④利用函数值域的求法,确定参数的取值范围.三、例题.设C 为椭圆22184x y +=的左焦点,直线1y kx =+与椭圆交于A ,B 两点. (1)求CA CB +的最大值;(2)若直线1y kx =+与x 轴、y 轴分别交于M ,N ,且以MN 为直径的圆与线段MN 的垂直平分线的交点在椭圆内部(包括在边界上),求实数k 的取值范围。

【分析】(1)联立直线和椭圆方程,利用焦半径公式,结合韦达定理得到|CA |+|CB |关于k 的表达式,进而利用基本不等式求得最大值;(2)先根据直线的方程求得M ,N 的坐标,进而得到以线段MN 为直径的圆的方程和线段MN 的垂直平分线方程,解方程组求得圆与垂直平分线的交点坐标,利用点在椭圆内的条件得到不等式组求解即得k 的取值范围. 【详解】(1)22184x y +=的半长轴a =半短轴2,b =半焦距2,c =离心率c e a == 设()11,A x y ,()22,B x y ,联立221280y kx x y =+⎧⎨+-=⎩,可得()2212460k x kx ++-=, 所以122412kx x k +=-+,112,CA a ex CB =+==,则)1221212CA CB x x k +=+=≤+; (2)依题意可知1,0M k ⎛⎫- ⎪⎝⎭,(0,1)N ,所以圆的方程为1(1)0x x y y k ⎛⎫++-= ⎪⎝⎭①,垂直平分线为11122y x k k ⎛⎫=-++ ⎪⎝⎭②,联立①②消去y , 111111102222x x x x k k k k k ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫++-++-+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,即221111024x x x k k k ⎛⎫⎛⎫+++-= ⎪ ⎪⎝⎭⎝⎭,即22223411044x x x x k k k k ++++-=,即22234111111104x x k k k k ⎛⎫⎛⎫⎛⎫++++-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即22111104x x k k ⎛⎫++-= ⎪⎝⎭, 即21124x k ⎛⎫+= ⎪⎝⎭,解得11122x k =--,11122x k =-+, 对应11122y k =+,21122y k =-+, 两个交点的坐标为11111111,,,22222222k k k k ⎛⎫⎛⎫--+-+-+ ⎪ ⎪⎝⎭⎝⎭则可知2113822k ⎛⎫+≤ ⎪⎝⎭且2113822k ⎛⎫-+≤ ⎪⎝⎭,即111111k k ⎧≤≤⎪⎪⎨⎪≤≤+⎪⎩,即111k ≤≤,解得k ≥k ≤四、好题训练1.已知椭圆2222:1(0,0)x y C a b a b +=>>的焦距为.(1)求椭圆C 的标准方程;(2)若点()0,1A ,点B 在椭圆C 上,求线段AB 长度的最大值. 2.已知椭圆的长轴长是(,0). (1)求这个椭圆的标准方程;(2)如果直线y x m =+与这个椭圆交于两不同的点,求m 的取值范围.3.在平面直角坐标系xOy 中,已知点P到两点(M N 的距离之和等于4,设点P 的轨迹为曲线C . (1)求曲线C 的方程.(2)若直线2y kx =+与曲线C 有公共点,求实数k 的取值范围.4.已知椭圆C :22221x y a b +=()0a b >>,1F ,2F为椭圆的左右焦点,1,2P ⎛ ⎝⎭为椭圆上一点,且2PF =(1)求椭圆的标准方程;(2)设直线l :2x =-,过点2F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 、直线AB 于M 、N 两点,求tan MAN ∠最小值. 5.已知圆锥曲线E 上的点M 的坐标(),x y.(1)说明E 是什么图形,并写出其标准方程;(2)若斜率为1的直线l 与E 交于y 轴右侧不同的两点A ,B ,求直线l 在y 轴上的截距的取值范围.6.如图,点1F ,2F 分别是椭圆()2222:10x yC a b a b+=>>的左、右焦点,点A 是椭圆C 上一点,且满足2AF x ⊥轴,1230AF F ∠=︒,直线1AF 与椭圆C 相交于另一点B .(1)求椭圆C 的离心率;(2)若2ABF 的周长为M 为椭圆C 上任意一点,求1OM F M →→⋅的取值范围. 7.在平面直角坐标系xOy 中,点D ,E 的坐标分别为()2,0-,()2,0,P 是动点,且直线DP 与EP 的斜率之积等于14-.(1)求动点P 的轨迹C 的方程;(2)已知直线y kx m =+与椭圆:2214xy +=相交于A ,B 两点,与y 轴交于点M ,若存在m使得34OA OBOM ,求m 的取值范围.8.已知抛物线2:2(0)C y px p =>的焦点到准线的距离为1. (1)求C 的方程;(2)已知点()()1122,,,A x y B x y 在C 上,且线段AB 的中垂线l 的斜率为12-,求l 在y 轴上的截距的取值范围.9.已知圆F 1:(x +1)2+y 2=16,F 2(1,0),P 是圆F 1上的一个动点,F 2P 的中垂线l 交F 1P 于点Q .(1)求点Q 的轨迹E 的方程;(2)若斜率为k (k ≠0)的直线l 1与点Q 的轨迹E 交于不同的两点A ,B ,且线段AB 的垂直平分线过定点(13,0),求k 的取值范围.10.已知点A ,B 的坐标分别是()0,1-,()0,1,直线AM ,BM 相交于点M ,且它们的斜率之积为12-.(1)求点M 轨迹C 的方程;(2)若过点()2,0D 的直线l 与(1)中的轨迹C 交于不同的两点E 、F (E 在D 、F 之间),DE DF λ=,试求λ的取值范围. 11.已知平面内动点P与点)A和点()B 的连线的斜率之积为12-.(1)求动点P 的轨迹C 的方程;(2)过点()1,0F 的直线l 与曲线C 交于M ,N 两点,且OMF ONF S S λ=△△(113λ<<),求直线l 斜率的取值范围.12.已知抛物线C :22y px =()0p >的焦点为F,点(M a 在抛物线C 上. (1)若6MF =,求抛物线C 的标准方程;(2)若直线x y t +=与抛物线C 交于A ,B 两点,点N 的坐标为()1,0,且满足NA NB ⊥,原点O 到直线ABp 的取值范围. 13.已知一动圆M 与圆1C:(221x y ++=外切,且与圆2C:(2249x y -+=内切.(1)求动圆M 的圆心M 的轨迹方程E ;(2)若过点(1,0)A 的直线l (不与x 轴重合)与曲线E 交于,P Q 两点,线段PQ 的垂直平分线与x 轴交于点N ,求PQ AN的取值范围.14.在平面直角坐标系xOy中,直线:l y kx =22:14y E x +=相交于A 、B 两点,与圆22:4O x y +=相交于C 、D 两点. (1)若OC OD ⊥,求实数k 的值; (2)求2AB CD ⋅的取值范围.15.已知点()1,0F 是抛物线C :()220y px p =>的焦点,O 为坐标原点,过点F 的直线1l 交抛物线与A ,B 两点.(1)求抛物线C 的方程; (2)求OA OB ⋅的值;(3)如图,过点F 的直线2l 交抛物线于C ,D 两点(点A ,C 在x 轴的同侧,A C x x >),且12l l ⊥,直线AC 与直线BD 的交点为E ,记EFC △,ACF 的面积分别为1S ,2S ,求12S S 的取值范围.16.已知椭圆()22221x y a b a b +=>>的焦距为2,O 为坐标原点,F 为右焦点,点31,2E ⎛⎫ ⎪⎝⎭在椭圆上.(1)求椭圆的标准方程;(2)若直线l 的方程为4x =,AB 是椭圆上与坐标轴不平行的一条弦,M 为弦的中点,直线MO 交l 于点P ,过点O 与AB 平行的直线交/于点Q ,直线PF 交直线OQ 于点R ,直线QF 交直线MO 于点S .①证明:O ,S ,F ,R 四点共圆;②记△QRF 的面积为1S ,△QSO 的面积为2S ,求12S S 的取值范围. 17.已知椭圆C :22143x y +=左右焦点分别为12,F F ,P 在椭圆C 上且活动于第一象限,PP'垂直于y 轴交y 轴于P ',Q 为PP '中点;连接1QF 交y 轴于M ,连接2QF 并延长交直线:3l x 于N .(1)求直线1QF 与2QF 的斜率之积;(2)已知点(0,1)T -,求22MP NP TQ ⋅+的最大值.18.已知①如图,长为12的矩形ABCD ,以A 、B 为焦点的椭圆2222:1x y M a b+=恰好过CD 两点②设圆22(16x y +=的圆心为S ,直线l 过点T ,且与x 轴不重合,直线l 交圆S 于CD 两点,过点T 作SC 的平行线交SD 于M ,判断点M 的轨迹是否椭圆(1)在①②两个条件中任选一个条件,求椭圆M 的标准方程;(2)根据(1)所得椭圆M 的标准方程,若圆22:1O x y +=的切线l 与椭圆相交于P 、Q 两点,线段PQ 的中点为T ,求OT 的最大值.19.在平面直角坐标系xOy 中,点()2,0A -,过动点P 作直线4x =-的垂线,垂足为M ,且4AM AP ⋅=-.记动点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点A 的直线l 交曲线E 于不同的两点B 、C . ①若B 为线段AC 的中点,求直线l 的方程;②设B 关于x 轴的对称点为D ,求ACD △面积S 的取值范围.20()2222:10x y C a b a b +=>>经过点()3,1P .(1)求椭圆C 的标准方程;(2)设点P 关于x 轴的对称点为Q ,过点P 斜率为12,k k 的两条不重合的动直线与椭圆C 的另一交点分别为,M N (,M N 皆异于点Q ).若1213k k =,求点Q 到直线MN 的距离的取值范围.21.