短波信道特性研究

短波信道特性研究
短波信道特性研究

短波信道特性研究

【摘要】短波通信干扰严重,针对短波信道特性进行研究,找出影响通信质量的要素,提出改善通信质量的两种方法。

【关键词】短波;信道;误码率

短波信道频带窄、多径现象非常严重、时延较大、多普勒频移大和衰落严重。一般情况下短波信道的带宽为3.7KHz,信号传输路径为2~4条,时延典型值为2ms,多普勒频移高达20Hz至50Hz,在高纬度地区曾实测达73Hz,另外在信号传输过程中伴随着瑞利衰落,这使得短波信道十分复杂恶劣,造成短波通信的通信质量提高十分困难。但是随着科技的发展,短波通信的性能还是得到了巨大的提高[1]。

短波通信主要依靠电离层的反射来进行通信,因此,电离层的状态将直接影响短波通信的质量。短波通信中的多径现象非常严重、时延较大、多普勒频移大和衰落严重很大程度上就是由电离层的不均匀、时变和色散造成的[2]。

1.多径效应

短波通信时,发射端发出的同一电磁波信号经过不同的途径和不同的传输时延到达接收端的现象。多普勒展宽就是由多径效应引起的。

当发射端发射信号时,部分信号只经过电离层一次反射就到达接收端;部分信号在经电离层反射回地面后再次被反射到电离层,经电离层第二次反射到达接收端;有的信号甚至需要经过电离层三至四次反射后才到达接收端。多径现象中一般为2、3、4条路径,出现概率为85%,其中以出现3条路径的情况最多[3][4]。另外,经大量的数据统计:在中长距离传输系统中,绝大部分的多径时延在0.2~5ms之间,但是极少情况下最大时延达8ms[5]。一般情况下,99.5%的多径时延不小于0.5ms,50%的多径时延不小于1.4ms,仅有0.5%的多径时延超过5ms。

2.衰落现象

衰落现象是指接收端接收到的信号幅度随着时间无规则变化的现象。衰落在短波通信中分为快衰落和慢衰落。持续时间较短并且连续出现的衰落称为快衰落;而持续时间相对比较长的衰落是慢衰落。

2.1快衰落

快衰落的成因主要是多径现象。随着时间的推移,电离层的密度、高度总是呈现随机的变化,这使得电磁波信号的传输路径也不停随机变化。接收端接收到受多径影响的同一信号间的相位差不再恒定,造成合成信号的幅度发生随机改变。因此,这种因接收端收到的电磁波信号的相位干涉所造成的衰落也称“干涉

卫星移动通信信道特性分析

收稿日期:2003-09-10 基金项目:国家自然科学基金资助项目/个人移动卫星通信电波传播特性研究0(60172006) 作者简介:1.符世钢(1979-),男,云南安宁人,云南大学信息学院通信与信息系统专业在读硕士研究生,主要从事 移动通信关键技术研究; 2.任友俊(1973-),男,云南宣威人,曲靖师范学院计科系讲师、工学硕士,主要从事网络通信及其编程研究; 3.申东娅(1965-),女,云南昆明人,云南大学信息学院副教授,主要从事移动通信研究. 卫星移动通信信道特性分析 符世钢1,任友俊2,申东娅3 (1.3.云南大学信息学院,云南昆明 650091;2.曲靖师范学院计科系,云南曲靖 655000) 摘 要:卫星移动通信作为地面移动通信的补充,是实现全球个人通信的必不可少的手段之一,同时也是目前发展最迅速的通信技术之一.卫星移动通信具有卫星固定业务和移动通信双重特点,其电波传输距离远,经历的环境特殊,导致其信道特性远比地面系统复杂.因此,研究其信道特性是设计出高效实用的通信系统的关键环节.本文对其信道特性进行了具体深入的分析,并对某些衰减因素的解决措施作了简要探讨. 关键词:卫星移动通信;信道特性;传输损耗;多普勒频移 中图分类号:TN927+123 文献标识码:A 文章编号:1009-8879(2003)06-0071-04 卫星移动通信是指利用卫星实现移动用户间或移动用户与固定用户间的相互通信.近年来地面蜂窝移动通信系统得到了飞速发展,但是它的覆盖范围有限,仅能为人口集中的城市及其附近地区提供服务.为了获得全球范围的无缝覆盖,实现名符其实的全球个人通信,不得不引入卫星移动通信来作为地面移动通信的补充.卫星移动通信具有覆盖面积大、业务范围广、适用于各种地理条件等优点,在过去二三十年中发展十分迅速,成为极具竞争力的通信手段之一. 与地面移动通信系统不同,卫星移动通信系统的电波传播要经过漫长的距离,其间要受到多种因素的干扰.这大大增加了接收信号的波动性,成为保证通信质量的最大障碍.为此,研究信道特性成为设计通信系统的首要任务.本文将对其进行具体分析. 1 传输损耗 卫星移动通信中电波传播要经过对流层(含云层和雨层)、平流层直至外层空间,传输损耗大致为自由空间传输损耗与大气损耗之和.111 自由空间传输损耗 在整个卫星无线路径中自由空间(近于真空 状态)占了绝大部分,因此,首先考虑自由空间传播损耗.卫星移动通信系统无线链路与大尺度无线电波传播模型类似,在自由空间模型中,接收功率的衰减为T-R 距离的幂函数[1] .当发射和接收天线均具有单位增益时,自由空间路径损耗为:L f =10lg( 4P K d )2=20lg(4P 3@108 d f )(db)(1)当d 取km 、f 取GHz 为单位时,可简化为下式: L f =92145+20lgd +10lg f (db) (2) 112 大气层损耗 大气层在卫星无线路径中所占比例不大,但却是最不稳定的区域,其损耗是卫星移动通信最具特色的信道特征之一.伴随着天气的变化,降雨、降雪、云、雾等都不可避免地对穿透其中的电波产生损耗,个别极恶劣的天气甚至会造成通信信号的中断.由于各种客观条件的限制,目前对其损耗只能通过实际观测积累数据并由此总结出一些经验公式. 在各种天气引起的损耗因素中,降雨损耗所占的比例最大且具有代表性.在雨中传播的电波会受到雨滴的吸收和散射影响而产生衰落.此时引入降雨衰减系数的概念,即由降雨雨滴引起的每单位路径上的衰减R ,R 如下式所示: 第22卷 第6期 2003年11月 曲 靖 师 范 学 院 学 报 JOURNAL OF QUJING TEACHERS COLLE GE Vol.22 No.6Nov.2003

