理科数学2010-2019高考真题分类训练专题九 解析几何第二十六讲 椭圆
【高考数学】专题九 解析几何第二十六讲 双曲线(含答案)

A. 4 3 3
B.2 3
C.6
D.4 3
11. (2015 重庆)设双曲线
x2 a2
−
y2 b2
= 1(a
0,b
0) 的右焦点是 F
,左、右顶点分别是 A1,
A2 ,
过 F 做 A1A2 的垂线与双曲线交于 B, C 两点,若 A1B ⊥ A2C ,则双曲线的渐近线的斜
率为
A.± 1 2
B.± 2 2
−
y2 b2
= 1(a
0,b
0) 的两条渐近线分别交于点 A 和点 B,且|
AB |=
4 | OF (| O 为原点),
则双曲线的离心率为
(A) 2
(B) 3
(C)2
(D) 5
2010-2018 年
一、选择题
1.(2018 浙江)双曲线 x2 − y2 = 1的焦点坐标是 3
A. (− 2, 0) , ( 2, 0)
x1 3
B. 1 2
C. 2 3
D. 3 2
6.(2017
新课标Ⅱ)若 a
1 ,则双曲线
x2 a2
−
y2
= 1的离心率的取值范围是
A. ( 2, +)
B. ( 2, 2)
C. (1, 2)
D. (1, 2)
7.(2017
天津)已知双曲线
C. ± 1
D.± 2
12.(2014 新课标 1)已知 F 是双曲线 C :x2 − my2 = 3m(m 0) 的一个焦点,则点 F 到 C
的一条渐近线的距离为
A. 3
B.3
C. 3m
D. 3m
13.(2014 广东)若实数 k 满足 0 k 9 ,则曲线 x2 − y2 = 1与曲线 x2 − y2 = 1的
2010-2019十年高考数学(理)真题专题9 解析几何 第28讲 抛物线分类汇编

专题九 解析几何第二十八讲 抛物线2019年1.(2019全国II 理8)若抛物线y 2=2px (p >0)的焦点是椭圆的一个焦点,则p =A .2B .3C .4D .82.(2019北京理18(1))已知抛物线经过点(2,-1).求抛物线C 的方程及其准线方程;3.(2019全国I 理19)已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若,求l 的方程;(2)若,求.4. (2019全国III 理21)已知曲线C :y =,D 为直线y =上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.2010-2018年一、选择题1.(2018全国卷Ⅰ)设抛物线C :24=y x 的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则⋅FM FN = A .5B .6C .7D .82.(2017新课标Ⅰ)已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则||||AB DE +的最2231x y pp+=2:2C x py =-324AF BF +=3AP PB =uu u r uu rAB 22x 12-52小值为A .16B .14C .12D .103.(2016年四川)设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为A B .23C .2D .1 4.(2016年全国I)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E两点.已知||AB =||DE =C 的焦点到准线的距离为 A .2 B .4 C .6 D .85.(2015浙江)如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是A .11BF AF -- B .2211BF AF -- C .11BF AF ++ D .2211BF AF ++6.(2015四川)设直线l 与抛物线24y x =相交于,A B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 A .()13, B .()14, C .()23, D .()24,7.(2014新课标1)已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF = A .72 B .52C .3D .2 8.(2014新课标2)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30°的直线交C 于,A B 两点,O 为坐标原点,则△OAB 的面积为( )ABC .6332D .949.(2014辽宁)已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4310.(2013新课标1)为坐标原点,为抛物线的焦点,为上一点,若,则的面积为( ) A .B .C .D .11.(2013江西)已知点()2,0A ,抛物线2:4C x y =的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则||:||FM MN = A .B .1:2C .1:D .1:312.(2012新课标)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A 、B 两点,34||=AB ,则C 的实轴长为 A 、2B 、22C 、4D 、813.(2012山东)已知双曲线:的离心率为2.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为 A . B . C . D . 14.(2011新课标)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为A .18B .24C .36D .48 二、填空题15.(2018全国卷Ⅲ)已知点(1,1)M -和抛物线C :24y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k =______.16.