已知椭圆C :()222210x y a b a b+=>>的左,右焦点分别为1F ,2F ,椭圆C 上任意一点P 到焦点距离的最大值是最小值的3倍,且通径长为3(椭圆的通径:过椭圆的焦点且垂直于长轴的弦).(1)求椭圆C 的标准方程;(2)过2F 的直线l 与椭圆C 相交于不同的两点A ,B ,则1ABF 的内切圆面积是否存在最大值?若存在,则求出最大值;若不存在,请说明理由.22.已知F 是抛物线2:2(0)C y px p =>的焦点,点P 是抛物线上横坐标为2的点,且3PF =.(1)求抛物线的方程;(2)设直线l 交抛物线C 于,M N 两点,若4MN =,且弦MN 的中点在圆22()1x a y -+=上,求实数a 的取值范围.23.如图所示,在平面直角坐标系中,椭圆Γ:2212x y +=的左、右焦点分别为1F ,2F ,设P 是第一象限内Γ上一点,1PF ,2PF 的延长线分别交Γ于点1Q ,2Q .(1)求12PF Q △的周长;(2)设1r ,2r 分别为12PF Q △,21PF Q △的内切圆半径,求12r r -的最大值.24.设实数0k ≠,椭圆D :22162x y +=的右焦点为F ,过F 且斜率为k 的直线交D 于P 、Q两点,若线段PQ 的中为N ,点O 是坐标原点,直线ON 交直线3x =于点M .(1)若点P 的横坐标为1,求点Q 的横坐标; (2)求证:MF PQ ⊥; (3)求PQ MF的最大值.参考答案1.(1)22142x y +=(2 【分析】(1)由题意可得2c =2c e a a ===,求出a ,再由 b b ,从而可求得椭圆方程,(2)设()00,B x y ,然后利用距离公式和二次函数的性质求解即可 (1)依题意,得2c c ==2===⇒=c e a a ,所以b所以椭圆C 的标准方程为22142x y +=.(2)设()00,B x y ,则2200142x y +=,则有0y ≤≤所以20220041422y x y ⎛⎫=-=- ⎪⎝⎭,由两点间的距离公式,得()()222220000||14112y AB x y y ⎛⎫=+-=-+- ⎪⎝⎭ 2200025(1)6y y y =--+=-++,因为0y ≤≤所以当001,=-=y x ||AB 2.(1)2213x y +=;(2)22m -<<.【分析】(1)由已知得2a =c = (2)联立直线与椭圆方程,消元,利用韦达定理能求出m 的取值范围. 【详解】解:(1)由已知得2a =c =解得a =2321b ∴=-=, ∴椭圆的标准方程为2213x y +=.(2)由2213y x m x y =+⎧⎪⎨+=⎪⎩, 解方程组并整理得2246330x mx m ++-=, 有两个不同的交点∴222(6)44(33)12(4)0m m m ∆=-⨯⨯-=-->.解不等式得22m -<<.m ∴的取值范围(2,2)-.【点睛】本题考查椭圆标准方程的求法,考查实数的取值范围的求法,解题时要认真审题,注意根的判别式的合理运用.3.(1)2214x y +=;(2)|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭.【分析】(1)根据椭圆的定义,即可求得a ,c 的值,根据a ,b ,c 的关系,求得b 值,即可得答案. (2)联立直线与椭圆方程,根据有公共点,可得0∆≥,化简整理,即可求得答案. 【详解】解:(1)由己知得4PM PN MN +=>=由椭圆定义可知,轨迹C 是以M ,N为焦点,焦距长2c =24a =的椭圆. 所以222431b a c =-=-=,所以曲线C 的方程是2214x y +=.(2)由22214y kx x y =+⎧⎪⎨+=⎪⎩得()221416120k x kx +++=. ()()22216412146448k k k ∆=-⨯⨯+=-,因为直线2y kx =+与曲线C 有公共点, 所以0∆≥,即264480k -≥,解得k ≤k ≥故实数k的取值范围是|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭. 4.(1)2212x y +=(2)4 【分析】(1)设()1,0(0)F c c ->,根据题中条件求出1c =,得出1PF =出a 的值,再根据222b a c =-即可求出b 的值,即可求出椭圆方程;(2)由题意直线AB 的斜率必定不为零,于是可设直线:1AB x ty =+,设11(,)A x y ,22(,)B x y ,根据韦达定理、中点坐标公式、弦长公式,以及题中条件,得到23tan t MN MAN AN+∠==,再根据基本不等式即可求出结果. (1)解:设()2,0F c ,则2PF ==1c =,即()11,0F -.∴1PF =122PF PF a +==,∴a =1b ,故椭圆的标准方程为2212x y +=; (2)解:由题意直线AB 的斜率必定不为零,于是可设直线AB :1x ty =+, 联立方程22112x ty x y =+⎧⎪⎨+=⎪⎩得()222210t y ty ++-=, 设()11,A x y ,()22,B x y ,由题意,()()222442810t t t ∆=++=+>,由韦达定理12222ty y t -+=+,12212y y t =-+,则22Nt y t =-+,∴22221122N N t x ty t t =+=-+=++,MN AB ⊥,∴MNk t =-,∴222226222t MN t t +=--=++,又1212AN AB y y==-=∴23tan4tMNMANAN+⎫∠===≥=,即1t=±时取等号.5.(1)圆锥曲线E是以(),)为焦点,长轴长为22163x y+=(2)(3,-【分析】(1)由平面上两点间距离公式及椭圆的定义即得;(2)由题可设直线l:y x m=+,联立椭圆的方程,利用韦达定理可得3m-<<,即求. (1)由题可知点M到定点(),)的距离之和为∴圆锥曲线E是以(),)为焦点,长轴长为所以其标准方程为22163x y+=.(2)设直线l:y x m=+,()11,A x y,()22,B x y,由22163x yy x m⎧+=⎪⎨⎪=+⎩,消去y,得2234260x mx m++-=,由题意,有()()221221244326043263m mmx xmx x⎧∆=-⨯->⎪⎪⎪+=->⎨⎪⎪-=>⎪⎩,解得3m-<<所以直线l在y轴上的截距的取值范围为(3,-.6.(1(2)5,34⎡⎢⎣【分析】(1)结合已知条件,分别求出a 、c 与2||AF 的关系式,进而求得离心率;(2)结合(1)中结论和已知条件求出椭圆的方程,然后设出M 的坐标,然后利用数量积公式表示出1OM F M →→⋅,最后利用二次函数的性质求解即可. (1)在12Rt AF F △中,∵1230AF F ∠=︒, ∴122AF AF =,122F F =,由椭圆的定义,12223a AF AF AF =+=,22c , ∴椭圆离心率22c c e a a ====(2)2ABF 的周长为22AF BF AB ++=11224AF BF AF BF a +++==a =∵c e a ==,∴1c =,2222b a c =-=, ∴椭圆C 的标准方程为22132x y +=,可得()11,0F -,设()00,M x y ,则()00,OM x y →=,2200132x y +=, ∵()1001,F M x y →=+,∴()222210000002125123334OM F M x x y x x x x →→⎛⎫⋅=++=++-=++ ⎪⎝⎭,∵0x ≤≤所以由二次函数性质可知,当0x 1OM F M →→⋅的最大值为3当023x =-时,1OM F M →→⋅的最小值为54,所以1OM F M →→⋅的取值范围是5,34⎡⎢⎣.7.(1)()22124x y x +=≠±(2)11(1,)(,1)22-- 【分析】(1)根据直线DP 与EP 的斜率之积列方程,化简求得动点P 的轨迹C 的方程. (2)利用向量的坐标运算,由34OA OBOM 得到123x x =-,联立直线y kx m =+与椭圆:2214x y +=,化简写出根与系数关系、判别式,求得关于m 的不等式,并由此求得m 的取值范围. (1)设(),P x y ,则()1=22+24EP DP y y k k x x x ⋅=⋅-≠±-, 所以可得动点P 的轨迹C 的方程为()22124x y x +=≠±.(2)设()()1122,,,,A x y B x y 又()0,M m ,由34OA OBOM 得12123,30,4x x y y m ,123x x =-联立2214y kx m x y =+⎧⎪⎨+=⎪⎩可得()222418440k x kmx m +++-= 222(8)4(41)(4m 4)0km k ∆=-⨯+⨯->,即226416160k m -+>22410k m ∴-+>,且12221228414441km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩, 又123x x =-22441kmx k ,则222122224443()4141km m x x xk k , 222216410k m k m ,2221416m k m 代入22410k m -+>得22211014m m m-+->-, 2114m <<,解得11(1,)(,1)22m ∈--.m ∴的取值范围是11(1,)(,1)22--8.(1)22y x =;(2)9(,)16+∞.【分析】(1)利用p 的几何意义直接写出C 的方程即得.