变压吸附制氧技术
变压吸附制氧工艺流程

变压吸附制氧工艺流程以变压吸附制氧工艺流程为主题,我们就来了解一下这项技术的流程和原理。
变压吸附制氧技术是一种利用分子筛吸附和脱附氧气的技术。
该技术可用于空分设备中的氧气制备,也可用于空气净化和工业气体制备中。
先来看看变压吸附制氧的原理。
该技术利用了分子筛的吸附性能,而分子筛是一种孔径大小相等的多孔材料,孔径大小与要吸附的分子大小相当。
在这里,我们以空气中的氧气为例,介绍一下该技术的原理。
当空气经过分子筛时,分子筛内的分子会被吸附下来,分子筛中的空气中只留下氮气。
根据分子筛的吸附原理,氧气分子比氮气分子更容易被分子筛吸附,所以氧气分子会被分子筛吸附下来,而氮气分子则通过分子筛逸出。
当分子筛中的氧气达到饱和时,分子筛需要进行再生,将吸附的氧气脱附出来。
通过调节分子筛的压力和温度,可以实现分子筛的吸附和脱附。
接下来,我们来看看变压吸附制氧的工艺流程。
首先是空气的预处理。
空气预处理主要是去除空气中的水分和杂质,以防止水分和杂质对分子筛的影响。
然后将预处理后的空气送入变压吸附设备中。
变压吸附设备主要由吸附塔、再生塔、压缩机和电气控制系统组成。
空气从塔顶进入吸附塔,经过分子筛吸附氧气,氮气则通过分子筛逸出,最后从塔底排出。
当吸附塔中的氧气达到饱和时,需要进行再生。
再生过程中,用压缩机将空气压缩并送入再生塔中,分子筛中的氧气会被脱附出来,最后从再生塔排出。
再生后的分子筛可以重新进入吸附塔进行吸附。
变压吸附制氧技术的优点在于其能够高效地制备氧气,同时还可以净化空气。
此外,该技术还可以用于工业气体制备中,例如制备氮气和氢气等。
变压吸附制氧技术是一种高效、可靠、节能的氧气制备技术。
通过对分子筛的吸附和脱附,实现了氧气的制备和空气的净化。
该技术不仅应用广泛,而且未来还有较大的发展潜力。
深冷空分制氧VPSA变压吸附制氧技术经济特点比较

深冷空分制氧VPSA变压吸附制氧技术经济特点比较深冷空分制氧技术是通过空分设备将空气分离成氧气和氮气的工艺。
该工艺采用低温分离法,通过冷凝、压缩和膨胀等工艺,将空气中的氧气和氮气分离。
这种技术成本较高,但制氧质量好,稳定性强,适用于高纯氧气的制取。
VPSA变压吸附制氧技术是通过可控变压吸附原理,利用适当的吸附剂,将空气中的氧气和其他杂质分离,从而制取高纯度氧气。
该工艺成本较低,适用于低纯度氧气的制取。
比较两种技术的经济特点,主要从以下几个方面进行比较:1.投资成本:深冷空分制氧技术的设备成本较高,需要大型设备和复杂的处理工艺,投资成本较高。
而VPSA变压吸附制氧技术设备成本较低,可以约为深冷空分制氧技术的一半左右。
2.运营成本:深冷空分制氧技术的氧气纯度高,稳定性好,但能耗较高。
运营成本较高。
而VPSA变压吸附制氧技术的氧气纯度较低,但能耗较低,运营成本较低。
3.产品适用范围:深冷空分制氧技术可以制取高纯度氧气,适用于医疗、化工、电子等行业对氧气纯度要求较高的场合。
而VPSA变压吸附制氧技术适用于一般工业领域对氧气纯度要求不高的场合,如燃烧、氧化等。
4.技术难度和可操作性:深冷空分制氧技术操作复杂,所需技术力量较高。
而VPSA变压吸附制氧技术操作简单,技术难度较低。
综上所述,深冷空分制氧技术适用于对氧气纯度要求较高、投资成本更高的场合,如医疗、电子等行业。
而VPSA变压吸附制氧技术适用于对氧气纯度要求不高、投资成本较低的场合,如工业领域。
在选择制氧技术时,需要考虑到产品要求、投资成本、运营成本等因素,综合权衡选择合适的技术。
变压吸附制氧技术方案模板

ZY-1000/80Nm3/h变压吸附制氧技术方案目录第一章:公司简介第二章:变压吸附制氧简介第三章:技术方案第四章:近两年变压吸附设备部分业绩表第五章:公司投资成功案例一、公司简介成都宏达新元科技有限公司是一家专业从事气体设备及气体产品应用研究开发的专业公司。