(2017新课标Ⅱ)已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长O F 2:C y =P C ||PF =POF ∆241C 22221(0,0)x y a b a b-=>>22:2(0)C x py p =>1C 2C 2x y =2x y =28x y =216x y =线交y 轴于点N .若M 为FN 的中点,则||FN = .17.(2015陕西)若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p=18.(2014湖南)如图4,正方形的边长分别为,原点为的中点,抛物线经过 .19.(2013北京)若抛物线的焦点坐标为,则 ,准线方程为 . 20.(2012陕西)右图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.21.(2010浙江)设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B在抛物线上,则B 到该抛物线准线的距离为_____________. 三、解答题22.(2018北京)已知抛物线C :22y px =经过点(1,2)P .过点(0,1)Q 的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.23.(2018全国卷Ⅱ)设抛物线24=:C y x 的焦点为F ,过F 且斜率为(0)>k k 的直线l与C 交于A ,B 两点,||8=AB .ABCD DEFG 和正方形,()a b a b <O AD 22(0)y px p =>,bC F a=两点,则22y px =(1,0)p =l(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.24.(2018浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :24y x =上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆2214y x +=(0x <)上的动点,求PAB ∆面积的取值范围. 25.(2017新课标Ⅲ)已知抛物线C :22y x =,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点(4,2)P -,求直线l 与圆M 的方程.26.(2017浙江)如图,已知抛物线2x y =.点11(,)24A -,39(,)24B ,抛物线上的点(,)P x y 13()22x -<<,过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围;x(Ⅱ)求||||PA PQ ⋅的最大值.27.(2017北京)已知抛物线C :22y px =过点(1,1)P .过点1(0,)2作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.28.(2016年全国III)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线1l ,2l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(Ⅱ)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.29.(2015新课标1)在直角坐标系xoy 中,曲线C :24x y =与直线y kx a =+(0)a >交与M ,N 两点,(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 30.(2014山东)已知抛物线)>0(2:2p px y C =的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有FA FD =,当点A 的横坐标为3时,ADF ∆为正三角形。
理科数学2010-2019高考真题分类训练专题九解析几何第二十六讲椭圆答案

专题九 解析几何第二十六讲 椭圆答案部分1. 解析2x =,则22AF x =,所以23BF AB x ==.由椭圆定义122BF BF a +=,即42x a =.又1224AF AF a x +==,22AF x =,所以12AF x =. 因此点A 为椭圆的上顶点,设其坐标为()0,b .由222AF BF =可得点B 的坐标为3,22b ⎛⎫- ⎪⎝⎭.因为点B 在椭圆()222210x y a b a b+=>>上,所以291144a +=.解得23a =.又1c =,所以22b =.所以椭圆方程为22132x y +=.故选B. 2.解析(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在轴上的椭圆,不含左右顶点.3. 解析 由题意,c e a ====所以22244a b a -=,即2234a b =.故选B .4. 解析 设(,)M m n ,,0m n >,椭圆C :22:13620x y C +=的6a =,b =,2c =,23c e a ==,由于M 为C 上一点且在第一象限,可得12||||MF MF >, 12MF F △为等腰三角形,可能1||2MF c =或2||2MF c =,即有2683m +=,即3m =,n = 2683m -=,即30m =-<,舍去.可得M .2010-2018年1.D 【解析】由题意可得椭圆的焦点在x 轴上,如图所示,OyxPF 2F 1A设12||2=F F c ,所以12∆PF F 为等腰三角形,且12=120∠oF F P ,∴212||||2PF F F c ==,∵2||OF c =,∴点P 坐标为(2cos 60,2sin 60)c c c +oo,即点(2)P c .∵点P 在过点A∴26c a =+14c a =.∴14e =,故选D .2.C 【解析】由题意25=a,=a .