(2)根据给定条件设出直线l 及直线AB 的方程,联立直线AB 与抛物线C 的方程,求出弦AB 中点坐标,借助判别式计算作答. (1)因抛物线2:2(0)C y px p =>的焦点到准线的距离为1,则p =1, 所以C 的方程为22y x =. (2)依题意,设直线l 的方程为12y x b =-+,直线AB 的方程为y =2x +m ,设1122(,),(,)A x y B x y ,由222y x y x m⎧=⎨=+⎩消去x 得:20y y m -+=,由题意知Δ140m =->,得14m <,设线段AB 的中点为()00,N x y ,则120122y y y +==,再由002y x m =+,可得0142m x =-,又点N 在直线l 上,则111()2242m b =--+,于是584m b =-,从而有511984416b >-⨯=,所以l 在y 轴上的截距的取值范围为9(,)16+∞.9.(1)22143x y +=(2)15,,5⎛⎛⎫-∞+∞⎪⎝⎭⎝⎭【分析】(1)利用椭圆的定义可求椭圆方程.(2)设直线()()11122:,,,,l y kx m A x y B x y =+,联立直线方程和椭圆方程后利用韦达定理可求AB 的中垂线的方程,结合其过1,03⎛⎫⎪⎝⎭所得,k m 的等式,结合判别式为正可得k 的取值范围. (1)由题意可知:11||4PQ QF PF r +===, 由2F P 的中垂线l 交1F P 于点Q ,则2||QF PQ =, ∴211242QF QF F F +=>=,则点Q 的轨迹E 为以12,F F 为焦点,4为长轴长的椭圆, 即22224,22,3a c b a c ===-=, ∴点Q 的轨迹E 的方程为:22143x y +=.(2)设直线()()11122:,,,,l y kx m A x y B x y =+,将y kx m =+代入椭圆方程,消去y 得()2223484120k x kmx m +++-=,所以()()222(8)4344120km k m ∆=-+->即223043k m +>-①,由根与系数关系得122834km x x k +=-+,则()121226234my y k x x m k +=++=+, 所以线段AB 的中点M 的坐标为2243,3434km m k k ⎛⎫- ⎪++⎝⎭.又线段AB 的直平分线l '的方程为113y x k ⎛⎫=-- ⎪⎝⎭,由点M 在直线l '上,得22314134343m km k k k ⎛⎫=--- ⎪++⎝⎭,即24330k km ++=,所以()21433m k k=-+②,由①②得()222243439k k k+<+,∵2430k +>,∴22439k k +<,所以235k >,即k <k >所以实数的取值范围是15,,5⎛⎛⎫-∞+∞ ⎪⎝⎭⎝⎭.10.(1)2212x y +=(0x ≠),(2)31λ-<<且13λ≠.【分析】(1)设(,)M x y ,用坐标表示出已知条件即可得;(2)设11(,)F x y ,22(,)E x y ,由DE DF λ=得12,x x 的关系,12,y y 的关系,利用,E F 都是椭圆上的点,适合椭圆方程,可解得1x ,然后由1x ≤求得l 的范围,注意题中有01λ<<,10x ≠,结合起来求得正确的范围.(1)设(,)M x y ,则1112y y x x +-⋅=-(0x ≠),,化简得2212xy +=(0x ≠),此即为曲线C 的方程; (2)设11(,)F x y ,22(,)E x y ,221112x y +=,由DE DF λ=,得21212(2)x x y y λλ-=-⎧⎨=⎩, 212122x x y y λλλ=-+⎧⎨=⎩,E 在椭圆上,则2211(22)()12x y λλλ-++=,把221112x y =-代入得 222222111(22)(22)1222x x x λλλλλλ-+--++-=,解得1312x λλ-=,由1x <得,312λλ-33λ-<<+ 又由于E 在线段DF 上,01λ<<,10x =时,13λ=,所以31λ-<且13λ≠.11.(1)2212x y +=(x ≠;(2)()(),11,-∞-⋃+∞. 【分析】(1)设(),P x y,且x ≠12PA PB k k ⋅=-化简即可得动点P 的轨迹C 的方程;(2)设()11,A x y ,()22,B x y ,直线l :1x my =+与椭圆方程联立可得12y y +,12y y ,()221221242y y m y y m +-=+,由12OMF ONFS y S y λ==-, ()212121221122y y y y y y y y λλ+=++=--+,可得221422m m λλ---+=+,根据λ的范围求得12λλ--+的范围,再解不等式可得m 的范围,再求1m的范围即为直线l 斜率的取值范围.(1)设(),P x y,则22122PA PBy k k x ⋅===--,整理可得:2222x y +=,即2212x y +=(x ≠,所以动点P 的轨迹C 的方程为2212x y +=(x ≠,(2)由题意可知直线l 的斜率存在且不为0,设()11,A x y ,()22,B x y ,直线l 的方程为:1x my =+, 由22112x my x y =+⎧⎪⎨+=⎪⎩可得:()222210m y my ++-=, 所以12222m y y m -+=+,12212y y m -=+,因为11221212OMFONFOF y S y S y OF y λ⋅⋅===-⋅⋅,()()()2221222221244222y y m m m y y m m +-⎡⎤=⨯-+=⎣⎦++, ()222121212121212212122y y y y y y y y y y y y y y λλ+++==++=--+,所以221422m m λλ---+=+,即221422m m λλ+-=+,因为12y λλ=+-在1,13⎛⎫ ⎪⎝⎭上单调递减,所以1420,3y λλ⎛⎫=+-∈ ⎪⎝⎭,所以2244023m m <<+,因为22402m m >+,由224423m m <+可得:11m -<<, 所以直线l 的斜率11m<-或11m >.所以直线l 斜率的取值范围为()(),11,-∞-⋃+∞. 12.(1)24y x =或220y x =;(2)1,6⎡⎫+∞⎪⎢⎣⎭.【分析】(1)由已知可得202pa =,由抛物线的定义可得62pa +=,解方程求得p 的值即可求解; (2)设()11,A x y ,()22,B x y ,联立直线x y t +=与22y px =,由原点O 到直线AB 的距离不t 的范围,由韦达定理可得12x x +、12x x ,利用坐标表示0NA NB ⋅=可利用t 表示p ,再利用函数的单调性求得最值即可求解. (1)由题意及抛物线的定义得:62pa +=,又因为点(M a 在抛物线C 上,所以202pa =,由62202p a pa⎧+=⎪⎨⎪=⎩ 可得25p a =⎧⎨=⎩或101p a =⎧⎨=⎩,所以抛物线C 的标准方程为24y x =或220y x =. (2)设()11,A x y ,()22,B x y ,联立22x y t y px+=⎧⎨=⎩消去y 可得:()2220x p t x t -++=,则1222x x p t +=+,212x x t =,因为NA NB ⊥,所以()()()()()()121212121111NA NB x x y y x x t x t x ⋅=--+=--+--()()212122110x x t x x t =-++++=,所以()()22212210t t p t t -++++=,可得22121t t p t -+=+,由原点O 到直线AB≥2t ≥或2t ≤-, 因为0p >,所以2t ≤-不成立,所以2t ≥,因为221421411t t p t t t -+==++-++在[)2,+∞上单调递增, 所以2222112213p -⨯+≥=+,所以16p ≥, 即p 的取值范围为1,6⎡⎫+∞⎪⎢⎣⎭.13.(1)221168x y +=(2)( 【分析】(1)设圆M 的半径为r ,则1217MC r MC r ⎧=+⎪⎨=-⎪⎩,即可得到128MC MC +=,即可得到点M 的轨迹是以12,C C 为焦点的椭圆,求出,a b ,即可得到轨迹方程;(2)设l 方程为:(1)y k x =-,1122(,)(,)P x y Q x y ,,联立直线与椭圆方程,消元、列出韦达定理,根据弦长公式表示出PQ ,再求出线段PQ 垂直平分线方程,从而求出AN,即可得到PQ AN= (1)解:设圆M 的半径为r ,则1217MC r MC r ⎧=+⎪⎨=-⎪⎩12128MC MC C C ∴+=>=所以点M 的轨迹是以12,C C为焦点的椭圆,且4,a c ==2228b a c ∴=-=所以所求轨迹方程为221168x y +=. (2)解:经分析,l 斜率存在,设l 方程为:(1)y k x =-,1122(,)(,)P x y Q x y , 由22(11168y k x x y =-⎧⎪⎨+=⎪⎩)消去y 得:222212)42160k x k x k +-+-=( 221212224216,.1212k k x x x x k k -∴+==++PQ ∴=.. 121222(2)12ky y k x x k -+=+-=+ PQ ∴的中点坐标为2222,1212k k k k ⎛⎫- ⎪++⎝⎭所以线段PQ 垂直平分线方程为222121212k k y x k k k ⎛⎫+=-- ⎪++⎝⎭.令0y =得2212N kx k =+,221112N k AN x k +∴=-=+PQAN ∴= 0k ≠ 211k ∴+> 2141630301k ∴<-<+ PQ AN∴的取值范围为(.14. (1)k = (2)[)4,64 【分析】(1)求出圆心到直线l的距离为d =k 的值; (2)设()11,A x y 、()22,B x y ,将直线l 的方程与椭圆方程联立,列出韦达定理,利用弦长公式计算出AB 关于k 的表达式,利用勾股定理可求得CD 关于k 的表达式,再利用不等式的基本性质可求得2AB CD ⋅的取值范围. (1)解:因为OC OD ⊥,且圆O 的半径为2,所以点O 到直线l的距离2sin4d π===k =. (2)解:设()11,A x y 、()22,B x y,由2214y kx y x ⎧=⎪⎨+=⎪⎩,消y 整理得()22410k x ++-=,()()2224416160k k ∆=++=+>,所以12x x +=,12214x x k -=+,所以12 AB x x=-=()22414kk+=+.