短波信道模拟的计算机仿真-文档

短波信道模拟的计算机仿真 Simulation of HF Channel LI Ren-yan1, HOU Qing-song2 (1. Unit 95486 of PLA, Chengdu 610041, China; 2. Telecommunication Engineering Institute, Air Force Engineering University, Xi 'an 710077, China) :In the simulation of communication system, the approximation degree of actual channel simulated by a channel simulator affects the effectiveness of the performance parameters obtained with communication system simulation directly. Therefore, it is essential to develop the high-performance simulator for HF channel. The principle of Watterson model which is a widely used for HF ionosphere channel is described. According to the parameters given by MIL-STD-188- 141B, the implementation scheme of HF channel simulator is presented. The computer simulation demonstrates the effectiveness of the algorithm. Keywords:HF channel; Watterson model; fading channel; Matlab simulation 0 引言

无线信道传播特性分析总结

无线信道传播特性分析总结 班级学号姓名 随着科学技术的发展,无线通信已经渗透到我们生活的各个方面,对我们的生活工作有着巨大的影响。在无线通信系统中,无线通信的信道的特性对整个系统有着巨大的影响。 1、无线信道的概念 要想搞明白无线信道具有哪些特性,就要先了解什么是无线信道。信道是对无线通信中发送端和接收端之间的通路的一种形象比喻,对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,我们想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。信道具有一定的频率带宽,正如公路有一定的宽度一样。 与其它通信信道相比,无线信道是最为复杂的一种,其衰落特性取决于无线电波传播环境。不同的环境,其传播特性也不尽相同。无线信道可能是很简单的直线传播,也可能会被许多不同的因素所干扰,例如:信号经过建筑物,山丘,或者树木所有反射而产生的多径效应,使信号放大或衰落。在无线信道中,信号衰落是经常发生的,衰落深度可达30。对于数字传输来说,衰落使比特误码率大大增加。这种衰落现象严重恶化接收信号的质量,影响通信可靠性。移动信道与非移动点对点无线信道相比,信号传输的误比特率前者比后者高106倍。 另外,在陆地移动系统中,移动台处于城市建筑群之中或处于地形复杂的区域,其天线将接收从多条路径传来的信号,再加移动台本身的运动,使得信号产生多普勒效应,并且信道的特性也随时间变化而变化,增加了信号的不确定性,使得移动台和基站之间的无线信道多变且难以控制。所以,与传统模型相比,无线信道多径数目增多,时延扩展加大,衰落加快。 2、无线信道的特性 信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机组合。同时,电波在各条路径的传播过程中,有用信号会受到各种噪声的污染,包括加性噪声