由椭圆的定义可知,P 到该椭圆的两个焦点的距离之和为2=a ,故选C .3.B 【解析】由题意可知29a =,24b =,∴2225c a b =-=,∴离心率3c e a ==,选B4.A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,3c e a ==,故选A .5.A 【解析】设(0,)E m ,则直线AE 的方程为1x y a b -+=,由题意可知(,)mc M c m a--,(0,)2m和(,0)B a 三点共线,则22mc m m m a c a--=--,化简得3a c =,则C 的离心率13c e a ==.故选A . 6.A 【解析】由题意知2211m n -=+,即222m n =+,222221222221111()2m n n n e e m n n n -+++=⋅=⋅+4242422111122n n n n n n ++==+>++,所以121e e >.故选A .7.D【解析】由题意可设,sin )Q αα,圆的圆心坐标为(0,6)C ,圆心到Q 的距离为||CQ ===,当且仅当2sin 3α=-时取等号,所以max max ||||PQ CQ r +==≤,所以Q P ,两点间的最大距离是.8.D 【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b += ① 2222221x y a b+= ② ①-②得1212121222()()()()0x x x x y y y y a b+-+-+=, ∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D.9.C 【解析】∆21F PF 是底角为30o 的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==10.5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =u u u r u u u r ,得1212212(1)x x y y -=⎧⎨-=-⎩,即122x x =-,1232y y =-.因为点A ,B 在椭圆上,所以222222224(3)44x x m x y m⎧+-=⎪⎪⎨⎪+=⎪⎩,得21344y m =+,所以2222221591(32)(5)444244x m y m m m =--=-+-=--+≤,所以当5m =时,点B 横坐标的绝对值最大,最大值为2.1112;【解析】设椭圆的右焦点为(,0)F c ,双曲线N 的渐近线与椭圆M 在第一象限内的交点为A,由题意可知(2c A ,由点A 在椭圆M 上得,22223144c c a b+=,∴22222234b c a c a b +=,222b ac =-,∴22222222()34()a c c a c a a c -+=-,∴4224480a a c c -+=,∴428+40e e -=椭椭,∴24e =±椭,∴1e =椭(舍去)或1e 椭,∴椭圆M1,∵双曲线的渐近线过点(,)22c A,渐近线方程为y =,故双曲线的离心率2e ==双.12【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭,由90BFC ∠=︒可得0BF CF ⋅=u u u r u u u r,2b BF c ⎛⎫=+- ⎪ ⎪⎝⎭u u u r,2b CF c ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,则22231044c a b -+=,由222b a c =-可得223142c a =,则c e a ==. 13.22325()24-+=x y 【解析】 由题意圆过(4,0),(0,2),(0,2)-三个点,设圆心为(,0)a ,其中0a >,由4-=a 32a =,所以圆的方程为22325()24-+=x y .14.2【解析】设11(,)A x y ,22(,)B x y ,分别代入椭圆方程相减得 1212121222()()()()0x x x x y y y y a b-+-++=,根据题意有12122,2x x y y +=+=, 且121212y y x x -=--,所以22221()02a b +⨯-=,得222a b =,整理222a c =,所以2e =. 15.12【解析】设MN 交椭圆于点P ,连接1F P 和2F P ,利用中位线定理可得AN BN +=122222412F P F P a a +=⨯==.16.3【解析】由题意可得2(,)b A c a,2(,)b B c a -,由题意可知点D 为1F B 的中点,所以点D 的坐标为2(0,)2b a-,由B F AD 1⊥,所以11AD F B k k ⋅=-,22ac =,解得e = 17.22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b -- 将点B 坐标带入椭圆方程得22221()53()13b c b --+=,又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩∴椭圆方程为22312x y +=.18.13-【解析】由题意可知,21F MF ∆中,︒=∠︒=∠︒=∠90,30,60211221MF F F MF F MF ,所以有⎪⎩⎪⎨⎧==+==+12212221222132)2(MF MF a MF MF c F F MF MF ,整理得13-==a c e ,故答案为13-. 19.5【解析】由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225a c =.故5c e a ==.即椭圆的离心率为5. 20.(0,1)±【解析】设点A 的坐标为(,)m n ,B 点的坐标为(,)c d.12(F F ,可得1()F A m n =u u u r,2()F B c d =u u u u r ,∵125F A F B =u u u r u u u u r ,∴,55m nc d +==,又点,A B 在椭圆上, ∴2213m n +=,225()135n +=,解得0,1m n ==±, ∴点A 的坐标是(0,1)±.21.【解析】(1)由已知得(1,0)F ,l 的方程为1=x .由已知可得,点A的坐标为(1,2或(1,2-. 