设圆心O到直线l的距离为d=所以CD===所以()()22222222411614142404644144k kkAB CDk k k k+++⋅=⋅⋅==-++++.244k+≥,则21144k<≤+,所以,[)22240644,644AB CDk⋅=-∈+.所以2AB CD⋅的取值范围为[)4,64.15.(1)24y x=(2)3-(3)()0,1【分析】(1)根据题意得到12p=,从而得到抛物线C:24y x=.(2)首先设直线AB的方程为1x ty=+,与抛物线24y x=联立得2440y ty--=,再利用韦达定理求解.(3)设211,4yA y⎛⎫⎪⎝⎭,222,4yC y⎛⎫⎪⎝⎭,21144,By y⎛⎫-⎪⎝⎭,22244,Dy y⎛⎫-⎪⎝⎭,再利用韦达定理和12ECFACFECSSS S AC==△△求解即可.(1)因为抛物线C:()220y px p=>,焦点()1,0F,所以12p=,解得2p=,所以抛物线C:24y x=.24y x =(2)设直线AB 的方程为1x ty =+,与抛物线24y x =联立得:2440y ty --=, 由韦达定理得124y y t +=,124y y =-,所以()22212121214416y yy y x x =⋅==,所以1212413OA OB x x y y ⋅=+=-+=- (3)设211,4y A y ⎛⎫⎪⎝⎭,222,4y C y ⎛⎫ ⎪⎝⎭,21144,B y y ⎛⎫- ⎪⎝⎭,22244,D y y ⎛⎫- ⎪⎝⎭, 因为21222112444AC y y k y y y y -==+-, 所以直线AC :2111244y y y x y y ⎛⎫-=- ⎪+⎝⎭,即1212124y y y x y y y y =+++。

圆锥曲线最值(范围)与定值(定点)解答题

圆锥曲线最值(范围)与定值(定点)解答题

圆锥曲线最值(范围)与定值(定点)解答题1.已知圆22:4O x y +=,点M 是圆O 上任意一点,M 在x 轴上的射影为N ,点P 满足3NP NM =,记点P 的轨迹为E .(1)求曲线E 的方程;(2)已知()1,0F ,过F 的直线m 与曲线E 交于,A B 两点,过F 且与m 垂直的直线n 与圆O 交于,C D 两点,求AB CD +的取值范围.【解析】(1)设点(),P x y ,由3NP NM =,得M x ⎛ ⎝,由点M 在圆22:4O x y +=上,所以224x +=,整理得22143x y +=,所以曲线E 的方程是22143x y +=(2)当直线m 的斜率为0时,AB 4=,CD =,4AB CD +=+ 当直线m 的斜率不存在时,3AB =,4CD =,7+=AB CD , 当直线m 的斜率存在且不为0时,设m :()1y k x =-,则n :()11y x k=--点O 到直线n 的距离d ,所以CD = 将()1y k x =-代入曲线E 的方程22143x y +=,整理得 ()22224384120kx k x k +-+-=,设()11,A x y ,()22,B x y则2122843k x x k +=+,212241243k x x k -=+,则()212212143k AB x k +=-=+,所以()2212143k AB CD k ++=++令)t ,则2122AB CD t t +=+,)2t ∈令()2122f t t t=+,)2t ∈,则()32420f t t '=-<,所以()f t 在)2上单调递减,所以()(7,4f t ∈+,即(7,4AB CD +∈+.综上所述,AB CD +的取值范围是7,4⎡+⎣.2.已知椭圆C 1:2222x y a b+=1(a >b >0)的右顶点与抛物线C 2:y 2=2px (p >0)的焦点重合,椭圆C 1的离心率为12,过椭圆C 1的右焦点F 且垂直于x 轴的直线截抛物线所得弦的长度为(1)求椭圆C 1和抛物线C 2的方程.(2)过点A (-4,0)的直线l 与椭圆C 1交于M ,N 两点,点M 关于x 轴的对称点为E .当直线l 绕点A 旋转时,直线EN 是否经过一定点?请判断并证明你的结论.【解析】 (1)设椭圆C 1的半焦距为c .依题意,可得a =2p,则C 2:y 2=4ax , 代入x =c ,得y 2=4ac ,即y =±, 则有222212ac c a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,所以a =2,b所以椭圆C 1的方程为2243x y +=1,抛物线C 2的方程为y 2=8x .(2)依题意,当直线l 的斜率不为0时,设其方程为x =ty -4,由22-43412x ty x y =⎧⎨+=⎩,得(3t 2+4)y 2-24ty +36=0. 设M (x 1,y 1),N (x 2,y 2),则E (x 1,-y 1).由Δ>0,得t <-2或t >2, 且y 1+y 2=22434t t +,y 1y 2=23634t +. 根据椭圆的对称性可知,若直线EN 过定点,此定点必在x 轴上,设此定点为Q (m ,0). 因为kNQ =kEQ ,所以2121---y yx m x m=,(x 1-m )y 2+(x 2-m )y 1=0, 即(ty 1-4-m )y 2+(ty 2-4-m )y 1=0,2ty 1y 2-(m +4)(y 1+y 2)=0, 即2t ·23634t +-(m +4)·22434tt +=0,得(3-m -4)t =(-m -1)t =0, 由t 是大于2或小于-2的任意实数知m =-1,所以直线EN 过定点Q (-1,0). 当直线l 的斜率为0时,直线EN 的方程为y =0,也经过点Q (-1,0), 所以当直线l 绕点A 旋转时,直线EN 恒过一定点Q (-1,0).3.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为1F ,2FP 为椭圆C 上一动点,12F PF △(1)求椭圆C 的方程;(2)过右焦点2F 的直线l 与椭圆C 交于A ,B 两点,试问:在x 轴上是否存在定点Q ,使得QA QB ⋅为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.【解析】 (1)设椭圆C 的半焦距为c c a =到直线12F F 的距离最大,则有()12max122F PF Sc b bc =⋅⋅=,于是得bc =222a b c =+,联立解得2,1,a b c === 所以椭圆C 的方程为:2214x y +=.(2)由(1)知,点)2F ,当直线斜率存在时,不妨设:(l y k x =,()11,A x y ,()22,B x y ,由22(44y k x x y ⎧=⎪⎨+=⎪⎩消去y 并整理得,2222(14)1240k x x k +-+-=,12x x +=212212414k x x k -=+, 假定在x 轴上存在定点Q 满足条件,设点(,0)Q t ,则221212121212()())((QA QB x t x t y y x x t x x t k x x ⋅=--+=-+++22221212(1)))(3k x x t x x t k =+-++++222222124(1)314)k k t t k k -=+⋅-++++=,当24t -=,即t =213464QA QB t ⋅=-=-,当直线l 斜率不存在时,直线l :x =C 交于点A ,B ,由对称性不妨令11),)22A B -,当点Q 坐标为时,3131,,8282QA QB ⎛⎫⎛⎫=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,11132264QA QB ⎛⎫⎛⎫⋅=⋅-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以存在定点Q ,使得QA QB ⋅为定值1364-.4.已知椭圆2222C :1(0)x y a b a b+=>>的离心率为12,直线1:22l y x =-+与椭圆C 有且仅有一个公共点A .(Ⅰ)求椭圆C 的方程及A 点坐标;(Ⅱ)设直线l 与x 轴交于点B .过点B 的直线与C 交于E ,F 两点,记点A 在x 轴上的投影为G ,T 为BG 的中点,直线AE ,AF 与x 轴分别交于M ,N 两点.试探究||||TM TN ⋅是否为定值?若为定值,求出此定值;否则,请说明理由.【解析】(1)设椭圆C 的半焦距为c ,则12c a =,则224a c =,22223b a c c =-=, 所以椭圆C 的方程为:2222143x y c c+=,将椭圆C 的方程与直线l 的方程联立得:222430x x c -+-=, 所以244(43)0c ∆=-⨯-=,解得:21c =, 所以24a =,23b =,故椭圆C 的方程为22143x y +=, 此时将21c =代入222430x x c -+-=得:2210x x -+=, 所以1x =,此时32y =。

2025高考数学圆锥曲线中的最值、范围问题课件练习题

2025高考数学圆锥曲线中的最值、范围问题课件练习题
例1
训练1
例2
训练2
返回目录
突破2
圆锥曲线中的最值、范围问题
方法技巧
圆锥曲线中最值(范围)问题的求解方法
几何法
若题目的条件和结论明显能体现几何特征及意义,则考虑利用图形性质来
解决.
