psa变压吸附制氧
空气分离的几种主要技术

空气分离的几种主要技术变压吸附(PSA)空气分离技术自世界上第一套变压吸附制氧设备用于废水处理出现来,PSA工艺得到了迅猛的发展,相继用于提取氢气、氦气、氩气、甲烷、氧气、二氧化碳、氮气、干燥空气等应用中。
与此同时,各种吸附剂品种和性能也得到显著的提高。
随着吸附剂性能和品种不断提高,新的纯化分离技术被用于优化的吸附工艺。
变压吸附制氧工艺经历了超大气压常压解吸流程到穿透大气压真空解吸流程。
吸附床数量也有数床转化到双床直至单床。
使流程更实用经济。
1.变压吸附工艺一般包括以下四个步骤:(1)原料空气通过吸附床的入口端,在高吸附压力下选择吸附氮气(根据生产气而定),而未被吸附的产品(氧)从吸附床的另一端释放出来。
(2)吸附床泄压到较低的解吸压力,解吸出来的氮气从吸附床的进料端排出。
(3)通过引入吹除气进一步解吸被吸附的氮气。
(4)吸附床重新增压到较高的吸附压力。
在一个周期内按照上述顺序重复操作并随后按需补入原料气即可继续得到产品气。
2.VPSA双床制氧工艺过程简介, 双床VPSA制氧工艺流程简图1 -12所示。
系统包括一台空气增压机,内装高效吸附能力的合成氟石分子筛,切换阀门一套,真空泵一台,富氧缓冲罐一台以及计算机控制系统。
该装置在一个循环周期内大致经历(1)吸附床以某一中间压力增压到高的吸附压力。
(2)在较高吸附压力条件下,从吸附床进料端引入原料空气并从吸附床出口端流出很少被吸附的富氧产品气。
(3)顺放(或均压)用吸附床产品端释放出来的气体对系统中的另一初始压力较低的吸附床充压至某一中间压力。
(4)逆流泄压到较低的解吸压力,吸附床内废气从原料进口端释放出来。
(5)接着,吸附床被均压到前面所说的某一中间压力,均压气流经吸附床产品端,它来于系统中另一初始压力较高的吸附床。
1进口过滤器2空气压气机3冷却器4真空泵5、6吸附床7储气罐8备用液态氧9氧压机10负载跟踪装置11计算机控制和分析装置12远程控制中心图1-12双床流程简图此外,在每只吸附床的相同部位对床层内温度进行监测,以便跟踪每个床内的温度曲线。
PSA制氧对比表

氧气输出压力
最大1MPa
最大0.45MPa
最大1MPa
安全性等
储存氧小;系统工作无噪音。
有电动设备,维护、安全等管理难度大要求高;系统工作噪音大。
储存氧量大;蒸发膨胀系数大;系统工作无噪音。
系统运行
的可靠性
中高
中低
高
说明:LGC就是Liquid Gas Cylinder即杜瓦罐。
PSA制氧系统与液氧系统的经济分析与比较
项目
LGC液氧系统
PSA制氧机
VIE液氧系统
氧气浓度
99.50%
90%-96%
99.50%
初投资
万元
240.00万元
37.00万元
使用寿命
15年
10年
15年
氧气生产成本
17.8元/立方
13.2元/立方
4.2元/立方
维护保养费
平均7000.00元/年
平均173565.00元/年
PSA就是Pressure Swing Adsorption,即变压吸附。
VIE就是Vacuum Insulated Evaporator即低温贮氧槽。
丹东天茂气体有限公司
变压吸附工作基本原理