信道是指以传输媒质为基础的信号通道11页

第4章信道 信道是指以传输媒质为基础的信号通道,是将信号从发送端传送到接收端的通道。 如果信道仅是指信号的传输媒质,这种信道称为狭义信道。如果信道不仅是传输媒质,而且包括通信系统中的一些转换装置,这些装置可以是发送设备、接收设备、馈线与天线、调制器、解调器等。这种信道称为广义信道。 无线信道利用电磁波在空间的传播来传播信号;有线信道利用导线、波导、光纤等媒质来传播信号。常把广义信道简称为信道。 4.1 无线信道 信道是对无线通信中发送端和接收端之间通路的一种形象比喻。 对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。 信道具有一定的频率带宽,正如公路有一定的宽度一样。 电磁波传播主要分为地波、天波和视线传播三种。 地波:频率在2MHz以下,电磁波沿大地与空气的分界面传播。传播时无线电波可随地球表面的弯曲而改变传播方向。在传播途中的衰减大致与距离成正比。地波的传播比较稳定,不受昼夜变化的影响,所以长波、中波和中短波可用来进行无线电广播。 根据波的衍射特性,当波长大于或相当于障碍物的尺寸时,波才能明显地绕到障碍物的后面。地面上的障碍物一般不太大,长波可以很好地绕过它们。中波和中短波也能较好地绕过,短波和微波由于波长过短,绕过障碍物的本领很差。 由于地波在传播过程中要不断损失能量,而且频率越高,损失越大,因此中波和中短波的传播距离不大,一般在几百千米范围内,收音机在这两个波段一般只能收听到本地或邻近省市的电台。长波沿地面传播的距离要远得多,但发射长波的设备庞大,造价高,所以长波很少用于无线电广播,多用于超远程无线电通信和导航等。 天波:天波是靠电磁波在地面和电离层之间来回反射而传播的,频率范围在 2~30MHz。天波是短波的主要传播途径。短波信号由天线发出后,经电离层反射回地

恒参信道及其特性

模块2 恒参信道及其特性(ZY3200102002) 【模块描述】本模块介绍了恒参信道及其特性,包含几种恒参信道及其特性、均衡的基本概念。通过概念介绍、图形讲解,掌握恒参信道的特性及其对信号传输的影响。 【正文】 恒参信道是指由电缆、光导纤维、人造卫星、中长波地波传播、超短波及微波视距传播等传输媒质构成的信道。 一、有线电信道 1.对称电缆 对称电缆是指在同一保护套内有许多对相互绝缘的双导线的传输媒质。导线材料主要是铜或铝,直径为0.4~1.4mm。为了减小各线对之间的干扰,每一对线都拧成扭绞状。对称电缆的传输损耗相对较大但其传输特性比较稳定。 2.同轴电缆 如图ZY3200102002-1所示。同轴电缆由同轴的两个导体构成,外导体是一个圆柱形的空管,在可弯曲的同轴电缆中,它可以由金属丝编织而成。内导体是金属线。它们之间填充着塑料或空气等介质。 图ZY3200102002-1同轴电缆的基本结构 二、光纤信道 光纤信道是以光导纤维(简称光纤)为传输媒质、以光波为载波的信道。它能够实现大容量的传输。光纤具有损耗低、频带宽、线径细、重量轻、可弯曲半径小、不怕腐蚀以及不受电磁干扰等优点。 三、无线电视距中继 无线电视距中继是指工作频率在超短波和微波波段时,电磁波基本上是沿视线传播,通信距离依靠中继方式延伸的无线电电路。相邻中继站之间的距离一般在40~50公里。 图ZY3200102002-2 无线电中继信道图ZY3200102002-5 卫星中继信道无线电中继信道的构成如图ZY3200102002-2所示。它由终端站、中继站及各站间的电波传播路径构成。具有传输容量大、发射功率小、通信稳定可靠等优点。主要用于长途干线、移动通信网以及某些数据收集系统。 四、卫星中继信道 保 护 层 外 导 体 绝 缘 层 内 导 体

11LED可见光通信信道特性分析

室内LED可见光通信信道特性分析 陈旭 (桂林电子科技大学信息与通信学院) 【摘要】针对室内无线光通信系统中以高亮度发光二极管(LED)照明灯作为通信信号发射源的特点,建立的信道模型,分析了由于各个LED 发射端到接收端的距离差而引起的多径效应对通信系统的影响. 【关键词】光无线通信;多径效应 Channel characteristic analysis for Indoor LED Wireless Optical Communication Chen xu (Gulin university of electronic technology Information and communication Institute) 【Abstract】Aiming at the LED lights as the signal source for indoor optical wireless communication system, this paper establish the channel model and discusses the multi-path effects resulted from the different distance of each LED to the receiver, 【Key words】optical wireless communication; multi-path effects

1 引言 LED 与传统照明设备相比,具有使用电压低、功耗低、寿命长、易于小型化等优点,它另外的突出优点是响应灵敏度非常高、调制性能好、发射功率大,适合作为中短距离超高速无线光通信系统的光源。利用白光LED 发光特性,将信号调制到可见光上进行传输,可以构成LED 可见光无线通信系统。室内LED可见光无线通信系统的提出基于LED灯的照明性质和调制能力,在系统中需要考虑LED光源的发光原理和参数指标之外,还要考虑通信信道的特性对其影响。 2 室内LED可见光通信链路分析 室内无线光通信的基本链路方式有很多种[1]。在本文描述的LED可见光无线通信系统中,假设LED室内照明灯固定在天花板上,以其为信号光源的通信链路主要有两种形式:直射式视距链接和漫射链接,如图1所示。 (a)直射式视距链接 (b)漫射链接 图1可见光LED用于室内通信时的光链路方式 在直射式视距链路中,LED光源发出的光直接照射到接收机的探测器表面上,优点是信号光源功率利用率高、容易实现高速数据链接,然而该链路要求光信号收端和发端始终对准连接,容易因链路上存在的障碍物而阻断。在以墙面反射为主的漫射链路中,系统为了获得更大的接收功率,接收机的探测器视角一般都比较大,虽然降低了对方向性的要求,系统不易受阴影效应影响,但链路中存在的多径效应会限制信号传输速率。 3 室内无线光通信信道模型建立 无线光通信系统多采用光强度调制(IM)和直接检测技术(DD)。图2为一个简单的基于可见光LED、采用IM-DD技术[2]的室内无线通信信道模型。在IM0-DD的调制系统中,无论需要传输的通信信号是基带信号还是频带信号,由于LED瞬时发射功率不可能为负值,所以必须加一个直流偏置,以保证LED端输入电信号X(t)为非负信号,可表示为:

短波信道特性研究

短波信道特性研究 【摘要】短波通信干扰严重,针对短波信道特性进行研究,找出影响通信质量的要素,提出改善通信质量的两种方法。 【关键词】短波;信道;误码率 短波信道频带窄、多径现象非常严重、时延较大、多普勒频移大和衰落严重。一般情况下短波信道的带宽为3.7KHz,信号传输路径为2~4条,时延典型值为2ms,多普勒频移高达20Hz至50Hz,在高纬度地区曾实测达73Hz,另外在信号传输过程中伴随着瑞利衰落,这使得短波信道十分复杂恶劣,造成短波通信的通信质量提高十分困难。但是随着科技的发展,短波通信的性能还是得到了巨大的提高[1]。 短波通信主要依靠电离层的反射来进行通信,因此,电离层的状态将直接影响短波通信的质量。短波通信中的多径现象非常严重、时延较大、多普勒频移大和衰落严重很大程度上就是由电离层的不均匀、时变和色散造成的[2]。 1.多径效应 短波通信时,发射端发出的同一电磁波信号经过不同的途径和不同的传输时延到达接收端的现象。多普勒展宽就是由多径效应引起的。 当发射端发射信号时,部分信号只经过电离层一次反射就到达接收端;部分信号在经电离层反射回地面后再次被反射到电离层,经电离层第二次反射到达接收端;有的信号甚至需要经过电离层三至四次反射后才到达接收端。多径现象中一般为2、3、4条路径,出现概率为85%,其中以出现3条路径的情况最多[3][4]。另外,经大量的数据统计:在中长距离传输系统中,绝大部分的多径时延在0.2~5ms之间,但是极少情况下最大时延达8ms[5]。一般情况下,99.5%的多径时延不小于0.5ms,50%的多径时延不小于1.4ms,仅有0.5%的多径时延超过5ms。 2.衰落现象 衰落现象是指接收端接收到的信号幅度随着时间无规则变化的现象。衰落在短波通信中分为快衰落和慢衰落。持续时间较短并且连续出现的衰落称为快衰落;而持续时间相对比较长的衰落是慢衰落。 2.1快衰落 快衰落的成因主要是多径现象。随着时间的推移,电离层的密度、高度总是呈现随机的变化,这使得电磁波信号的传输路径也不停随机变化。接收端接收到受多径影响的同一信号间的相位差不再恒定,造成合成信号的幅度发生随机改变。因此,这种因接收端收到的电磁波信号的相位干涉所造成的衰落也称“干涉

无线信道传播特性分析总结

无线信道传播特性分析总结 姓名随着科学技术的发展,无线通信已经渗透到我们生活的各个方面,对我们的生活工作有着巨大的影响。在无线通信系统中,无线通信的信道的特性对整个系统有着巨大的影响。 1、无线信道的概念要想搞明白无线信道具有哪些特性,就要先了解什么是无线信道。信道是对无线通信中发送端和接收端之间的通路的一种形象比喻,对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,我们想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。信道具有一定的频率带宽,正如公路有一定的宽度一样。与其它通信信道相比,无线信道是最为复杂的一种,其衰落特性取决于无线电波传播环境。不同的环境,其传播特性也不尽相同。无线信道可能是很简单的直线传播,也可能会被许多不同的因素所干扰,例如:信号经过建筑物,山丘,或者树木所有反射而产生的多径效应,使信号放大或衰落。在无线信道中,信号衰落是经常发生的,衰落深度可达30 ?B。对于数字传输来说,衰落使比特误码率大大增加。这种衰落现象严重恶化接收信号的质量,影响通信可靠性。移动信道与非移动点对点无线信道相比,信号传输的误比特率前者比后者高106倍。另外,在陆地移动系统中,移动台处于城市建筑群之中或处于地形复杂的区域,其天线将接收从多条路径