公司的核心业务包括:设备销售、租赁、整改★VPSA真空变压吸附制氧★PSA变压吸附制氧设备★制氮设备、氮气纯化装置★LNG系统成套设备和LNG泵企业拥有现代化标准生产车间和大批专业从事VPSA真空变压吸附、PSA变压吸附、气体分离及机械技术人员,为气体及气体设备领域用户提供独特的产品、服务、技术咨询和解决方案。
我公司下辖的企业有四川简阳天欣气体公司和广西百色聚源气体公司,为客户提供优质高纯度的气体。
企业还在四川省内与成都欣国力低温公司、简阳川空通用机械厂建立了良好的合作关系。
我公司于2011年3月17日在梧州市苍梧县工商行政管理处登记注册成立的广西川桂气体科技有限公司。
其性质为有限责任。
注册资金2000万元人民币。
我们将不断完善售后服务、改善设备工艺、加强质量管理,并与研究机构密切配合,为广大用户提供更出色的产品与服务。
二、变压吸附制氧技术简介变压吸附制氧技术是近几十年发展起来的一种空分制氧工艺。
与传统的深冷空分制氧装置相比,变压吸附制氧装置具有投资少、能耗低、运行维护费用低、工艺条件温和(常温、低压)、工艺流程简单、自动化程度高、操作灵活性高(可随时开停)、建设工期短和安全性好等优点,因此得到国内外大型气体公司和研究机构的广泛关注,并纷纷投入巨大的人力物力研究开发。
自九十年代国外开发成功高效锂基制氧分子筛后,变压吸附空分制氧技术开始迅猛发展并得到广泛应用。
目前,在很多用氧场合下变压吸附空分制氧可替代深冷空分制氧,并且装置的经济性明显优于传统的深冷空分制氧装置。
2.1.变压吸附空气分离制氧原理空气中的主要组份是氮和氧,因此可选择对氮和氧具有不同吸附选择性的吸附剂,设计适当的工艺过程,使氮和氧分离制得氧气。
变压吸附制氧原理

变压吸附制氧原理引言:随着社会发展和人口老龄化趋势的加剧,氧气作为一种重要的医疗气体,广泛应用于临床医学、制药工业等领域。
而变压吸附制氧技术则是一种高效、可靠、节能的制氧方法,本文将从原理、设备和应用三个方面进行介绍。
一、变压吸附制氧的原理变压吸附制氧是利用吸附剂对空气中的氮气进行选择性吸附分离,从而得到高纯度的氧气。
其原理主要包括以下几个步骤:1. 吸附:将空气通过吸附剂床层,吸附剂表面的孔隙结构能够选择性地吸附氮气。
吸附剂通常采用具有大孔隙结构和高吸附容量的物质,如分子筛、活性炭等。
2. 脱附:当吸附剂达到一定饱和程度后,需要进行脱附操作,即通过减压或增加温度等方式,将吸附剂中吸附的氮气释放出来。
释放的氮气经过处理后,可以回收利用或排放到大气中。
3. 再生:脱附后的吸附剂需要进行再生,以恢复其吸附性能。
再生操作一般包括冲洗、干燥和升温等步骤,使吸附剂重新达到适用于吸附氮气的状态。
通过不断循环吸附、脱附和再生操作,变压吸附制氧系统可以持续地产生高纯度的氧气。
二、变压吸附制氧的设备变压吸附制氧设备主要包括压缩空气系统、吸附剂床层、控制系统等组成。
1. 压缩空气系统:负责将大气中的空气经过压缩处理,以提供足够的进气压力。
压缩空气系统通常包括压缩机、冷却器和过滤器等部件。
2. 吸附剂床层:是变压吸附制氧系统的核心组成部分,其结构通常为多个吸附剂床层的组合。
吸附剂床层一般采用多个固定床层的方式,以实现连续的吸附、脱附和再生操作。
3. 控制系统:用于控制整个变压吸附制氧系统的运行,包括压力控制、温度控制、气流控制等。
控制系统可以实现自动化操作,提高制氧效率和稳定性。
三、变压吸附制氧的应用变压吸附制氧技术在医疗、制药、化工等领域具有广泛的应用前景。
1. 医疗领域:变压吸附制氧设备可以用于医院、急救车等场所,为患者提供高纯度的氧气。