若题目的条件和结论能体现一种明确的函数,则可首先建立目标函数,再
代数法 求这个函数的最值,求函数最值的常用方法有配方法、判别式法、基本不
第八章
平面解析几何
突破2 圆锥曲线中的最值、范围问题
目录
Contents
01
练习 练透好题 精准分层
突破2
圆锥曲线中的最值、范围问题
命题点1 最值问题
例1 [2023全国卷甲]已知直线 x -2 y +1=0与抛物线 C : y 2=2 px ( p >0)交于 A , B
两点,| AB |=4 15 .
.
例1
训练1
例2
训练2
返回目录
突破2
圆锥曲线中的最值、范围问题
又 · =( x 3 -1, y 3 )·( x 4 -1, y 4 )= x 3 x 4 -( x 3 + x 4 )+1+ y 3 y 4 =0,
所以
2
2

4−2
2
+1+
4

=0,化简得 m 2 + k 2 +6 km =4.
(2)若动点 P 与双曲线 C 的两个焦点 F 1, F 2的距离之和为定值(大于| F 1 F 2|),且
cos
1
∠ F 1 PF 2的最小值为- ,求动点 P 的轨迹方程.
9
[解析]
2
2
由椭圆定义得 P 点轨迹为椭圆,可设其轨迹方程为 2 + 2 =1( a > b >0),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九节 圆锥曲线中的最值、范围、证明问题突破点(一) 圆锥曲线中的最值问题圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.考点贯通 抓高考命题的“形”与“神”利用几何性质求最值[例1] 设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( )A .9,12B .8,11C .8,12D .10,12[解析] 如图,由椭圆及圆的方程可知两圆圆心分别为椭圆的两个焦点,由椭圆定义知|P A |+|PB |=2a =10,连接P A ,PB 分别与圆相交于两点,此时|PM |+|PN |最小,最小值为|P A |+|PB |-2R =8;连接P A ,PB 并延长,分别与圆相交于两点,此时|PM |+|PN |最大,最大值为|P A |+|PB |+2R =12,即最小值和最大值分别为8,12.[答案] C[方法技巧]利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解,也叫做几何法.建立目标函数求最值本节主要包括3个知识点: 1.圆锥曲线中的最值问题; 2.圆锥曲线中的范围问题; 3.圆锥曲线中的几何证明问题.[例2] 已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF =3FM .(1)若|PF |=3,求点M 的坐标; (2)求△ABP 面积的最大值.[解] (1)由题意知焦点F (0,1),准线方程为y =-1. 设P (x 0,y 0),由抛物线定义知|PF |=y 0+1,得y 0=2, 所以P (22,2)或P (-22,2),由PF =3FM ,得M ⎝⎛⎭⎫-223,23或M ⎝⎛⎭⎫223,23. (2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),由⎩⎪⎨⎪⎧y =kx +m ,x 2=4y ,得x 2-4kx -4m =0. 于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m , 所以AB 中点M 的坐标为(2k,2k 2+m ).由PF =3FM ,得(-x 0,1-y 0)=3(2k,2k 2+m -1),所以⎩⎪⎨⎪⎧x 0=-6k ,y 0=4-6k 2-3m .由x 20=4y 0得k 2=-15m +415, 由Δ>0,k 2≥0,得-13<m ≤43.又因为|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=41+k 2·k 2+m , 点F (0,1)到直线AB 的距离为d =|m -1|1+k 2,所以S △ABP =4S △ABF =8|m -1|k 2+m =16153m 3-5m 2+m +1. 记f (m )=3m 3-5m 2+m +1⎝⎛⎭⎫-13<m ≤43, 令f ′(m )=9m 2-10m +1=0, 解得m 1=19,m 2=1,可得f (m )在⎝⎛⎭⎫-13,19上是增函数,在⎝⎛⎭⎫19,1上是减函数,在⎝⎛⎭⎫1,43上是增函数, 又f ⎝⎛⎭⎫19=256243>f ⎝⎛⎭⎫43=59.所以当m =19时,f (m )取到最大值256243,此时k =±5515.所以△ABP 面积的最大值为2565135. [方法技巧](1)当题目中给出的条件有明显的几何特征,考虑用图象性质来求解.(2)当题目中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值.求函数最值的常用方法有配方法、判别式法、单调性法、三角换元法等.利用基本不等式求最值[例3] 已知椭圆M :x 2a 2+y 23=1(a >0)的一个焦点为F (-1,0),左、右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点.(1)当直线l 的倾斜角为45°时,求线段CD 的长;(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值. [解] (1)由题意,c =1,b 2=3, 所以a 2=4,所以椭圆M 的方程为x 24+y 23=1,易求直线方程为y =x +1,联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =x +1,消去y ,得7x 2+8x -8=0,设C (x 1,y 1),D (x 2,y 2),Δ=288,x 1+x 2=-87,x 1x 2=-87,所以|CD |=2|x 1-x 2|= 2(x 1+x 2)2-4x 1x 2=247.(2)当直线l 的斜率不存在时,直线方程为x =-1, 此时△ABD 与△ABC 面积相等,|S 1-S 2|=0;当直线l 的斜率存在时,设直线方程为y =k (x +1)(k ≠0), 联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x +1),消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0, Δ>0,且x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,此时|S 1-S 2|=2||y 2|-|y 1||=2|y 2+y 1|=2|k (x 2+1)+k (x 1+1)|=2|k (x 2+x 1)+2k |=12|k |3+4k 2,因为k ≠0,上式=123|k |+4|k |≤1223|k |·4|k |=12212=3当且仅当k =±32时等号成立,所以|S 1-S 2|的最大值为 3. [方法技巧](1)求最值问题时,一定要注意对特殊情况的讨论.如直线斜率不存在的情况,二次三项式最高次项的系数的讨论等.(2)利用基本不等式求函数的最值时,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.能力练通 抓应用体验的“得”与“失”1.[考点一]如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA +OB =(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.解析:(1)由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 因为OA +OB =(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以⎩⎪⎨⎪⎧ -2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,知抛物线过点P 的切线与l 平行时,△ABP 的面积最大,又y ′=-x ,所以-x 0=2,故x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d =|2×(-2)-(-2)-2|22+(-1)2=45=455.由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,故x 1+x 2=-4,x 1x 2=-4, 所以|AB |=1+k 2×(x 1+x 2)2-4x 1x 2=1+22×(-4)2-4×(-4)=410. 所以△ABP 面积的最大值为410×4552=8 2.2.[考点二]平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,左、右焦点分别是F 1,F 2.以F 1为圆心、以3为半径的圆与以F 2为圆心、以1为半径的圆相交,且交点在椭圆C 上.(1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点.过点P 的直线y =kx +m 交椭圆E于A ,B 两点,射线PO 交椭圆E 于点Q .①求|OQ ||OP |的值;②求△ABQ 面积的最大值. 解析:(1)由题意知2a =4,则a =2. 又c a =32,a 2-c 2=b 2,可得b =1, 所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1.①设P (x 0,y 0),|OQ ||OP |=λ,由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1, 又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2.②设A (x 1,y 1),B (x 2, y 2). 将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2.(*)则有x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m 21+4k 2.因为直线y =kx +m 与y 轴交点的坐标为(0,m ),所以△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2⎝⎛⎭⎫4-m 21+4k 2m 21+4k 2.