传来的信号,再加移动台本身的运动,使得信号产生多普勒效应,并且信道的特性也随时间变化而变化,增加了信号的不确定性,使得移动台和基站之间的无线信道多变且难以控制。所以,与传统模型相比,无线信道多径数目增多,时延扩展加大,衰落加快。 2、无线信道的特性信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机组合。同时,电波在各条路径的传播过程中,有用信号会受到各种噪声的污染,包括加性噪声(如高斯白噪声)、乘性噪声的污染,因而会出现不同情形的损伤,严重时,会使有用信号难以恢复。无线信号在传播时,不仅存在自由空间固有的传输损耗,还会受到由于建筑物、地形等的阻挡而引起信号功率的衰减,这种衰减还会由于移动台的运动和信道环境的改变出现随机的变化。下面将对无线信道的一些特性来进行分析。 2、1 大尺度衰落通常情况下,当接收机和发射机之间的相对位置在1-lOm的范围内变化时,接收信号功率的平均值基本保持不变。但当它们的相对位置的改变远超过上述范围时,接收信号的平均功率将会有几个数量级的变化。大尺度衰落正是用来描述接收机和发射机之间的距离有大尺度变化时,接收信号平均功率值的变化规律。在自由空间传播条件下,接收机接收的平均功率Pr可由下式给出:

【matlab毕业设计课题】highspeedlogic★短波宽带通信系统的信道建模仿真及优化DOC

短波宽带通信系统的信道建模仿真及优化 3.1信道建模的概念 以往人们对于短波信道的理解很大程度上局限于窄带过程。近来,由于扩频大容量短波通信的需求发展,宽带短波信道的特征得到了广泛的研究。 对于短波信道,损耗和畸变是最主要的两种传输影响。它包括自由空间传播损耗、电离层吸收损耗、多跳地面反射损耗和一些额外系统损耗。信号畸变包括:信道参数时变、多径传播和信号色散。 一般来讲,多径时延又可分为inter-modal和intra-modal两种形式。Inter-modal延迟包括multimode(多模式包括多层模式、O模式和X模式以及高低仰角模式等)和multi-hop(多跳模式)情况,这种情况下主要引起码间串扰。Intral-modal延迟由地理场强影响、电离层不均匀性和电离层介质的色散特性引起的,在这种情况下将引起信号脉冲畸变,这种情况下限制了信道的带宽。 本章,我们将重点介绍两种比较常用的信道模型,即Watterson信道模型和ITS信道模型,并且在MATLAB平台上对两种模型进行了仿真分析,其中重点讨论了ITS模型,并对该模型进行了改进分析。 3.2基于统计模型的短波信道模型 对短波信道建模具有里程碑意义的是沃特森在1970年发表的一篇文章,文章中提出了一种静态模型,并在大气中进行了实验验证。此静态模型可以描述为高斯散射增益抽头延迟线模型,即Watterson模型。 Watterson信道模型是经典的窄带短波信道模型,在这个模型中,信道衰落是瑞利幅度分布,而在每种传播模式中多普勒扩展的功率谱满足高斯分布。Watterson模型没有定义延时扩展的形状,认为各个多径传输模式中不存在延时扩展。其有效带宽仅为10kHz。在与高纬度电离层和近赤道电离层有关的应用中,Watterson模型过于简单,例如,在高纬度,多普勒谱通常不是高斯型的。 上个世纪90年代后期,美国电信科学协会(ITS)发表了一篇迄今最为权威的宽带信道模型仿真器实现方法的论文,后被广泛称为ITS模型。ITS模型适用于宽带和窄带两种情况,可看作Watterson模型的一种扩展。 美国ITS提出了一种更复杂的电离层信道模型。这个模型是作为宽带模型提出的,但也适用于窄带模型。在ITS模型中,总的信道冲击响应定义为所有传输模式冲击响应之和,它

信道特性

恒参信道: 有线电信道(明线,同轴电缆,双绞线电缆),光纤信道,无线电视距中继,卫星中继信道。 ? 由于恒参信道对信号传输的影响是固定不变的或者是变化极为缓慢的,因而可以等效为一个非时变的线性网络。 从理论上讲,只要得到这个网络的传输特性,则利用信号通过线性系统的分析方法, 就可求得已调信号通过恒参信道后的变化规律。 网络的相位-频率特性还经常采用群迟延-频率特性 来衡量,要满足不失真传输条件,等同于要求群迟延-频率特性应是一条水平直线. 随参信道: 短波电离层反射信道,超速波及微波对流层散射信道,超短波电离层散射信道,超短波超视距绕射信道。 属于随参的传输媒质主要以电离层反射、对流层散射等为代表。 ? 随参信道的特性比恒参信道要复杂得多,其根本原因在于它包含一个复杂的传输媒质。 ? 虽然,随参信道中包含着除媒质外的其它转换 器,但是,从对信号传输影响来看,传输媒质的影响是主要的,转换器特性的影响可以忽略不计。在此,仅讨论随参信道的传输媒质所具有的一般特性以及它对信号传输的影响。 随参信道图: 共同特点是:1.对信号的损耗随时间变化而变化,2,传输时延随时间变化而变化,3由发射点出发的电波可能经多条路径到达接收点,也就是所谓的多径传播。 多径传播后的接收信号将是衰减和时延随时间变化的各路径信号的合成。 —— 由第i 条路径的随机相位; ————由第i 条路径到达的接收信号振幅 _______ 由第i 条路径达到的信号的时延; 都是随机变化的 (1) 从波形上看,多径传播的结果使确定的载频信号变成了包络和相位都随机变化的窄带信号,这种信号称为衰落信号; (2)从频谱上看,多径传播引起了频率弥散(色散),即由单个频率变成了一个窄带频谱。 通常将由于电离层浓度变化等因素所引起的信号衰落称为慢衰落;而把由于多径效应引起的信号衰落称为快衰落。 ) ()(0t t i i τω?-=)(t i μ)(t i τ) (),(),(t t t i i i ?τμω ω?ω τd d )()(=