氧气可以用于呼吸治疗、手术麻醉、氧疗等医疗操作,对于呼吸系统疾病、心血管疾病等患者具有重要的治疗作用。
变压吸附制氧技术的发展和应用

变压吸附制氧技术的发展和应用摘要:简述了变压吸附技术应用于空分制氧领域的技术优势;基于这些优势,吸附空分技术广泛应用于多个行业;随后综述了吸附制氧领域的关键技术发展并作出展望。
关键词:变压吸附;制氧技术;大型化;噪音控制引言近年来变压吸附制氧技术持续发展,已广泛应用于钢铁冶炼、化工、炉窑、玻璃等多个行业中,满足不同产业对于氧气的需求,推动了国内工业制氧设备的技术变革。
一、分析变压吸附制氧技术的优势(一)运行成本低在制氧工艺中,电源能耗量占据总运行成本的90%以上,伴随变压吸附制氧技术的优化创新,纯氧电耗从原来的0.45kW·h/m3变为现在的0.30kW·h/m3,电能消耗量得到了大幅度降低。
相比于其他空分制氧技术,变压吸附制氧技术在成本方面具有明显的优势[1]。
(二)流程简洁、本质安全、易于操作变压吸附制氧技术的工艺流程较为简洁,罗茨鼓风机和罗茨真空泵作为基础的动力设施,操作方式比较为简单,便于开展维护工作[2]。
操作压力的范围在-0.5~0.5bar,不属于压力管道范畴;几乎常温操作,因此具有本质安全性。
开停机方便,开机30min以内即可产出符合标准的氧气;可实现无人值守。
(三)投资低、工期短变压吸附制氧设备主要由一体化罗茨设备、吸附设备、以及阀门切换体系等构成;设备种类、数量少,可以节约项目的一次性投资成本,且设备的占地面积比较低,还可以降低设备土建成本和建设用地的费用。
同时吸附制氧设备的加工制造周期比较短暂,重要设备的加工周期不会超出4个月,一般状况下6个月内就可达成产氧目标,大大降低了设备的建设时间。
(四)维护简单变压吸附制氧技术应用的设备比较少,包括鼓风机、真空泵和程控阀门等全,这些设备的备件便于更换,可以实现量化生产。
可以大幅度降低生产成本,对后续的工期进行严格管控,同时设备维修方法较为简单,售后便捷。
(五)便于调节负荷通过并联、变频、程序时序控制等技术手段,可以方便调节装置产量和纯度,把纯度调在70%~95%,通过对变压吸附制氧设备进行联合使用,可以对负荷进行有效调节。
VPSA变压吸附制氧设备说明书

1 概述1.1 真空变压吸附制氧技术真空变压吸附制氧技术是一种新型的从空气中制取富氧的技术,真空变压吸附(VACUUM PRESSURE SWING ADSORPTION,简称VPSA),是一个近似等温变化的物理过程,它是利用气体介质中不同组分在吸附剂上的吸附容量不同而产生的气体分离,吸附剂在压力升高时进行选择性吸附,在压力降低至负压时得到脱附再生。
真空变压吸附分子筛制氧设备是以电力为动力、空气为原料,利用沸石分子筛在加正压状态下对氮的吸附容量增加,负压时对氮的吸附容量减少的特性,通过对两只吸附塔切换作用,形成正压吸附、负压脱附的循环过程,实现空气中氧、氮的分离,连续制取所需求的工业用氧。
真空变压吸附制氧设备的制氧过程为物理吸附过程,无化学反应,对环境不造成污染,是一种理想的供氧方式。
整个制氧过程相对于传统的深冷法制氧方式,具有结构简单、工艺流程简单、使用操作方便、设备启动迅速、常温低压运行、安全可靠、能耗小、制氧成本低等一系列优点。
1.2真空变压吸附制氧设备工作过程瑞气真空变压吸附分子筛制氧设备是以洁净空气为原料,经空气过滤器进入罗茨鼓风机,升压至45kpa左右,出口气体温度约50℃,经过换热器进行冷却,使温度降到35℃左右,再进入已经再生完毕处于工作状态的吸附器。
