电动机产生的感性无功能量及谐波对电力系统的危害

合集下载

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生电力系统中谐波是指频率是电力系统基波频率的整数倍的电压或电流波形,其频率通常为50Hz或60Hz。

谐波是电力系统中的一种电磁干扰,可能引起许多问题和危害,包括设备的过热、降低效率、产生故障以及影响电力网络的稳定性。

谐波的产生主要是由于非线性负载和电源引起的,下面将详细讨论谐波的危害与产生。

谐波的危害:1. 电力设备过热:谐波会导致设备内部的电压和电流波形畸变,造成设备的过载和过热。

设备过热会导致设备寿命缩短,甚至发生火灾等危险。

2. 降低设备效率:设备在谐波环境下工作时,可能会发生电流滞后和电压损失,导致设备的效率降低。

例如,变压器在谐波环境下由于电流滞后而产生降温,这会导致能量损失和电力供应的不稳定。

3. 产生设备故障:谐波会导致设备的电压和电流波形失真,从而损坏设备的绝缘性能和电线连接,引发故障。

例如,变频器引起的谐波可能导致电机绝缘击穿,造成电机损坏。

4. 影响电力网络的稳定性:谐波会改变电力系统的频谱特性,降低系统的稳定性。

谐波的存在可能导致电力网络中的共振现象,引起电压和电流的不稳定性,进一步导致电力系统的故障。

谐波的产生:1. 非线性负载:非线性负载是指对电压和电流响应非线性的负载设备。

这些设备通常包括整流器、变频器、电弧炉、放电灯等。

非线性负载会引起谐波电流的产生,造成电力系统的谐波问题。

2. 电源:电源本身也可能产生谐波。

例如,由于电力系统中存在电压降低和电压暂降,电源系统中的设备可能引入谐波频率。

3. 并联谐波滤波器:并联谐波滤波器通常用于减少负载设备引起的谐波,但滤波器本身可能引入谐波频率。

4. 反射和谐波:电力系统中的传输线上的谐波可能会反射,并返回到电源系统中,从而产生额外的谐波。

为减少谐波的危害,可以采取以下措施:1. 负载侧的措施:使用非线性负载时,可以采取滤波器、谐波限制器等措施来减少谐波的产生。

2. 电源侧的措施:电源系统应具备良好的谐波抑制能力,可以采用对称三相电源供应、提高电源的电压和频率稳定性等措施。

谐波对电力系统危害及防范措施

谐波对电力系统危害及防范措施

谐波对电力系统的危害及防范措施中图分类号:tm715文献标识码: a 文章编号:一、谐波的产生电能质量的好坏,直接影响到工业产品的质量,评价电能质量有三方面标准。

首先是电压方面,它包含电压的波动、电压的偏移、电压的闪变等;其次是频率波动;最后是电压的波形质量,即三相电压波形的对称性和正弦波的畸变率,也就是谐波所占的比重。

在理想的电力系统中,电压和电流波形都是工频正弦波形,但在现实应用中,由于非线性负荷的存在,电网电压或电流的波形往往偏离正弦发生畸变,畸变波形可以用一系列不同频率的正弦函数之和来近似表示。

而谐波就是这些非基波频率的各次波。

谐波主要是冶金如电弧炉、电焊机等、化工、电气化铁路及其他行业的换流设备、非用电设备产生的,这些设备统称为谐波源。

二、谐波对电力系统的危害随着谐波源的增加,大量的谐波电流流入电网,在电网阻抗下产生谐波压降,使电压波形发生畸变,使电能质量下降。

给发供电设备、用户用电设备、用电计量、继电保护带来危害。

谐波在电力系统及设备内部造成的危害,具体可表现为以下几点:1、谐波对电能表的影响感应式电能表是目前最为广泛使用的电能计量仪表,国内外研究指出,这种表对谐波频率有负的频率误差特性,非线性负荷是谐波源,当以正弦电压供给非线性负荷时,电能表对谐波消耗的功率计量是不足的,但在谐波源的情况下,电能表记录是基波电能扣除一小部分谐波电能,因此,谐波源虽然污染了电网,反倒少交电费;在畸变电源供给线性负荷时,电能表记录的是基波电能及部分谐波电能,用户不但多交电费而且受到伤害。

2、谐波对变压器的影响谐波电压可使变压器的磁滞及涡流损耗增加,使绝缘材料承受的电气应力增大,而谐波电流会使变压器的铜耗增加,并会使铁芯产生附加振动,产生附加噪音,使附加损耗增加。