水声通信系统中的信道编码技术研究

水声通信系统中的信道编码技术研究 信道编码定理为人们探索信道的最佳编码方案提供了理论依据,但并没有指明如何获得好码。目前,出现了多种信道编码方案,如RS 码、卷积码、级联码等。本文简要介绍了RS 码和卷积码的基本原理,并进行了相应的计算机仿真,并给出了加入了RS 码和卷积码水声通信系统的水池实验数据,结果表明利用信道编码技术能够提高水声通信系统的误码性能。 (一)Reed -Solomon 码 1960 年I.S Reed 和G .Solomond 提出RS 码,又称Reed -Solomon 码,RS 码是一类纠错能力很强的多进制BCH 码。 RS 码是在GF(q)上长度为N=q-1的本原BCH 码。冗余根据可纠正错误确定,通常等于2t 个字符。这样,编码具有k=q-2t-1个信息字符。这种码具有N 个信息字符,可纠正t 个错误。长度为N ,设计距离为=q-k δ的RS 码的生成多项式为: )())()(()(1321-----=δααααx x x x x g (1) 本论文系统中实现的编码器按图1工作。开始编码前,向A0~A13或A0~A11单元写入信息字符(分别对应1个或2个可纠错码)。P0~P15单元记载类构造器算出的校验多项式的系数值。然后校验多项式系数和信息字相乘并相加,如图所示。运算的结果得出校验字符,存入A0(此时,信息字符向左移位)。生成过程继续,直到A15出现信息字高位元素。这样,在编码中,为纠正1个错误,必须进行2次迭代;为纠正2个错误,必须进行4次。 ∑ 图1 RS 码编码器的结构 纠错码的译码问题,一直是编码理论中最感兴趣的课题之一。RS 在短和中的码长下,具有很好的纠错性能,构造容易,故得到广泛应用。 RS 的译码基本上分为3步:第一步是由接收到的R(x)计算出伴随式;第2步由伴随式找出错误图样E(x);第3步由R(x)- E(x)得到可能发送的码字C(x)。 记q(x)为信息多项式,则发送码字C(x)=q(x)g(x),接收到的码字:

无线传输信道的特性

通信工程专业研究方法论无线传输信道的特性 学院:电子信息工程学院 专业:通信工程 班级: 学号: 学生: 指导教师:毕红军 2014年8月

目录 一、引言: (2) 二、无线电波传播频段及途径 (3) 2.1无线电波频段划分 (3) 2.2无线电波的极化方式 (4) 2.3传播途径 (4) 三、无线信号的传播方式 (5) 3.1直线传播及自由空间损耗 (5) 3.2 反射和透射 (6) 3.2.1斯涅尔(Snell)定律 (6) d 功率定律 (7) 3.2.2 4 3.2.3断点模型 (8) 3.3绕射 (9) 3.3.1单屏或楔形绕射 (9) 3.3.2多屏绕射 (10) 3.4散射 (12) 四、窄带信道的统计描述 (14) 4.1不含主导分量的小尺度衰落 (14) 4.2含主导分量的小尺度衰落 (16) 4.3多普勒谱 (16) 4.4大尺度衰落 (17) 五、宽带信道的特性 (18)

5.1多径效应对宽带信道的影响 (18) 5.2多普勒频移对宽带信道的影响 (21) 六、总结 (22) 七、参考文献 (23) 一、引言: 各类无线信号从发射端发送出去以后,在到达接收端之前经历的所有路径统称为信道。如果传输的无线信号,则电磁波所经历的路径,我们称之为无线信道。信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机结合。同时,电波在各种路径的传播过程中,有用信号会受到各种噪声的污染,因而会出现不同情形的损伤,严重时会使信号难以恢复。无线信号在传播时,不仅存在自由空间固有的传输损耗,还会受到建筑物、地形等的阻挡而引起信号功率的衰减和相位的失真,这种衰减还会由于移动台的运动和信道环境的改变出现随机的变化。下面将讨论无线传输信道的主要特性。 二、无线电波传播频段及途径 2.1无线电波频段划分

无线移动信道特性分析(论文)

福建水利电力职业技术学院无线移动信道特性分析(论文)

福建水利电力职业技术学院信息工程系 09级通信工程技术专业毕业设计(论文)任务书 无线移动信道特性分析

摘要 本论文介绍了无线信道的基本概念和特性,对幅度服从莱斯分布和瑞利分布的衰落信道的概率密度函数进行分析。建立了多径衰落信道模型[2],详细分析了BFSK信号在多种衰落信道中误比特率与信噪比的关系,并进行了性能比较。结果表明,瑞利衰落信道的误比特性能较高斯白噪声信道和莱斯信道的误比特性能更差,且所建立的仿真方法可以作为多径衰落信道的分析方法。 本文针对目前无线信道存在的不确定性的信道衰落对无线通信质量提高有不利因素的状态,为改善无线移动通信系统多径时延[3]扩展而引起的符号间干扰的现状。 关键词:衰落信道;误比特率;瑞利衰落信道;莱斯衰落信道;高斯白噪声信道 目录 无线移动信道特性分析?错误!未定义书签。