所以AM的方程为2y x =-2y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则1<x2x MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由11=-y kx k ,22=-y kx k 得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,2122421+=+k k x x ,21222221-=+x k k x .则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.22.【解析】(1)设11(,)A x y ,22(,)B x y ,则2211143x y +=,2222143x y +=. 两式相减,并由1212y y k x x -=-得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=, 于是34k m=-.①由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22xFA===-u u u r.同理2||22xFB=-u u u r.所以121||||4()32FA FB x x+=-+=u u u r u u u r.故2||||||FP FA FB=+u u u r u u u r u u u r,即||FAu u u r,||FPu u u r,||FBu u u r成等差数列.设该数列的公差为d,则1212||||||||||2d FB FA x x=-=-=u u u r u u u r将34m=代入①得1k=-.所以l的方程为74y x=-+,代入C的方程,并整理得2171404x x-+=.故122x x+=,12128x x=,代入②解得||28d=.所以该数列的公差为28或28-.23.【解析】设椭圆的焦距为2c,由已知知2259ca=,又由222a b c=+,可得23a b=.由已知可得,FB a=,AB=,由FB AB⋅=可得6ab=,从而3a=,2b=.所以,椭圆的方程为22194x y+=.(2)设点P的坐标为11(,)x y,点Q的坐标为22(,)x y.由已知有120y y>>,故12sinPQ AOQ y y∠=-.又因为2sinyAQOAB=∠,而4OABπ∠=,故2AQ=.由AQAOQPQ=∠,可得1259y y=.由方程组22194y kxx y=⎧⎪⎨+=⎪⎩,,消去x,可得1y=易知直线AB 的方程为20x y +-=,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由1259y y =,可得5(1)k += 两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.24.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点1P ,所以点2P 在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.(2)设直线2P A 与直线2P B 的斜率分别为1k ,2k ,如果l 与x 轴垂直,设l :x t =,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为 (t,(t,).则121k k +-=-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设11(,)A x y ,22(,)B x y ,则122841kmx x k +=-+,21224441m x x k -=+. 而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)25.【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)N x ,0(,)NP x x y =-u u u r ,0(0.)NM y =u u u u r.由NP =u u u r u u u r得 0x x =,02y y =. 因为00(,)M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F -.设(3,)Q t -,(,)P m n ,则(3,)OQ t =-u u u r ,(1,)PF m n =---u u u r ,33OQ PF m tn ⋅=+-u u u r u u u r, (,)OP m n =u u u r ,(3,)PQ m t n =---u u u r,由1OP PQ ⋅=u u u r u u u r 得2231m m tn n --+-=,又由(1)知222m n +=, 故330m tn +-=.所以0OQ PF ⋅=u u u r u u u r ,即OQ PF ⊥u u u r u u u r.又过点P 存在唯一直线垂直与OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F . 26.【解析】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b =因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>.当01x =时,2l 与1l 相交于1F ,与题设不符. 当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为. 27.【解析】(Ⅰ)设F 的坐标为(,0)c -.依题意,12c a =,2pa =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=. 所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =. (Ⅱ)设直线AP 的方程为1(0)x my m =+≠,与直线l 的方程1x =-联立,可得点2(1,)P m --,故2(1,)Q m-.将1x my =+与22413y x +=联立,消去x , 整理得22(34)60m y my ++=,解得0y =,或2634my m -=+.