变压吸附工作基本原理变压吸附(pressure swing adsorption,PSA)是一种常用的气体分离和纯化技术,广泛应用于化工、能源、环保等领域。
它的基本原理是利用吸附剂对气体分子的亲和力差异,通过周期性调节操作压力实现吸附剂的吸附和解吸,从而实现气体的分离与纯化。
首先,吸附阶段。
将混合气体通过压缩机压缩至一定的压力,然后进入变压吸附器。
在吸附器中填充有一种或多种吸附剂,如活性炭、分子筛等。
这些吸附剂具有可以对特定气体分子进行选择性吸附的能力。
吸附剂会吸附相对亲和力较大的气体分子,而对亲和力较小的气体分子则不易吸附。
其次,脱附阶段。
随着时间的推移,吸附剂逐渐饱和,即吸附剂上已经充满了吸附气体。
为了实现吸附气体的脱附,需要将吸附器的压力降低到较低的水平,以减少吸附剂与气体分子之间的相互作用力。
这样一来,亲和力较大的气体分子将从吸附剂上解吸下来,进而形成脱附气流。
然后,再生阶段。
为了使吸附剂再次具有吸附能力,需要对其进行再生。
再生是通过将脱附气流进一步抽真空,以减少吸附剂上的压力,从而促进脱附气体分子的解离和脱附。
脱附气流被抽出后,可通过冷却和脱水等处理方式进一步回收相应气体,并用于其他用途。
最后,平衡阶段。
在经历了吸附、脱附和再生等阶段后,变压吸附器重新达到平衡状态。
在平衡状态下,吸附器继续吸附和释放气体,以满足特定的工艺需求。
这个阶段被称为平衡阶段,也是一个动态过程。
平衡阶段的时间可以根据需求灵活调整,以满足不同应用的要求。
通过不断重复上述吸附、脱附、再生和平衡的循环操作,可以实现气体的高效分离和纯化。
变压吸附技术具有操作简便、能耗低、设备结构简单等优点,因此在气体分离和纯化中得到广泛应用。
例如,它可以用于制氧、制氢、天然气脱硫和脱水等方面的工艺中。
总之,变压吸附工作原理是利用吸附剂对气体分子的选择性吸附特性,通过周期性调节操作压力,周期性地吸附和脱附气体分子,实现气体的分离和纯化。
这种工艺具有高效、节能的特点,因此在各个领域都有着广泛的应用前景。
vpsa制氧机与psa制氧机有什么区别?

安泰科VPSA制氧技术一、技术分析安泰科的变压吸附制氧技术广泛应用于化工、电子、纺织、煤炭、石油、天然气、医药、食品、玻璃、机械、粉未冶金、磁性材料等行业。
针对不同行业不同用户对氧气使用的不同要求,安泰科提供个性化、专业化的VPSA制氧设备,充分满足不同用户的用气要求。
我公司制氧机组具有工艺流程简单、常温生产、自动化程度高、开停机方便、易损件少、便于维护、生产成本低等特点。
二、工作原理SPOX系列制氧机是根据变压吸附原理,采用高品质的碳分子筛作为吸附剂,在一定的压力下,从空气中制取氧气。
经过净化干燥的压缩空气,在吸附器中进行加压吸附、减压脱附。
由于动力学效应,氧在碳分子筛微孔中扩散速率远大于氧,在吸附未达到平衡时,氧在气相中被富集起来,形成成品氧气。
然后减压至常压,吸附剂脱附所吸附的氧气等其它杂质,实现再生。
一般在系统中设置两个吸附塔,一塔吸附产氧,另一塔脱附再生,通过PLC程序自动控制,使两塔交替循环工作,以实现连续生产高品质氧气之目的。
三、SPOX系列节能型制氧装置的技术优势安装方便设备结构紧凑、整体撬装,占地小无需基建投资,投资少。
优质碳分子筛具有吸附容量大,抗压性能高,使用寿命长。
正常操作使用寿命可达10年。
故障安全系统为用户配置故障系统报警及自动启动功能,确保系统运行安全。
比其它供氧方式更经济VPSA工艺是一种简便的制氧方法,以空气为原料,能耗仅为空压机所消耗的电能,具有运行成本低、能耗低、效率高等优点。
机电仪一体化设计实现自动化运行进口PLC控制全自动运行。
氧气流量压力纯度可调并连续显示,可设定压力、流量、纯度报警并实现远程自动控制和检测计量,实现真正无人操作。
先进的控制系统使操作变得更加简单,可实现无人值守和远程控制,并可对各种工况进行实时监控,从而保证了气体纯度、流量的稳定。
高品质元器件是运行稳定可靠的保证气动阀门、电磁先导阀门等关键部件采用进口配置,运行可靠,切换速度快,使用寿命达百万次以上,故障率低,维修方便,维护费用低。
psa制氧筛工作原理