设m 21+4k 2=t .将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.(**) 由(*)(**)可知0<t ≤1,因此S =2(4-t )t =2-t 2+4t ,故S ≤2 3. 当且仅当t =1,即m 2=1+4k 2时取得最大值2 3. 由①知,△ABQ 的面积为3S , 所以△ABQ 面积的最大值为6 3.3.[考点三]定圆M :(x +3)2+y 2=16,动圆N 过点F (3,0)且与圆M 相切,记圆心N 的轨迹为E .(1)求轨迹E 的方程;(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且|AC |=|BC |,当△ABC 的面积最小时,求直线AB 的方程.解析:(1)∵F (3,0)在圆M :(x +3)2+y 2=16内, ∴圆N 内切于圆M . ∵|NM |+|NF |=4>|FM |,∴点N 的轨迹E 为椭圆,且2a =4,c =3,∴b =1, ∴轨迹E 的方程为x 24+y 2=1.(2)①当AB 为长轴(或短轴)时,S △ABC =12|OC |·|AB |=2.②当直线AB 的斜率存在且不为0时,设直线AB 的方程为y =kx ,A (x A ,y A ),由题意,C 在线段AB 的中垂线上,则OC 的方程为y =-1kx .联立方程⎩⎪⎨⎪⎧x 24+y 2=1,y =kx得,x 2A =41+4k 2,y 2A =4k 21+4k 2,∴|OA |2=x 2A +y 2A =4(1+k 2)1+4k 2.将上式中的k 替换为-1k ,可得|OC |2=4(1+k 2)k 2+4.∴S △ABC =2S △AOC =|OA |·|OC |=4(1+k 2)1+4k 2·4(1+k 2)k 2+4=4(1+k 2)(1+4k 2)(k 2+4). ∵(1+4k 2)(k 2+4)≤(1+4k 2)+(k 2+4)2=5(1+k 2)2,∴S △ABC ≥85,当且仅当1+4k 2=k 2+4,即k =±1时等号成立,此时△ABC 面积的最小值是85.∵2>85,∴△ABC 面积的最小值是85,此时直线AB 的方程为y =x 或y =-x .突破点(二) 圆锥曲线中的范围问题圆锥曲线中的范围问题是高考中的热点问题,常涉及不等式的恒成立问题、函数的值域问题,综合性比较强.解决此类问题常用几何法和判别式法.考点贯通 抓高考命题的“形”与“神”利用判别式构造不等关系求范围[例1] 已知A ,B ,C 是椭圆M :x 2a 2+y 2b2=1(a >b >0)上的三点,其中点A 的坐标为(23,0),BC 过椭圆的中心,且AC ·BC =0,|BC |=2|AC |. (1)求椭圆M 的方程;(2)过点(0,t )的直线l (斜率存在时)与椭圆M 交于两点P ,Q ,设D 为椭圆M 与y 轴负半轴的交点,且|DP |=|DQ |,求实数t 的取值范围.[解] (1)因为|BC |=2|AC |且BC 过(0,0),则|OC |=|AC |.因为AC ·BC =0,所以∠OCA =90°, 即C (3,3).又因为a =23,设椭圆的方程为x 212+y 212-c 2=1,将C 点坐标代入得312+312-c 2=1,解得c 2=8,b 2=4.所以椭圆的方程为x 212+y 24=1.(2)由条件D (0,-2),当k =0时,显然-2<t <2; 当k ≠0时,设l :y =kx +t ,⎩⎪⎨⎪⎧x 212+y 24=1,y =kx +t ,消去y 得(1+3k 2)x 2+6ktx +3t 2-12=0 由Δ>0可得t 2<4+12k 2,①设P (x 1,y 1),Q (x 2,y 2),PQ 中点H (x 0,y 0),则x 0=x 1+x 22=-3kt1+3k 2,y 0=kx 0+t =t1+3k 2,所以H ⎝⎛⎭⎫-3kt 1+3k 2,t1+3k 2,由|DP |=|DQ |,所以DH ⊥PQ ,即k DH =-1k ,所以t1+3k 2+2-3kt 1+3k 2-0=-1k ,化简得t =1+3k 2,②所以t >1,将②代入①得,1<t <4. 所以t 的范围是(1,4). 综上可得t ∈(1,2).[方法技巧]圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围. (2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.利用函数性质求范围[例2] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过点M (1,0)的直线l 交椭圆C 于A ,B 两点,|MA |=λ|MB |,且当直线l 垂直于x 轴时,|AB |= 2.(1)求椭圆C 的方程;(2)若λ∈⎣⎡⎦⎤12,2,求弦长|AB |的取值范围.[解] (1)由已知e =22,得c a =22, 又当直线垂直于x 轴时,|AB |=2, 所以椭圆过点⎝⎛⎭⎫1,22, 代入椭圆方程得1a 2+12b2=1,∵a 2=b 2+c 2,联立方程可得a 2=2,b 2=1, ∴椭圆C 的方程为x 22+y 2=1.(2)当过点M 的直线斜率为0时,点A ,B 分别为椭圆长轴的端点, λ=|MA ||MB |=2+12-1=3+22>2或λ=|MA ||MB |=2-12+1=3-22<12,不符合题意. ∴直线的斜率不能为0.设直线方程为x =my +1,A (x 1,y 1),B (x 2,y 2), 将直线方程代入椭圆方程得:(m 2+2)y 2+2my -1=0,由根与系数的关系可得,⎩⎨⎧y 1+y 2=-2mm 2+2①,y 1y 2=-1m 2+2②,将①式平方除以②式可得:y 1y 2+y 2y 1+2=-4m 2m 2+2,由已知|MA |=λ|MB |可知,y 1y 2=-λ,∴-λ-1λ+2=-4m 2m 2+2,又知λ∈⎣⎡⎦⎤12,2, ∴-λ-1λ+2∈⎣⎡⎦⎤-12,0, ∴-12≤-4m 2m 2+2≤0,解得m 2∈⎣⎡⎦⎤0,27. |AB |2=(1+m 2)|y 1-y 2|2=(1+m 2)[(y 1+y 2)2-4y 1y 2]=8⎝ ⎛⎭⎪⎫m 2+1m 2+22=8⎝⎛⎭⎫1-1m 2+22, ∵m 2∈⎣⎡⎦⎤0,27, ∴1m 2+2∈⎣⎡⎦⎤716,12,∴|AB |∈⎣⎡⎦⎤2,928. [方法技巧]利用函数性质解决圆锥曲线中求范围问题的关键是建立求解关于某个变量的函数,通过求这个函数的值域确定目标的取值范围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算方便,在建立函数的过程中也可以采用多个变量,只要在最后结果中把多个变量化为单个变量即可,同时要特别注意变量的取值范围.1.[考点一]设F 1,F 2分别是椭圆E :x 24+y 2b 2=1(b >0)的左、右焦点,若P 是该椭圆上的一个动点,且1PF ·2PF 的最大值为1.(1)求椭圆E 的方程;(2)设直线l :x =ky -1与椭圆E 交于不同的两点A ,B ,且∠AOB 为锐角(O 为坐标原点),求k 的取值范围.解析:(1)易知a =2,c =4-b 2,b 2<4, 所以F 1(-4-b 2,0),F 2(4-b 2,0),设P (x ,y ),则1PF ·2PF =(-4-b 2-x ,-y )·(4-b 2-x ,-y )=x 2+y 2-4+b 2=x 2+b 2-b 2x 24-4+b 2=⎝⎛⎭⎫1-b 24x 2+2b 2-4.因为x ∈[-2,2],故当x =±2,即点P 为椭圆长轴端点时,1PF ·2PF 有最大值1, 即1=⎝⎛⎭⎫1-b24×4+2b 2-4,解得b 2=1. 故所求椭圆E 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =ky -1x 24+y 2=1得(k 2+4)y 2-2ky -3=0,Δ=(-2k )2+12(4+k 2)=16k 2+48>0,故y 1+y 2=2kk 2+4,y 1·y 2=-3k 2+4.又∠AOB 为锐角,故OA ·OB =x 1x 2+y 1y 2>0,又x 1x 2=(ky 1-1)(ky 2-1)=k 2y 1y 2-k (y 1+y 2)+1,所以x 1x 2+y 1y 2=(1+k 2)y 1y 2-k (y 1+y 2)+1=(1+k 2)·-34+k 2-2k 24+k 2+1=-3-3k 2-2k 2+4+k 24+k 2=1-4k 24+k 2>0,所以k 2<14,解得-12<k <12,故k 的取值范围是⎝⎛⎭⎫-12,12. 2.[考点二]已知圆心为H 的圆x 2+y 2+2x -15=0和定点A (1,0),B 是圆上任意一点,线段AB 的中垂线l 和直线BH 相交于点M ,当点B 在圆上运动时,点M 的轨迹记为曲线C .(1)求C 的方程;(2)过点A 作两条相互垂直的直线分别与曲线C 相交于P ,Q 和E ,F ,求PE ·QF 的取值范围.解析:(1)由x 2+y 2+2x -15=0,得(x +1)2+y 2=16, 所以圆心为H (-1,0),半径为4.连接MA ,由l 是线段AB 的中垂线,得|MA |=|MB |, 所以|MA |+|MH |=|MB |+|MH |=|BH |=4, 又|AH |=2<4.根据椭圆的定义可知,点M 的轨迹是以A ,H 为焦点,4为长轴长的椭圆,所以a 2=4,c 2=1,b 2=3,所求曲线C 的方程为x 24+y 23=1.(2)由直线EF 与直线PQ 垂直,可得AP ·AE =AQ ·AF =0,于是PE ·QF =(AE -AP )·(AF -AQ )=AE ·AF +AP ·AQ .①当直线PQ 的斜率不存在时,直线EF 的斜率为零,此时可不妨取P ⎝⎛⎭⎫1,32,Q ⎝⎛⎭⎫1,-32,E (2,0),F (-2,0),所以PE ·QF =⎝⎛⎭⎫1,-32·⎝⎛⎭⎫-3,32=-3-94=-214. ②当直线PQ 的斜率为零时,直线EF 的斜率不存在,同理可得PE ·QF =-214. ③当直线PQ 的斜率存在且不为零时,直线EF 的斜率也存在,于是可设直线PQ 的方程为y =k (x -1),P (x P ,y P ),Q (x Q ,y Q ),AP =(x P -1,y P ),AQ =(x Q -1,y Q ),则直线EF 的方程为y =-1k(x -1).将直线PQ 的方程代入曲线C 的方程,并整理得,(3+4k 2)x 2-8k 2x +4k 2-12=0, 所以x P +x Q =8k 23+4k 2,x P ·x Q =4k 2-123+4k 2.