在吸附器内,空气中的水分、二氧化碳等极性分子气体经过氧化铝、13X脱水剂被吸附,干燥空气再通过LiX 分子筛后空气组分中的氮气组分被分子筛吸附分离,氧气在吸附器顶部富积进入氧气平衡器,纯度93±3%左右的富氧通过调节阀稳压处理进入缓冲罐,缓冲罐中的富氧压力在10~15kpa,缓冲罐出口富氧经过氧气压缩机升压达到所需的压力要求,高压富氧气冷却后通过氧气储罐再送至用氧用户。
为获得连续稳定的产品氧气,瑞气真空变压吸附分子筛制氧设备设置两只吸附器,交替产氧,一只吸附器产出氧气时,另一只吸附器处于抽真空再生状态,吸附器在真空泵作用下抽至-60kpa左右,排出的富氮组分经过消音处理排至室外。
变压吸附制氧技术的发展和应用

变压吸附制氧技术的发展和应用
变压吸附制氧技术基于分子筛的原理。
分子筛是一种多孔的固体物质,它可以吸附气体中的分子。
在变压吸附制氧技术中,分子筛通常使用沸石
作为吸附材料。
沸石具有许多微小的孔道,可以选择性地吸附氧气分子。
通过改变沸石的压力和温度条件,可以实现对氧气和其他气体的有效分离。
变压吸附制氧技术的应用非常广泛。
首先,它在医疗领域用于治疗呼
吸系统疾病。
许多患有呼吸困难的患者需要额外的氧气供应来维持正常的
生活。
通过变压吸附制氧技术,可以提供高纯度的氧气,以满足患者的需求。
此外,该技术还可用于手术室、急救车和其他医疗设施,以确保氧气
供给的稳定和可靠。
其次,变压吸附制氧技术在工业领域中也有许多应用。
例如,钢铁、
化工、玻璃等行业需要大量氧气来支持其生产过程。
通过变压吸附制氧技术,可以从空气中提取高纯度的氧气,用于这些工业生产过程。
与传统的
液氧供应相比,变压吸附制氧技术更加节能和可持续。
此外,变压吸附制氧技术还在环境保护领域中得到了广泛应用。
例如,氧气燃烧技术被广泛应用于处理有机废气。
通过将有机废气与高纯度氧气
混合燃烧,可以将有机物完全氧化为二氧化碳和水,减少对环境的污染。
综上所述,变压吸附制氧技术是一种通过分离空气中的氧气和其他气
体来提供高纯度氧气的成熟技术。
它已经有了很长的发展历史,并在医疗、工业和环境领域中得到广泛应用。
随着技术的不断发展和创新,相信变压
吸附制氧技术将在更多领域中发挥重要作用。
vpsa 制氧 原理

vpsa 制氧原理
VPSA技术,即变压吸附技术,是现代制氧技术中广泛应用的一种方法。
这种技术是利用特定的吸附剂对空气中的氧气进行吸附,再经过脱附和分离等过程,提取出纯的氧气。
VPSA制氧的工艺流程分为以下几步:
1. 空气进料:空气经过压缩进入VPSA装置,经过滤污、除湿、降温等预处理,通过进料管道进入吸附塔。
2. 吸附:空气进入吸附塔后,被吸附剂吸附,其中主要是吸附剂与氮气的吸附能力不同,氮气在吸附剂表面被吸附,而氧气则不被吸附,这就实现了氧气的分离。
3. 压缩:吸附后的氮气需要排放出去,此时需要将吸附塔中的压力逐渐升高,以便将吸附剂上的氮气逼出。
4. 脱附:逐步加高的压力使得吸附剂释放出吸附的氮气,此时的吸附塔中既含有纯氧气,也含有大量的氮气。
5. 泄空:为了使下一步的步骤顺利进行,需要通过泄空口将吸附塔内部的气体冲走,剩余的氧气被收集起来。
6. 吸附重复:经过以上的处理,吸附塔内剩余的氮气已经排放干净,吸附剂也被释放。
此时需要将进入的空气再次经过塔体进行重复吸附。
7. 换吸附:由于吸附剂在吸附后会失去作用,需要定期更换吸附剂,以保证制氧的稳定性和可靠性。
以上就是VPSA制氧的工艺流程,通过这种方法可以快速和高效地提取氧气,为人们的生活和工业生产提供了巨大的便利。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压吸附制氧技术
对变压吸附制医用氧过程中的吸附剂选择、流程开发、多层过滤系统等技术问题进行了研究,它将有助于变压吸附制氧技术在我国各级医院中的使用。