psa制氧筛工作原理
PSA制氧筛是一种通过分子筛技术实现分离空气中氧气和氮气的设备。
其工作原理基于分子筛的物理吸附和解吸作用。
分子筛是一种具有特殊结构的多孔材料,其内部有许多微小的孔道和通道。
这些孔道和通道的大小和形状可以选择性地吸附和分离不同大小和性质的分子。
在PSA制氧筛中,分子筛通常采用沸石分子筛。
PSA制氧筛的工作过程分为两个步骤:吸附和解吸。
1. 吸附
在吸附阶段,空气被压缩并通过进气口进入PSA制氧筛。
空气中的氧气和氮气分子通过分子筛的微孔被吸附,而其他气体分子则被排除。
由于氧气和氮气的分子大小和形状不同,它们在分子筛中的吸附速度也不同。
氮气分子比氧气分子更易被分子筛吸附,因此在吸附阶段,氮气分子被更多地吸附,而氧气分子则相对较少。
2. 解吸
在解吸阶段,通过降低压力或改变分子筛的温度等方式,使得分子筛中的氮气分
子逐渐解吸出来,而氧气分子则保持在分子筛中。
这样,就实现了氧气和氮气的分离。
解吸出来的氮气和其他气体一起被排出,而纯氧气则从出气口流出。
总之,PSA制氧筛是一种通过分子筛技术实现分离空气中氧气和氮气的设备。
其工作原理基于分子筛的物理吸附和解吸作用,通过不同大小和形状的分子在分子筛中的吸附速度差异,实现了氧气和氮气的分离。
PSA制氧成本分析及比较

PSA制氧成本分析及比较1:瓶装供氧:医院购买氧气各地区不同,平均20~38元/瓶,其单位氧成这大约是5.5元/Nm3。
钢瓶供氧在搬运、操作和管理方面的人工成本很高。
这是一种不人道的供氧方式,大多数发达国家都已将其淘汰。
液态供氧:医院购买液氧为2.4元/公斤,单位成本约为3.2元/nm3。
液氧罐的加注需要专人管理。
灌装过程中液位测量误差大,容易造成经济损失。
同时,液氧供应设备占地面积大。
海恩康供氧设备:设备实现正常运行后,仅耗费维持设备运行的电能,单位制氧成本低,通常约为1.2元/nm3。
设备采用微电脑plc,可实现在它是智能控制,无需专门人员操作,日常维护和维修很少,人工成本低。
2、经济效率我认为使用PSA制氧系统最重要的不仅是它的成本,而且对患者和护理人员来说更方便。
当患者急需氧气时,用最短的时间让患者吸氧,可以及时给患者带来好消息,节省过去携带氧气瓶带来的体力和操作麻烦。
最重要的是,患者的紧急救援过程不够及时,相对成本也很高。
千佛山医院过去也使用氧气瓶。
比较一下我们医院的情况,看看它的经济成本。
目前,我院拥有700张病床,每天使用约40个氧气瓶;每瓶30元;全年使用氧气瓶40个×365天×30元=43.8万元。
我院目前使用的PSA制氧系统(asa250双机)在正常运行时约为5kW,按每天24小时工作计算,而(实际每天工作时间为13-16小时)的制氧量为每天50瓶,每瓶成本按5kW×0,7元×24小时/50瓶=1.68元/瓶计算。
年电费=5KW×0.38元×24小时×365天=16654元。
两项的对比是:438000元―16654元=421346元。
而psa制氧系统(asa-250型)价格:1613520元。
预计四年后收回成本:43.8万元×4年=175.2万元;变压吸附制氧系统四年净利润421346元×四年=1685384元;1685384元-1613520元=71864元经过数字的对比我们完全可以看出单收回成本4年是完全可以的。
变压吸附法制氧操作规程