当外电路呈容性时,谐波电路有可能诱发谐振,对变压器危害更大。

对于供给不对称负荷的变压器,如果负荷电流中含有直流分量,它将使变压器磁路的饱和度提高,从而使交流励磁电流谐波分量大大增加。

电动机产生的感性无功能量及谐波对电力系统的危害

电动机产生的感性无功能量及谐波对电力系统的危害

电动机产生的感性无功能量及谐波对电力系统的危害我曾在前面的博文《无功的产生》一文中阐述了,感性无功能量,是由供电系统供给的总有功电能(视在功率)通过电动机在转化成为机械能的过成中伴随着交变磁场产生的,无功电能就是由电网供给的总有功电能转化而来的,其量值为:1Kvar/1KW。

三相异步电动机工作运行时,它同时亦是系统中的“谐波源”(电动机产生的多次谐波),“感性无功源”。

那么这些无法被电动机利用的无功能量及谐波能量,在整个系统中起了什么作用呢?对整个系统都产生了哪些影响呢?在我具体阐述之前,首先解释两个名词:"涡流效应"和"激肤效应"闭合铁磁体(如矽钢片)处于交变磁场中,交变的磁通量在铁磁体中,形成涡电流。

很像水的旋涡,所以称做涡流。

“涡流效应”在铁磁体中产生的的涡电流很大,使铁磁体温升,电流的热效应可以使铁(或金属)的温度达到很高的,甚至是铁(或金属)的熔点,使铁熔化。

由此可见“涡流效应”不但会白白损耗电能,使用电设备效率降低,而且会造成用电器(如变压器铁芯)发热,严重时将影响设备正常运行。

“激肤效应”,交流电通过导体时,导体内部产生交感磁场,形成涡流,使导体内电流密度升高,对于原电场驱动的有效电流来说,导体内部阻抗很高,原电场驱动的电流只能从导体表面流过。

使导体表面电流密度也加大,这种现象称为“激肤效应”,产生“激肤效应”的原因是由于感抗的作用,导体内部比表面具有更大的电感L,因此对交流电的阻碍作用大,使得电流密集于导体表面。

“激肤效应”使得导体的有效横截面减小,因而导体对交流电的有效电阻比对直流电的电阻大。

交流电的频率越高, “激肤效应”越显著(谐波能量本身就是一种表现为高频脉冲电流的能量),频率高到一定程度,可以认为电流完全从导体表面流过,使原来的导体实质上成了一个空芯导管,因此在高频交流电路中,必须考虑“激肤效应”的影响。

“涡流效应”和“激肤效应”是同时作用于导体和线路的一种现象的两种电效应,“涡流效应”表现为导体内电流密度升高,使导体温升。

电力系统谐波的危害性及抑制策略

电力系统谐波的危害性及抑制策略

电力系统谐波的危害性及抑制策略电力系统谐波是指在交流电力系统中产生的一种非正弦波形,是交流电网中所存在的一个普遍的问题。

当电力系统中出现谐波时,将会对各个方面造成影响。

因此,对电力系统谐波的危害性及抑制策略的研究变得尤为重要。

一、电力系统谐波的危害性1、对电力系统设备的影响:谐波会对电力系统中的电力设备产生不良影响,会加快电气设备的老化,损害电力设备的正常运行,甚至可能导致设备的损坏。

2、对电力质量的影响:电力系统谐波会导致电压的失真、电流的失真、功率因数的变化等,降低电力质量。

3、对用户的影响:由于电力设备运行产生谐波会向供电系统散发,因此会由电力系统供应给所有使用电力的用户,对用户的设备产生不良的影响,例如音频设备、计算机设备等。

4、对环境的影响:电力系统谐波也会对环境造成影响,例如对动物的人工造成干扰,造成空气污染等。

二、抑制电力系统谐波的策略1、电力系统谐波分析:在电力系统中,通过对电网谐波分析,可以获取谐波特征信息,以确定引入谐波的源头,并针对性地采取谐波滤波器等抑制措施。

2、谐波滤波器的安装:谐波滤波器能够有效防止谐波向电网散播,从而保护电力设备,提高电力质量。

谐波滤波器还可以通过对电力系统谐波的调制来保护电气设备,降低谐波对设备的影响。

3、调整电力系统参数:在电力系统中通过调整电网的参数可以改善电力系统谐波问题。

例如,在电力系统中调整电抗器可以控制电路中的谐波,从而防止谐波向电网散播。

4、电力设备设计:在电力设备的设计过程中可以通过提高电力设备的质量,使电力设备适应谐波的存在。

例如,增加电容、电感、阻抗等元件能够有效地消除引起电气设备故障的谐波。

综上所述,电力系统谐波是一个非常严重的问题,需要采取一系列措施予以解决。

在电力系统中安装谐波滤波器、并对电力系统参数进行调整、以及通过提高电力设备的质量,都是解决电力系统谐波的有效方法。

为了保证电力设施的正常运转,电力系统的谐波抑制工作必须不断加强。

谐波对电力系统的危害及预防措施

谐波对电力系统的危害及预防措施

谐波对电力系统的危害及预防措施摘要:随着工业生产自动化的不断提高,半导体器件的问世发展,特别是大型可控硅变频器及逆变器等,非线性负载在工业生产中使用的逐步增多,而这些非线性负载能把高次谐波电流注入电网。