由点B 异于点A ,可得点222346(,)3434m mB m m -+-++. 由2(1,)Q m-,可得直线BQ 的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+, 故2223(,0)32m D m -+.所以2222236||13232m m AD m m -=-=++. 又因为APD △22162232||2m m m ⨯⨯=+,整理得23|20m m -+=,解得||m =,所以m =. 所以,直线AP的方程为330x +-=,或330x -=. 28.【解析】(I)由题意知c e a ==,22c =,所以1a b ==,因此椭圆E 的方程为2212x y +=.(Ⅱ)设()()1122,,,A x y B x y ,联立方程2211,2x y y k x ⎧+=⎪⎪⎨⎪=-⎪⎩得()22114210k x x +--=, 由题意知0∆>,且()12122111221x x x x k +==-+,所以121=-=AB x .由题意可知圆M 的半径r为1233r AB ==由题设知124k k =,所以21k =因此直线OC的方程为1y =.联立方程2211,2,4x y y x k ⎧+=⎪⎪⎨⎪=⎪⎩得2221221181,1414k x y k k ==++,因此OC =.由题意可知1sin21SOT rOC r OCr∠==++,而1OC r=2=令2112t k =+, 则()11,0,1t t>∈,因此1OC r==≥,当且仅当112t =,即2t =时等号成立,此时1k =,所以1sin 22SOT ∠≤,因此26SOT π∠≤, 所以SOT ∠最大值为3π. 综上所述:SOT ∠的最大值为3π,取得最大值时直线l的斜率为12k =±.29.【解析】(Ⅰ)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (Ⅱ)由(Ⅰ)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.30.【解析】(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=,故12229M x x kb x k +==-+,299M M by kx b k =+=+. 于是直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-.所以直线OM 的斜率与l 的斜率的乘积为定值. (Ⅱ)四边形OAPB 能为平行四边形. 因为直线l 过点(,)3mm , 所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . 由2229,9,y x k x y m ⎧=-⎪⎨⎪+=⎩得2222981P k m x k =+,即P x =. 将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+. 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x =.=2(3)23(9)mk k k -⨯+.解得14k =24k =. 因为0,3i i k k >≠,1i =,2,所以当l的斜率为44+OAPB 为平行四边形.31.【解析】(Ⅰ)由题意得2221,,.b caa b c =⎧⎪⎪=⎨⎪⎪=+⎩解得2a =2.故椭圆C 的方程为2212x y +=. 设M (N x ,0).因为0m ≠,所以11n -<<.直线PA 的方程为11n y x m--=, 所以M x =1m n -,即(,0)1mM n-. (Ⅱ)因为点B 与点A 关于x 轴对称,所以(,)B m n -, 设(,0)N N x ,则N x =1mn+.“存在点(0,)Q Q y 使得OQM ∠=ONQ ∠等价”,“存在点(0,)Q Q y 使得OM OQ=OQ ON”即Q y 满足2Q M N y x x =.因为1M m x n =-,1N mx n=+,2212m n +=, 所以22221Q MN m y x x n ===-.所以Q y或Q y =.故在y 轴上存在点Q ,使得OQM ∠=ONQ ∠. 点Q的坐标为或(0,.32.【解析】(1)由题设条件知,点M 的坐标为21(,)33a b ,又OM k =2b a =,进而得,2a c b ===,故5c e a ==. (2)由题设条件和(I )的计算结果可得,直线AB1yb+=,点N 的坐标为1,)22b -,设点N 关于直线AB 的对称点S 的坐标为17(,)2x ,则线段NS 的中点T的坐标为117,)244x b +-+.又点T 在直线AB 上,且1NS AB k k ⋅=-,从而有1117441712x b b b +-++=⎨+⎪=⎪⎪⎪⎩,解得3b =,所以b = 故椭圆E 的方程为221459x y +=.33.【解析】(Ⅰ)由题意知42=a ,则2=a ,又2c a =,222a cb -=, 可得1=b ,所以椭圆C 的方程为1422=+y x . (Ⅱ)由(I )知椭圆E 的方程为141622=+y x . (i )设λ=||||),,(00OP OQ y x P ,由题意知),(00y x Q λλ--, 因为142020=+y x ,又14)(16)(2020=-+-y x λλ,即1)4(42020=+y x λ, 所以2=λ,即2||||=OP OQ . (ii )设),(),,(2211y x B y x A ,将m kx y +=代入椭圆E 的方程, 可得01648)41(222=-+++m kmx x k , 由0>∆,可得 22164k m +<,则有222122141164,418k m x x k km x x +-=+-=+, 所以22221414164||km k x x +-+=-. 