于是AP ·AQ =(x P -1)(x Q -1)+y P ·y Q =(1+k 2)[x P x Q -(x P +x Q )+1] =(1+k 2)⎝ ⎛⎭⎪⎫4k 2-123+4k 2-8k 23+4k 2+1=-9(1+k 2)3+4k 2.将上面的k 换成-1k ,可得AE ·AF =-9(1+k 2)4+3k 2,所以PE ·QF =AE ·AF +AP ·AQ =-9(1+k 2)⎝⎛⎭⎫13+4k 2+14+3k 2. 令1+k 2=t ,则t >1,于是上式化简整理可得,PE ·QF =-9t ⎝⎛⎭⎫14t -1+13t +1=-63t 212t 2+t -1=-63494-⎝⎛⎭⎫1t -122. 由t >1,得0<1t <1,所以-214<PE ·QF ≤-367.综合①②③可知,PE ·QF 的取值范围为⎣⎡⎦⎤-214,-367.突破点(三) 圆锥曲线中的几何证明问题圆锥曲线中的几何证明问题多出现在解答题中,难度较大,多涉及线段或角相等以及位置关系的证明等.考点贯通 抓高考命题的“形”与“神”圆锥曲线中的几何证明问题[典例] 如图,圆C 与x 轴相切于点T (2,0),与y 轴正半轴相交于两点M ,N (点M 在点N 的下方),且|MN |=3.(1)求圆C 的方程;(2)过点M 任作一条直线与椭圆x 28+y 24=1相交于两点A ,B ,连接AN ,BN ,求证:∠ANM =∠BNM .[解] (1)设圆C 的半径为r (r >0),依题意,圆心C 的坐标为(2,r ). ∵|MN |=3,∴r 2=⎝⎛⎭⎫322+22,解得r 2=254. ∴r =52,圆C 的方程为(x -2)2+⎝⎛⎭⎫y -522=254. (2)证明:把x =0代入方程(x -2)2+⎝⎛⎭⎫y -522=254,解得y =1或y =4,即点M (0,1),N (0,4). ①当AB ⊥x 轴时,可知∠ANM =∠BNM =0.②当AB 与x 轴不垂直时,可设直线AB 的方程为y =kx +1. 联立方程 ⎩⎪⎨⎪⎧y =kx +1,x 28+y 24=1,消去y 得,(1+2k 2)x 2+4kx -6=0.设直线AB 交椭圆于A (x 1,y 1),B (x 2,y 2)两点,则x 1+x 2=-4k 1+2k 2,x 1x 2=-61+2k 2. ∴k AN +k BN =y 1-4x 1+y 2-4x 2=kx 1-3x 1+kx 2-3x 2=2kx 1x 2-3(x 1+x 2)x 1x 2.若k AN +k BN =0,则∠ANM =∠BNM . ∵2kx 1x 2-3(x 1+x 2)=-12k 1+2k 2+12k1+2k 2=0, ∴∠ANM =∠BNM .1.设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,M 是椭圆上任意一点,且△MF 1F 2的周长是4+2 3.(1)求椭圆C 1的方程;(2)设椭圆C 1的左、右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E ,若点C 满足AB ⊥BC ,AD ∥OC ,连接AC 交DE 于点P ,求证:PD =PE .解析:(1)由e =32,知c a =32,所以c =32a , 因为△MF 1F 2的周长是4+23,所以2a +2c =4+23,所以a =2,c =3, 所以b 2=a 2-c 2=1,所以椭圆C 1的方程为:x 24+y 2=1.(2)证明:由(1)得A (-2,0),B (2,0), 设D (x 0,y 0),所以E (x 0,0), 因为AB ⊥BC ,所以可设C (2,y 1),所以AD =(x 0+2,y 0),OC =(2,y 1), 由AD ∥OC 可得:(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2.所以直线AC 的方程为:y 2y 0x 0+2=x +24. 整理得:y =y 02(x 0+2)(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得:y =y 02,即点P 的坐标为⎝⎛⎭⎫x 0,y 02,所以P 为DE 的中点,所以PD =PE .2.已知点A (-4,0),直线l :x =-1与x 轴交于点B ,动点M 到A ,B 两点的距离之比为2.(1)求点M 的轨迹C 的方程;(2)设C 与x 轴交于E ,F 两点,P 是直线l 上一点,且点P 不在C 上,直线PE ,PF 分别与C 交于另一点S ,T ,证明:A ,S ,T 三点共线.解析:(1)设点M (x ,y ),依题意,|MA ||MB |=(x +4)2+y 2(x +1)2+y 2=2,化简得x 2+y 2=4,即轨迹C 的方程为x 2+y 2=4. (2)证明:由(1)知曲线C 的方程为x 2+y 2=4,令y =0得x =±2,不妨设E (-2,0),F (2,0),如图所示.设P (-1,y 0),S (x 1,y 1),T (x 2,y 2),则直线PE 的方程为y =y 0(x +2),由⎩⎪⎨⎪⎧y =y 0(x +2),x 2+y 2=4得(y 20+1)x 2+4y 20x +4y 20-4=0, 所以-2x 1=4y 20-4y 20+1,即x 1=2-2y 20y 20+1,y 1=4y 0y 20+1.直线PF 的方程为y =-y 03(x -2),由⎩⎪⎨⎪⎧y =-y 03(x -2),x 2+y 2=4得(y 20+9)x 2-4y 20x +4y 20-36=0, 所以2x 2=4y 20-36y 20+9,即x 2=2y 20-18y 20+9,y 2=12y 0y 20+9.所以k AS =y 1x 1+4=4y 0y 20+12-2y 20y 20+1+4=2y 0y 20+3, k AT =y 2x 2+4=12y 0y 20+92y 20-18y 20+9+4=2y 0y 20+3,所以k AS =k AT ,所以A ,S ,T 三点共线.[全国卷5年真题集中演练——明规律] 1.(2014·新课标全国卷Ⅰ)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程. 解析:(1)设F (c,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1. 所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0.所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 2.(2013·新课标全国卷Ⅱ)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1 (a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.解析:(1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1, 由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3.所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1,解得⎩⎨⎧x =433,y =-33,或⎩⎨⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n ⎝⎛⎭⎫-533<n <3, 设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y 23=1得3x 2+4nx +2n 2-6=0. 于是x 3,4=-2n ±2(9-n 2)3.因为直线CD 的斜率为1, 所以|CD |=2|x 4-x 3|=439-n 2. 由已知,四边形ACBD 的面积S =12|CD |·|AB |=8699-n 2.当n =0时,S 取得最大值,最大值为863.所以四边形ACBD 面积的最大值为863.[课时达标检测] 难点增分课时——设计3级训练,考生据自身能力而选 一、全员必做题1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F 2(1,0),且该椭圆过定点M ⎝⎛⎭⎫1,22.(1)求椭圆E 的标准方程;(2)设点Q (2,0),过点F 2作直线l 与椭圆E 交于A ,B 两点,且2F A =λ2F B ,λ∈[-2,-1],以QA ,QB 为邻边作平行四边形QACB ,求对角线QC 长度的最小值.解析:(1)由题易知c =1,1a 2+12b 2=1,又a 2=b 2+c 2,解得b 2=1,a 2=2,故椭圆E 的标准方程为x 22+y 2=1.(2)设直线l :x =ky +1,由⎩⎪⎨⎪⎧x =ky +1,x 22+y 2=1得(k 2+2)y 2+2ky -1=0, Δ=4k 2+4(k 2+2)=8(k 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则可得y 1+y 2=-2k k 2+2,y 1y 2=-1k 2+2.QC =QA +QB =(x 1+x 2-4,y 1+y 2)=⎝ ⎛⎭⎪⎫-4(k 2+1)k 2+2,-2k k 2+2,∴|QC |2=|QA +QB |2=16-28k 2+2+8(k 2+2)2,由此可知,|QC |2的大小与k 2的取值有关.由2F A =λ2F B 可得y 1=λy 2,λ=y 1y 2,1λ=y 2y 1(y 1y 2≠0).从而λ+1λ=y 1y 2+y 2y 1=(y 1+y 2)2-2y 1y 2y 1y 2=-6k 2-4k 2+2,由λ∈[-2,-1]得⎝⎛⎭⎫λ+1λ∈⎣⎡⎦⎤-52,-2,从而-52≤-6k 2-4k 2+2≤-2,解得0≤k 2≤27. 令t =1k 2+2,则t ∈⎣⎡⎦⎤716,12,∴|QC |2=8t 2-28t +16=8⎝⎛⎭⎫t -742-172, ∴当t =12时,|QC |min =2.2.已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3. (1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.解析:(1)由抛物线的定义得|AF |=2+p2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)证明:设以点F 为圆心且与直线GA 相切的圆的半径为r. 