摘要?错误!未定义书签。 绪论?错误!未定义书签。 1 无线移动通信技术的发展及应用?错误!未定义书签。 1.1 无线移动通信技术发展历史和趋势[5]............................................................... 错误!未定义书签。 1.2 无线移动通信技术相关业务及频谱?错误!未定义书签。 1.3 无线移动通信技术应用设想?错误!未定义书签。 本章小结....................................................................................................................... 错误!未定义书签。 2 无线信道的概念和特性?错误!未定义书签。 2.1 无线信道的定义?错误!未定义书签。 2.2 无线信道的类型................................................................................................... 错误!未定义书签。 2.2.1 传播路径损耗模型................................................................................. 错误!未定义书签。 2.2.2 大尺度传播模型....................................................................................... 错误!未定义书签。 2.2.3小尺度传播模型................................................................................... 错误!未定义书签。 2.3 无线移动信道的概念......................................................................................... 错误!未定义书签。 2.4 移动信道的特点................................................................................................. 错误!未定义书签。 2.4.1 移动通信信道的3个主要特点 ............................................................... 错误!未定义书签。 2.4.2 移动通信信道的电磁波传输?错误!未定义书签。 2.4.3 接收信道的3类损耗 (11) 2.4.4三种快衰落(选择性衰落)产生的原因 ............................................. 错误!未定义书签。 2.4.5 接收信号的4种效应........................................................................... 错误!未定义书签。 本章小结?错误!未定义书签。 3 移动信道的传输特性和信道模型................................................................................. 错误!未定义书签。 3.1传输损耗的初步定量分析............................................................................. 错误!未定义书签。 3.1.1 大范围传输损耗的定量分析?错误!未定义书签。 3.1.2 中小范围传输损耗的定量分析?错误!未定义书签。 3.1.3移动信道中的噪声和干扰 ................................................................... 错误!未定义书签。 本章小结....................................................................................................................... 错误!未定义书签。4CDMA技术[11]?错误!未定义书签。 4.1 CDMA技术含义.............................................................................................................. 错误!未定义书签。 4.2 CDMA技术的优点?错误!未定义书签。 本章小结?错误!未定义书签。 致谢....................................................................................................................................... 错误!未定义书签。参考文献............................................................................................................................... 错误!未定义书签。 绪论 无线信道也就是常说的无线的“频段(Channel)”,其是以无线信号作为传输媒体的数据信号传送通道。

浅海水声信道模型

浅海水声信道模型 对浅海水声信道建模,一方面可以大致估计水声通信设备在不同水声信道下的性能;另一方面,可以很方便地控制各种不同的输入参数,以便模拟不同的实际环境,大大节省出海实验的费用和时间。 但是,要想获得完全符合实际应用环境的水下通信信道的解析模型在目前是不可能的,我们只能在假设一些理想条件的前提下,针对浅海信道影响信号传输和接收的主要干扰因素加以考虑,建一个半经验的模型。 水声信道尤其是浅海水声信道是典型的变参信道,其特性随时间和空间不断地变化,称为时变多径衰落信道。在水声数字通信系统的研究中,常用图3-3的模型表示: 图3-3 浅海水声信道模型 图中,()i s t 为发射信号,(;)h t τ为水声信道单位冲激响应,()n t 为信道噪声,()r s t 为经过信道后的信号,()r t 为接收信号,其中t 为时间变量,τ为时间延迟。则接收信号可表示为: ()()()(;)()()r i r t s t n t h t s t d n t τττ=+= -+? (3-13) 根据浅海水声信道的特点,浅海水声信道可以建立两类模型[5,27,28]:一是建立一个N 径非时变的确定性模型。二是建立一个随机统计模型,对于近距离的浅海水声信道可以建立莱斯衰落和加性高斯白噪声信道模型;对于中、远距离的浅海水声信道可以建立瑞利衰落和加性高斯白噪声信道模型。 3.2.1 N 径确定性模型 针对浅海水声信道,在建立浅海水声信道N 径确定性传播模型之前,