因为直线m kx y +=与y 轴交点的坐标为),0(m ,所以OAB ∆的面积||||2121x x m S -=22241||4162k m m k +-+=222241)416(2km m k +-+=222241)414(2k m k m ++-= 令t km =+2241,将m kx y +=代入椭圆C 的方程, 可得 0448)41(222=-+++m kmx x k , 由0∆≥,可得 2241k m +≤,由①②可知 10≤<t ,因此t t t t S 42)4(22+-=-=,故 S ≤当且仅当1=t 时,即2241k m +=时取得最大值32,由(i )知,ABQ ∆面积为S 3, 所以ABQ ∆面积的最大值为36.34.【解析】2(c,0)=3F c c (I )设,由条件知,222=2, 1.2c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (Ⅱ)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12241PQ x k =-=+从而O PQ d OPQ =∆又点到直线的距离所以的面积1=2OPQ S d PQ ∆⋅=244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即 OPQ ι∆所以,当的面积最大时,的方程为2222y x y x =-=--或.35.【解析】(Ⅰ)设直线l 的方程为()0y kx m k =+<,由22221x y a b⎪⎨+=⎪⎩,消去y 得,()22222222220b a k x a kmx a m a b +++-=,由于直线l 与椭圆C 只有一个公共点P ,故0∆=,即22220b m a k -+=,解得点P 的坐标为22222222,a km b m b a k b a k ⎛⎫- ⎪++⎝⎭,由点P 在第一象限, 故点P的坐标为22⎛⎫⎝; (Ⅱ)由于直线1l 过原点O ,且与l 垂直,故直线1l 的方程为0x ky +=,所以点P 到直线1l的距离d =,整理得22d =,因为22222b a k ab k +≥,2222a b ≤=-,当且仅当2bk a=时等号成立, 所以点P 到直线1l 的距离的最大值为b a -.36.【解析】(Ⅰ)根据c 22(,),23b M c b ac a=将222b a c =-代入223b ac =,解得1,22c ca a==-(舍去) 故C 的离心率为12. (Ⅱ)由题意,原点O 为12F F 的中点,2MF ∥y 轴,所以直线1MF 与y 轴的交点(0,2)D是线段1MF 的中点,故24b a=,即24b a = ① 由15MN F N =得112DF F N =。
理科数学2010-2019高考真题分类训练专题九--解析几何第二十六讲--椭圆答案

专题九 解析几何第二十六讲 椭圆答案部分1. 解析2x =,则22AF x =,所以23BF AB x ==.由椭圆定义122BF BF a +=,即42x a =.又1224AF AF a x +==,22AF x =,所以12AF x =. 因此点A 为椭圆的上顶点,设其坐标为()0,b .由222AF BF =可得点B 的坐标为3,22b ⎛⎫- ⎪⎝⎭.因为点B 在椭圆()222210x y a b a b+=>>上,所以291144a +=.解得23a =.又1c =,所以22b =.所以椭圆方程为22132x y +=.故选B. 2.解析(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.3. 解析 由题意,c e a ====所以22244a b a -=,即2234a b =.故选B .4. 解析 设(,)M m n ,,0m n >,椭圆C :22:13620x y C +=的6a =,b =,2c =,23c e a ==,由于M 为C 上一点且在第一象限,可得12||||MF MF >,12MF F △为等腰三角形,可能1||2MF c =或2||2MF c =,即有2683m +=,即3m =,n = 2683m -=,即30m =-<,舍去.可得M .2010-2018年1.D 【解析】由题意可得椭圆的焦点在x 轴上,如图所示,OyxPF 2F 1A设12||2=F F c ,所以12∆PF F 为等腰三角形,且12=120∠F F P ,∴212||||2PF F F c ==,∵2||OF c =,∴点P 坐标为(2cos 60,2sin 60)c c c +,即点(2)P c .∵点P 在过点A=14c a =.∴14e =,故选D .2.C 【解析】由题意25=a,=a P到该椭圆的两个焦点的距离之和为2=a ,故选C .3.B 【解析】由题意可知29a =,24b =,∴2225c a b =-=,∴离心率c e a ==,选B 4.A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,c e a ==,故选A .5.A 【解析】设(0,)E m ,则直线AE 的方程为1x y a b -+=,由题意可知(,)mc M c m a --,(0,)2m 和(,0)B a 三点共线,则22mc m mm a c a--=--,化简得3a c =,则C 的离心率13c e a ==.故选A .6.A 【解析】由题意知2211m n -=+,即222m n =+,222221222221111()2m n n n e e m n n n -+++=⋅=⋅+4242422111122n n n n n n ++==+>++,所以121e e >.故选A .7.D【解析】由题意可设,sin )Q αα,圆的圆心坐标为(0,6)C ,圆心到Q的距离为||CQ ===,当且仅当2sin 3α=-时取等号,所以max max ||||PQ CQ r +==≤,所以Q P ,两点间的最大距离是.8.D 【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b += ① 2222221x y a b+= ② ①-②得1212121222()()()()0x x x x y y y y a b +-+-+=,∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D. 9.C 【解析】∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==10.5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =,得1212212(1)x x y y -=⎧⎨-=-⎩,即122x x =-,1232y y =-.