从而引起电网系统电压和电流波形发生畸变,使电网受到严重污染,谐波治理将越来越重要。

关键词:谐波;趋肤效应;电力系统;过热一、高次谐波对各种电气设备的危害非线性负载产生的谐波电流,能够在电力系统的某些设备上明显的反映出来,常见的有变压器和中性线。

在电动机、发电机和移相电容器中也有些表现。

1.谐波在导体中产生的作用由于电压畸变,所含的高频成份将造成发电、输电、变电、配电和用设备过热、损耗增大、系统过电压、失控等。

工频电流在输电导线截面内是均匀分布的,而高频电流则产生严重的趋肤效应,使导线有效电阻增大。

如300mm2导线,通过工频电流时,靠近中心一半面积上的电流密度为平均值的90%,表面一半面积上为100%,这时,电流密度为平均值的90%,表面一半面积上为110%,这时,电流在导体上的总的损耗为内外两部分之和。

ii2ri+i02r0=((0.9/2)i)2.2r+((1.1/2)i)2.2r=1.01i2r 随着频率的升高,趋肤效应也越来越加显著,有效电阻也越大。

300hz时为1.21倍,420hz时为1.35i2r。

由于电流波形畸变,流过导体的电流除基波外,又增加了高次谐波电流分量。

接有大量非线性负载的电网损耗将增大,导体发热更加严重,系统用电设备也将工作不稳定等。

2.谐波对中性线的影响在三相四线制系统中,中性线将受到接在相电压上的非线性负载的影响。

在正常情况下,三相线性负载平衡时,中性线的电流为零。

当存在非线性负载时,某些高次谐波即奇次谐波会在中性线里叠加起来。

如由三次谐波序列构成的负载电流越来越多时,更多的未被抵消的电流将会在中性线中流动。

在这种情况下,中性线的过电流还会在中性线和接地线间产生高于正常的电压迭落。

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生电力系统中谐波的危害与产生谐波指的是频率为基波频率的倍数的电信号成分,在电力系统中的原因有很多,比如电力设备的非线性负载、电子设备的交流-直流变换等。

虽然谐波信号的功率一般较低,但由于其具有频率较高、波形失真的特点,对电力系统和电力设备的运行安全和电能质量造成了一定的影响和危害。

一、对电力设备的危害1.导致设备过热:谐波信号导致电流和电压波形失真,使电力设备的磁路饱和,导致设备出现额外的损耗,产生额外的热量,从而导致设备过热、老化、性能降低。

2.损害设备绝缘:谐波会提高设备绝缘材料的介质损耗角正切值,使设备的绝缘等级下降,从而导致电气设备的绝缘性能降低。

3.损伤电动机:谐波信号会使电动机的转矩波形失真,加剧机械振动,引起转子的加速损伤或者负载不平衡问题,从而降低电动机的性能。

4.降低电力设备的寿命:谐波会使电力设备的运行稳定性降低,电力设备的寿命也随之降低。

二、对电能质量的危害1.导致电能损耗:谐波会使电能的传输损耗增大,电能的利用效率降低,从而造成电能浪费。

2.引起电压波动:谐波会使电源电压的总谐波畸变THD值增大,从而导致电源电压的变化、波动明显。

3.引起电流不平衡:谐波信号会加剧相间电流之间的差异,导致电流的不平衡问题,从而影响电力系统的运行稳定性和性能。

4.影响电力系统的稳定性:谐波会使电力系统的总谐波畸变THD值较大,从而影响电力系统的稳定性和电能质量。

为减小谐波的危害,可采取以下措施:1.选择适当的电力设备,如交流电动机、逆变器、电子变压器等,以减小非线性负载对电力系统产生的谐波。

2.配置滤波器装置,用于消除电力系统中的谐波信号。

3.加强电力设备的维护与管理,延长设备的寿命,减少谐波产生的数量。

4.优化电力系统的运行参数,如改善电力系统的谐波阻抗,减小电力系统的谐波电流等。

2024年电力系统中谐波的危害与产生(3篇)

2024年电力系统中谐波的危害与产生(3篇)