因为点A(2,m)在抛物线E :y2=4x 上, 所以m =±2 2.由抛物线的对称性,不妨设A(2,22). 由A(2,22),F(1,0)可得直线AF 的方程为 y =22(x -1).由⎩⎨⎧y =22x -1,y2=4x ,得2x2-5x +2=0,解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2. 又G(-1,0),故直线GA 的方程为22x -3y +22=0, 从而r =|22+22|8+9=4 217 .又直线GB 的方程为22x +3y +22=0, 所以点F 到直线GB 的距离 d =|22+22|8+9=4217=r.这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.3.已知中心在原点,焦点在y 轴上的椭圆C ,其上一点P 到两个焦点F 1,F 2的距离之和为4,离心率为32. (1)求椭圆C 的方程;(2)若直线y =kx +1与曲线C 交于A ,B 两点,求△OAB 面积的取值范围. 解析:(1)设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0),由条件知,⎩⎪⎨⎪⎧2a =4,e =c a =32,a 2=b 2+c 2,解得a =2,c =3,b =1,故椭圆C 的方程为y 24+x 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1得(k 2+4)x 2+2kx -3=0, 故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4,设△OAB 的面积为S ,由x 1x 2=-3k 2+4<0,知S =12×1×|x 1-x 2|=12(x 1+x 2)2-4x 1x 2=2k 2+3(k 2+4)2,令k 2+3=t ,知t ≥3, ∴S =21t +1t+2. 对函数y =t +1t (t ≥3),知y ′=1-1t 2=t 2-1t 2>0,∴y =t +1t 在t ∈[3,+∞)上单调递增,∴t +1t ≥103,∴0<1t +1t+2≤316,∴0<S ≤32. 故△OAB 面积的取值范围为⎝⎛⎦⎤0,32. 二、重点选做题1.过离心率为22的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (1,0)作直线l 与椭圆C 交于不同的两点A ,B ,设|F A |=λ|FB |,T (2,0).(1)求椭圆C 的方程;(2)若1≤λ≤2,求△ABT 中AB 边上中线长的取值范围. 解析:(1)∵e =22,c =1,∴a =2,b =1, 即椭圆C 的方程为:x 22+y 2=1.(2)①当直线的斜率为0时,显然不成立. ②设直线l :x =my +1,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x 2+2y 2-2=0,x =my +1得(m 2+2)y 2+2my -1=0,则y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2,由|F A |=λ|FB |,得y 1=-λy 2, ∵-λ+1-λ=y 1y 2+y 2y 1,∴-λ+1-λ+2=(y 1+y 2)2y 1y 2=-4m 2m 2+2,∴m 2≤27,又∵AB 边上的中线长为12 |TA +TB |=12(x 1+x 2-4)2+(y 1+y 2)2=4m 4+9m 2+4(m 2+2)2= 2(m 2+2)2-7m 2+2+4∈⎣⎡⎦⎤1,13216.2.如图所示,已知直线l 过点M (4,0)且与抛物线y 2=2px (p >0)交于A ,B 两点,以弦AB 为直径的圆恒过坐标原点O .(1)求抛物线的标准方程;(2)设Q 是直线x =-4上任意一点,求证:直线QA ,QM ,QB 的斜率依次成等差数列. 解析:(1)设直线l 的方程为x =ky +4, 代入y 2=2px 得y 2-2kpy -8p =0.设A (x 1,y 1),B (x 2,y 2),则有y 1+y 2=2kp ,y 1y 2=-8p ,而AB 为直径,O 为圆上一点,所以OA ·OB =0, 故0=x 1x 2+y 1y 2=(ky 1+4)(ky 2+4)-8p =k 2y 1y 2+4k (y 1+y 2)+16-8p , 即0=-8k 2p +8k 2p +16-8p ,得p =2, 所以抛物线方程为y 2=4x .(2)设Q (-4,t )由(1)知y 1+y 2=4k ,y 1y 2=-16,所以y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32.因为k QA =y 1-t x 1+4=y 1-t y 214+4=4(y 1-t )y 21+16,k QB =y 2-t x 2+4=y 2-t y 224+4=4(y 2-t )y 22+16,k QM =t -8,所以k QA +k QB =4(y 1-t )y 21+16+4(y 2-t )y 22+16=4×(y 1-t )(y 22+16)+(y 2-t )(y 21+16)(y 21+16)(y 22+16)=4×y 1y 22+16y 1-ty 22-16t +y 2y 21+16y 2-ty 21-16t y 21y 22+16(y 21+y 22)+16×16=-t (y 21+y 22)-32t 8×16+4(y 21+y 22)=-t (16k 2+32)-32t 8×16+4(16k 2+32) =-t 4=2k QM . 所以直线QA ,QM ,QB 的斜率依次成等差数列.三、冲刺满分题1.已知椭圆C :x 24+y 2b 2=1(0<b <2)的离心率为32,与坐标轴不垂直且不过原点的直线l 1与椭圆C 相交于不同的两点A ,B (如图所示),过AB 的中点M 作垂直于l 1的直线l 2,设l 2与椭圆C 相交于不同的两点C ,D ,且CN =12CD . (1)求椭圆C 的方程;(2)设原点O 到直线l 1的距离为d ,求d |MN |的最大值. 解析:(1)依题意得,⎩⎪⎨⎪⎧a =2,c a =32,c 2=a 2-b 2,解得b 2=1, 所以椭圆C 的方程为x 24+y 2=1. (2)设直线l 1:y =kx +m (k ≠0,m ≠0), 由⎩⎪⎨⎪⎧ x 24+y 2=1,y =kx +m 得(1+4k 2)x 2+8kmx +4m 2-4=0, 设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ x 1+x 2=-8mk 1+4k 2,x 1x 2=4m 2-41+4k 2.故M ⎝⎛⎭⎫-4mk 1+4k 2,m 1+4k 2. l 2:y -m 1+4k 2=-1k ⎝⎛⎭⎫x +4mk 1+4k 2,即y =-1k x -3m 1+4k 2.由⎩⎨⎧ y =-1k x -3m 1+4k 2,x 24+y 2=1, 得⎝⎛⎭⎫1+4k 2x 2+24m k (1+4k 2)x +36m 2(1+4k 2)2-4=0, 设C (x 3,y 3),D (x 4,y 4),则x 3+x 4=-24mk (1+4k 2)(k 2+4), 故N ⎝⎛⎭⎫-12mk (1+4k 2)(k 2+4),-3mk 2(1+4k 2)(k 2+4). 故|MN |=|x M -x N | 1+1k 2=4|m |(k 2+1)k 2+1(1+4k 2)(k 2+4). 又d =|m |1+k 2,所以d |MN |=(1+4k 2)(k 2+4)4(k 2+1)2. 令t =k 2+1(t >1),则d |MN |=4t 2+9t -94t 2=-94t 2+94t +1=-94⎝⎛⎭⎫1t -122+2516≤2516(当且仅当t =2时取等号), 所以d |MN |的最大值为2516. 2.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=6,直线y =kx 与椭圆交于A ,B 两点.(1)若△AF 1F 2的周长为16,求椭圆的标准方程;(2)若k =24,且A ,B ,F 1,F 2四点共圆,求椭圆离心率e 的值; (3)在(2)的条件下,设P (x 0,y 0)为椭圆上一点,且直线P A 的斜率k 1∈(-2,-1),试求直线PB 的斜率k 2的取值范围.解析:(1)由题意得c =3,根据2a +2c =16,得a =5. 结合a 2=b 2+c 2,解得a 2=25,b 2=16.所以椭圆的方程为x 225+y 216=1. (2)法一:由⎩⎨⎧x 2a 2+y 2b 2=1,y =24x ,得⎝⎛⎭⎫b 2+18a 2x 2-a 2b 2=0. 设A (x 1,y 1),B (x 2,y 2).所以x 1+x 2=0,x 1x 2=-a 2b 2b 2+18a 2,由AB ,F 1F 2互相平分且共圆,易知,AF 2⊥BF 2,因为2F A =(x 1-3,y 1),2F B =(x 2-3,y 2), 所以2F A ·2F B =(x 1-3)(x 2-3)+y 1y 2=⎝⎛⎭⎫1+18x 1x 2+9=0. 即x 1x 2=-8,所以有-a 2b 2b 2+18a 2=-8, 结合b 2+9=a 2,解得a 2=12(a 2=6舍去), 所以离心率e =32.(若设A (x 1,y 1),B (-x 1,-y 1)相应给分) 法二:设A (x 1,y 1),又AB ,F 1F 2互相平分且共圆,所以AB ,F 1F 2是圆的直径,所以x 21+y 21=9,又由椭圆及直线方程综合可得:⎩⎨⎧ x 21+y 21=9,y 1=24x 1,x 21a 2+y 21b 2=1.由前两个方程解得x 21=8,y 21=1, 将其代入第三个方程并结合b 2=a 2-c 2=a 2-9, 解得a 2=12,故e =32. (3)由(2)的结论知,椭圆方程为x 212+y 23=1, 由题可设A (x 1,y 1),B (-x 1,-y 1),k 1=y 0-y 1x 0-x 1,k 2=y 0+y 1x 0+x 1,所以k 1k 2=y 20-y 21x 20-x 21, 又y 20-y 21x 20-x 21=3⎝⎛⎭⎫1-x 2012-3⎝⎛⎭⎫1-x 2112x 20-x 21=-14, 即k 2=-14k 1,由-2<k 1<-1可知,18<k 2<14. 即直线PB 的斜率k 2的取值范围是⎝⎛⎭⎫18,14.。

相关文档
最新文档