先假设几个理想条件: 1) 水深为常数; 2) 当声线掠射角小于5°、载波频率小于50KHz 和海底介质的密度大于 3 1.4 /g c m (例如 沙,淤泥,粘土等介质) 时,海底的反射系数b r 近似为1, 同时相位偏移为180°,考虑到浅海海底介质一般由细沙和淤泥构成,同时掠射角总是大于0°,无论怎样,声波由海底反射时,声能总是有所损失的,而且随着掠射角的增大而增加,在这里假设海底的反射系数等于0.9; 3) 海面的粗糙程度可以用瑞利参数R 来描述: ) sin(2?σπc f R = (3-14) 其中,f 为工作频率,c 为声速,σ为海面波浪高度(波峰到波谷)的均方根值,?为声线掠射角。经验数据表明,当瑞利参数1<>R ,则海面被认为是剧烈起伏不定的。 对于小掠射角,海面的反射系数只与海面的风速和载波频率有关,并且海面的反射系数s r 可以由下式给出: 2 22 111? ? ? ??+? ?? ??+= f f f f r s (3-15) 其中 22378-=w f , 2110f f =,?为载波频率,单位是kHz ,w 为风速,单位是节(knots )。假设使用的载波频率kHz f 10=,当风速为10knots 时,海面反射系数461.0=s r ; 由于浅海的发射端和接收端的水平距离远大于海水深度,即H L >>,传播中弯曲的声线弧线可以近似用直线代替; 4) 从发射端到接收端,直达路径所能到达的最远距离可以根据下式计算: gr a D 22 max = (3-16) 其中a 为发射端距离海底的高度,gr 为声速梯度且 1 5 10 2.1--?=米 gr ,

无线信道模型

无线信道模型 摘要:本文分析了无线信道模型。针对的是对无线信道的各种效应感兴趣的读者。众所周知,正是这些复杂的效应使得无线信道产生了不确定性,也就是通常所说的统计特性。由于这方面很少有比较全面,容易理解的资料,所以本文的内容是对其他几本书和相关的论文资料的综合。此外的资料不是只讨论了部分问题,就是虽然面面俱到,但缺乏一定的深度。 本文深入探讨了“是什么影响了无线信道的特性?”这一问题。主要阐述了无线信道的两种效应:一种是乘性效应,使信号产生衰落;另一种是加性效应,使接收到的信号产生畸变。信号的衰落不一定总是随机过程,但信号的畸变却总是。对于信道对信号产生的各种效应,找到了较好的数学模型,这些模型可以用来仿真和分析系统的性能。而且,我们简单举例分析了一些数字无线调制信道的特性。 内容 1 介绍 2 无线电信道 2.1路径损耗 2.1.1 天线 2.1.2 自由空间传播 2.1.3 双线模型 2.1.4 经验和半经验模型

2.1.5其他模型和参数 2.2 阴影 2.2.1 阴影模型 2.2.2 测量结果 2.2.3 阴影修正 2.3 衰落 2.3.1 物理基础 2.3.2 数学模型 2.3.3 衰落的时域和频域特性 2.3.4 一维统计特性 2.3.5 二维统计特性 2.3.6 衰落率和持续时间 3 调制信道 3.1 噪声 3.1.1 门限噪声 3.1.2 窄带高斯白噪声 3.1.3 人为噪声 3.1.4 一些结果 3.2 干扰 4 数字信道 4.1 数字信道的结构 4.2 高斯白噪声信道下二进制PAM信号的以SNIR为自变量的函数BER的计算

4.3 瑞利信道下BPSK信号以SNIR为自变量的函数BER的计算4.4 高斯白噪声信道下其他数字调制方案的一些结果 5 结论 第一章 介绍

基于多伯努利滤波的浅海水声信道跟踪研究

Abstract Underwater Channel Tracking can be used in channel equalization for underwater acoustic communication and it can also help to explore the underwater channel environment. Traditional methods used in common wireless communication for channel equalization are usually the Least Mean Square (LMS) and the Recursive Least Mean Square (RLS) based methods. These are limited to overcome the time-varying complicated underwater acoustic channel. Hence, Autoregressive (AR) model and Subspace Tracking (ST) methods are introduced and studied in some works to help the channel tracking based on the cross-correlation of underwater acoustic channel. These methods transform the nonlinear channel parameters into some linear ones to simplify the tracking. However, these nonlinear parameters are still important and required to fully understand the underwater acoustic channel. In these work, we provide a channel tracking method to track the channel parameters directly. Underwater acoustic channel is characterized by multipath and time-varying. Hence, we track each physical path of eigen sound rays to obtain the channel parameters and the process of establishment, hiddenness and vanishment for each path based on the framework of Kalman filter. We first establish a slow time-varying multipath model for shallow sea. And fast time-vary path model is also studied including the establishment, hiddenness and vanishment. The delay and the doppler of each physical path of eigen sound rays are transmitted cooperatively during the channel state evolution, so that we can jointly track these two parameters. What’s more,parameters such as the depth of the transducer and the distance between the sender and receiver, usually considered in underwater acoustic communication environment with large observation errors, are fitly avoided in this model. Then MB method is used. Even mismatch of the model we can still track each path. We can estimate the number of the paths along with the state of each one at every sampling instant and track each confirmed path from the past to the present. Hence, a visualized evolution of the multipath in the communication environment can be achieved by analyzing all the tracking results related to a success judgement for establishment, hiddenness or vanishment of a path. Other than traditional ones, MB method gets rid of too complicated data association and multihypothesis and it also appears a ”no spooky effect” outbalance a Cardinalized Probability Hypothesis Density (CPHD) filter under the same Random Finite Set (RFS) frame when tracking underwater acoustic channels.

相关文档
最新文档