2024年电力系统中谐波的危害与产生引言:随着电力系统的发展和电力负荷的增加,谐波问题在电力系统中变得越来越严重。

谐波是指在电力系统中具有频率为整数倍于基波频率的电压或电流。

谐波的产生与许多因素有关,包括非线性负载(如电动机、电子设备等)和电力质量问题。

本文将从谐波对电力系统和用户的危害以及谐波的产生机制两个方面进行探讨。

一、谐波对电力系统的危害1. 电力设备的损坏:谐波会导致电力设备的温升和损坏,其中包括变压器、电容器、电抗器和电动机等。

谐波电流会导致设备中的铁芯饱和,进而产生过大的损耗和热量,从而缩短设备的使用寿命。

此外,谐波电压也会导致设备中的绝缘损坏,增加维修和更换成本。

2. 系统能量损耗:谐波会导致电力系统中的能量损耗增加。

谐波电流会增加输电线路和变压器的有功损耗,从而减少系统的效率。

此外,谐波还可能导致电力变压器的谐波损耗和谐波电流的损耗。

3. 电力系统的电压波动:谐波会导致电力系统的电压波动增加。

谐波电流通过电力系统中的阻抗元件(如变压器和线路)时会引起电压波动。

不同谐波的相长和相消作用会导致电压波动的增加,使得用户的供电质量下降。

4. 电力系统的谐波共振:谐波会导致电力系统中的谐波共振现象。

当电力系统的谐波阻抗与非谐波阻抗相近时,谐波电流会通过共振回路增加,从而引发电力系统的振荡和不稳定性。

二、谐波的产生机制1. 非线性负载:谐波的主要产生源是非线性负载,如电子设备、电动机等。

这些设备在工作过程中会引入谐波电流,主要是由于设备内部的非线性元件产生的。

非线性元件的存在使电流波形失真,从而引入谐波。

2. 系统谐振:电力系统中的电抗器、电容器和线路电感等元件的谐振现象也会导致谐波的产生。

当这些元件的谐振频率和谐波频率相近时,谐波电流会增加。

3. 外部干扰:电力系统中的谐波也可能是由外部干扰引起的。

例如,当电力系统与其他频率干扰源(如脉冲电源)相连接时,这些干扰源的谐波也会传入到电力系统中,从而引入谐波。

电力系统中谐波的危害与产生(三篇)

电力系统中谐波的危害与产生(三篇)

电力系统中谐波的危害与产生电力系统中的谐波是由于电力设备的非线性特性引起的。

在电力系统中,谐波的危害包括对电力设备的损坏、电能质量的恶化以及对用户的影响等方面。

谐波的产生与非线性负载、电力设备的设计及运行、电网接地等因素有关。

谐波对电力设备的损坏是谐波危害的主要方面之一。

谐波会引起设备的绝缘老化、过热、机械振动等问题。

尤其是对于变压器和电动机等设备来说,由于谐波的存在会引起电流和电压的畸变,导致设备的工作效率下降,甚至引发设备的故障和停机。

此外,谐波还会引起电容器的谐振和过电压问题,增加电力设备的工作负荷,缩短其使用寿命。

谐波对电能质量的恶化也是谐波危害的重要方面之一。

谐波会导致电能质量的下降,主要表现为电压和电流的畸变,波形失真,功率因数的下降等。

这不仅会影响电力设备的正常工作,还会对电力系统的稳定性和可靠性造成影响。

谐波还会引起电力设备的谐振现象,导致设备振动,造成噪音污染,影响人们的生活质量。

谐波对用户的影响主要体现在电力质量的下降和对电子设备的损坏。

谐波会引起电压的波动和电流的畸变,导致电子设备的正常工作受到干扰,增加设备的故障率,降低设备的使用寿命。

尤其是对于一些对电力质量要求较高的用户来说,如计算机、通讯设备、医疗设备等,谐波对其正常工作的影响更为显著。

此外,谐波还会导致电能的浪费,增加用户的用电成本。

谐波的产生与非线性负载、电力设备的设计及运行、电网接地等因素有关。

非线性负载是产生谐波的主要原因之一。

非线性负载如电子设备、电力电子器件等在工作过程中会产生非线性电流,其含有大量谐波成分。

此外,电力设备的设计及运行也会引起谐波的产生,如电容器的谐振,变压器的匝间谐振等。

而电网的接地情况也会影响谐波的产生和传播,如电网的接地方式不当会引起谐波回流和间接接触问题。

为了减少谐波的危害,需要采取一系列的措施。

首先,可以通过合理选择电力设备和设备的工作参数来降低其谐波产生的概率。

其次,可以采用滤波器等设备对谐波进行抑制和补偿。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档