变压吸附(简称PSA)制氧是国际上最近三十年新兴起来的制氧技术,它的特点是就地产氧,只要将制氧设备接通电源,就可由空气中生产出氧气,且设备的体积小、操作简单,可省去大量的人力、物力,尤其适合实施管道化中心供氧的医院以及工业不发达地区的医院。
1原理和方法
变压吸附制医用氧是采用物理吸附的方法,使用的吸附剂是沸石分子筛(zeolite molecular sieve)。
空气中的主要成分是氮气、氧气及其它稀有气体,它们的分子极性各不相同,其中氮气的极性较氧气的极性要大。
沸石分子筛是一种极性吸附剂,在等温条件下,当吸附压力增加时,它对氮气的平衡吸附量要比氧气增加很多;当吸附压力减少时,它对氮气的平衡吸附量比氧气减少很多。
利用沸石分子筛的这一特性,可采用加压吸附,减压解吸循环操作的方法制取氧气。
2吸附剂的选择
在PSA吸附床中,至少有两层吸附剂,靠近进料端的吸附剂称为“预处理”吸附剂,它的主要作用是除去进料空气中的水和二氧化碳。
氧化铝通常被用作预处理吸附剂,但是,使用中人们发现在氧化铝与其它吸附剂的接触面上会产生一个低温区,称为“冷点”,会影响吸附剂的再生。
随着人们对“冷点”的进一步认识,氧化铝已被NaX型的沸石分子筛代替,因为它比氧化铝具有更高的氧、氮吸附容量和吸附热,可以帮助减少“冷点”的损害。
目前,具有更高吸附容量的NaX吸附剂已经被开发出来,可以进一步减低“冷点”效应。
靠近吸附床产品端的第二层吸附剂称为“主吸附剂”,它的主要作用是氧气、氮气的分离,一般选用具有优先吸附氮气的沸石分子筛。
在有些场合,NaX既被用来作主吸附剂,也被用作预处理吸附剂,但CaA型的沸石分子筛是变压吸附法制氧最常用的吸附剂。
为了提高分子筛的吸附性能,又开发其它类型的分子筛如CaX型的沸石分子筛,目前吸附选择性能最好的吸附剂是LiX型和MgA型沸石分子筛。
3制氧流程
变压吸附常压解吸制氧流程通常有四床、三床、两床三种形式。
四床吸附流程的特点是空气中氧气的收率比较高,可达40%,缺点是吸附床较多,工艺流程复杂,技术要求高,可靠性较差。
三床吸附流程的特点是氧气收率一般,可达35%,工艺也比较复杂。
二床吸附流程的缺点是空气中氧气收率比较低,只有30%,但这种流程比较简单,工艺也不复杂,操作容易,可靠性高,是目前制医用氧设备采用最多的流程。
4多层气体过滤系统
为了保证通过变压吸附制得的氧气符合标准,需采用多层气体过滤系统。
4.1除水。
空气中含有大量的水分,尤其在潮湿地区,如果水分进入吸附床中,就会使沸石分子筛受潮,影响吸附效果。
通常采用三级除水过滤系统:一是通过空压机储罐将压缩空气中的液态水除去,二是采用微孔的分水滤气器将气态水中的大部分除去,三是采用干燥剂将剩余的水分除去,因此由变压吸附法制得的氧气水分含量非常低。
4.2除去空气中稀有气体。
由于沸石分子筛是极性化合物,对空气中二氧化碳、一氧化碳、气态酸碱及臭氧等极性分子的吸附力很强,因此产品氧气中这些物质的含量都非常低,完全能符合行业标准的要求。
4.3除去固体物质。
由于沸石分子筛为人工合成,在变压吸附过程中会产生许多微小固体颗粒,因此在产品氧气进入储罐前,必须经过过滤,一般采用精密袋式过滤器可以满足要求。
4.4滤除细菌。
由于空气中存在大量细菌,为了使变压吸附法得到的氧气洁净,要将产品氧气通过装有活性碳和多层滤纸的过滤器,最终才能得到所需的医用氧气。
5结论
虽然从空气中变压吸附制取医用氧气是一项比较复杂的技术,但只要选择好吸附剂,使用适当的流程,采用多层气体过滤系统,就可以生产出洁净的符合标准的医用氧气。
泰瑞医疗目前采用的是美国进口的UOP分子,吸附能力极强,通过吸附和过滤,产出的氧气纯度达到93%±%(v/v),且保证制造出的氧气不含对人体有害的成分,达到医用氧气的要求,是目前大多数医院医用制氧设备的首选厂家。