变压吸附法制氧操作规程1.编制目的:本规程旨在规范变压吸附法(PSA)制氧操作,确保设备顺利高效运行,生产安全可靠。
2.适用范围:本规程适用于变压吸附法制氧装置的日常操作。
3.安全操作:a.操作人员必须经过专业培训,并熟悉设备的结构及各个部件功能。
b.操作过程中,操作人员必须佩戴个人防护装备,包括眼镜、防护服和手套等。
c.在操作前,检查设备各个部件是否处于正常状态,如存在异常应及时通知维修人员处理。
d.操作人员必须熟悉紧急停机程序,能够迅速响应紧急情况。
e.在操作过程中,禁止随意更改设备参数及操作流程。
4.操作步骤:a.开机前i.确保氧气按需供应。
ii. 检查设备各个部件是否处于正常状态,并检查设备是否与电源连接正常。
iii. 检查设备储气罐的氧气储量,并按需充气。
b.开机操作i.打开主电源,启动设备。
ii. 检查进料气体的压力,确保处于法定范围内。
iii. 启动吸附过程,确定操作参数及时间。
c.操作过程监控i.监控吸附过程中的压力、流量、温度等参数,并进行记录。
ii. 监测吸附塔是否出现异常情况,如氧气泄漏或者异常噪音等,若发现问题应及时停机检查处理。
d.脱附操作i.触发脱附过程,并检查脱附压力、温度等参数。
ii. 监控脱附气体的流量、浓度等参数,并记录。
e.关机操作i.在确认脱附过程完毕后,关闭主电源。
ii. 检查设备各个部件是否处于停机状态,并清理设备周围环境。
5.维护与保养:a.定期对设备进行检查和清洁,并记录检查结果。
b.对设备进行必要的润滑和故障排查。
c.定期更换关键部件,如吸附剂。
6.紧急情况处理:a.在发生设备异常或紧急情况时,操作人员必须立即停机,并按照紧急停机程序进行处理。
7.记录与文件:a.每次操作结束后,必须记录操作参数、压力、温度等数据,并进行归档。
b.对设备维护保养的记录必须及时更新。
通过遵守以上规程,可以确保变压吸附(PSA)法制氧操作的顺利进行,同时确保操作的安全性和可靠性。
PSA制氮机工作原理及工艺流程(普及基本知识)

PSA制氮机工作原理及工艺流程(普及基本知识)PSA制氮机工作原理及工艺流程(普及基本知识)PSA制氮机工作原理及工艺流程一、基础知识1.气体知识氮气作为空气中含量最丰富的气体,取之不竭,用之不尽。
它无色、无味,透明,属于亚惰性气体,不维持生命。
高纯氮气常作为保护性气体,用于隔绝氧气或空气的场所。
氮气(N2)在空气中的含量为78.084%(空气中各种气体的容积组分为:N2:78.084%、O2:20.9476%、氩气:0.9364%、CO2:0.0314%、其它还有H2、CH4、N2O、O3、SO2、NO2等,但含量极少)。
分子量为28,沸点:-195.8℃,冷凝点:-210℃。
2.压力知识变压吸附(PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。
现使用的吸附剂——碳分子筛最佳吸附压力为0.75~0.9MPa,整个制氮系统中气体均是带压的,具有冲击能量。
二、PSA制氮工作原理:变压吸附制氮机是以碳分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离出氮气的自动化设备。
碳分子筛是一种以煤为主要原料,经过研磨、氧化、成型、碳化并经过特殊的孔型处理工艺加工而成的,表面和内部布满微孔的柱形颗粒状吸附剂,呈黑色,其孔型分布如下图所示:碳分子筛的孔径分布特性使其能够实现O2、N2的动力学分离。
这样的孔径分布可使不同的气体以不同的速率扩散至分子筛的微孔之中,而不会排斥混合气(空气)中的任何一种气体。
碳分子筛对O2、N2的分离作用是基于这两种气体的动力学直径的微小差别,O2分子的动力学直径较小,因而在碳分子筛的微孔中有较快的扩散速率,N2分子的动力学直径较大,因而扩散速率较慢。
压缩空气中的水和CO2的扩散同氧相差不大,而氩扩散较慢。
最终从吸附塔富集出来的是N2和Ar的混合气。
碳分子筛对O2、N2的吸附特性可以用平衡吸附曲线和动态吸附曲线直观表现出来:由这两个吸附曲线可以看出,吸附压力的增加,可使O2、N2的吸附量同时增大,且O2的吸附量增加幅度要大一些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
psa变压吸附制氧
机
psa变压吸附制氧机是一种用于制备大量高纯度氧气的工艺,采用了变压吸附原理,将液态氧转化为高纯度(99.5%以上)的气态分子氧。
它的工作原理是:先将液态氧放入到一个容器中,然后在该容器内通过变压吸附装置将氧气压缩,使氧气溶解在吸附剂表面,生成气相氧;随后,减压、升温,使氧气从吸附剂中脱附,即可得到高纯度的气态氧。
此外,psa变压吸附制氧机还具有节能、低噪音、高效率等优点,使其在工业制氧方面得到了广泛应用。