因为点A ,B 在椭圆上,所以222222224(3)44x x m x y m⎧+-=⎪⎪⎨⎪+=⎪⎩,得21344y m =+,所以2222221591(32)(5)444244x m y m m m =--=-+-=--+≤, 所以当5m =时,点B 横坐标的绝对值最大,最大值为2.1112-;【解析】设椭圆的右焦点为(,0)F c ,双曲线N 的渐近线与椭圆M 在第一象限内的交点为A ,由题意可知(2c A ,由点A 在椭圆M 上得,22223144c c a b+=,∴22222234b c a c a b +=,222b a c =-,∴22222222()34()a c c a c a a c -+=-,∴4224480a a c c -+=,∴428+40e e -=椭椭,∴24e =±椭,∴1e =椭(舍去)或1e =椭,∴椭圆M1,∵双曲线的渐近线过点(,)22cA,渐近线方程为y =,故双曲线的离心率2e ==双.12(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪⎪⎝⎭,2b C ⎫⎪⎪⎝⎭,由90BFC ∠=︒可得0BFCF ⋅=,2b BF c ⎛⎫=+- ⎪⎪⎝⎭,2b CF c ⎛⎫=-- ⎪ ⎪⎝⎭,则22231044c a b -+=,由222b a c =-可得223142ca =,则c e a ===.13.22325()24-+=x y 【解析】 由题意圆过(4,0),(0,2),(0,2)三个点,设圆心为(,0)a ,其中0a,由4-=a 32a ,所以圆的方程为22325()24-+=x y . 14.2【解析】设11(,)A x y ,22(,)B x y ,分别代入椭圆方程相减得 1212121222()()()()0x x x x y y y y a b-+-++=,根据题意有12122,2x x y y +=+=, 且121212y y x x -=--,所以22221()02a b +⨯-=,得222a b =,整理222a c =,所以2e =. 15.12【解析】设MN 交椭圆于点P ,连接1F P 和2F P ,利用中位线定理可得AN BN +=122222412F P F P a a +=⨯==.16.3【解析】由题意可得2(,)b A c a,2(,)b B c a -,由题意可知点D 为1F B 的中点,所以点D 的坐标为2(0,)2b a-,由B F AD 1⊥,所以11AD F B k k ⋅=-22ac =,解得e =17.22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b -- 将点B 坐标带入椭圆方程得22221()53()13b c b --+=, 又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩∴椭圆方程为22312x y +=.18.13-【解析】由题意可知,21F MF ∆中,︒=∠︒=∠︒=∠90,30,60211221MF F F MF F MF ,所以有⎪⎩⎪⎨⎧==+==+12212221222132)2(MF MF a MF MF c F F MF MF ,整理得13-==a c e ,故答案为13-.19.5【解析】由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225a c =.故c e a ==.即椭圆的离心率为5. 20.(0,1)±【解析】设点A 的坐标为(,)m n ,B 点的坐标为(,)c d.12(F F,可得1()F A m n =,2()F B c d =,∵125F A F B =,∴5nc d ==,又点,A B 在椭圆上, ∴2213m n +=,225()135n +=,解得0,1m n ==±, ∴点A 的坐标是(0,1)±.21.【解析】(1)由已知得(1,0)F ,l 的方程为1=x .由已知可得,点A的坐标为(1,2或(1,2-. 所以AM的方程为2y x =-+2y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则1<x,2<x MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由11=-y kx k ,22=-y kx k 得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,2122421+=+k k x x ,21222221-=+x k k x . 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.22.【解析】(1)设11(,)A x y ,22(,)B x y ,则2211143x y +=,2222143x y +=. 两式相减,并由1212y y k x x -=-得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=, 于是34k m=-.①由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =.于是1||(22xFA x ===-.同理2||22x FB =-. 所以121||||4()32FA FB x x +=-+=. 故2||||||FP FA FB=+,即||FA ,||FP ,||FB 成等差数列. 设该数列的公差为d ,则1212||||||||||2d FB FA x x =-=-=.② 将34m =代入①得1k =-.所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故122x x +=,12128x x =,代入②解得||28d =.23.【解析】设椭圆的焦距为2c ,由已知知2259c a =,又由222a b c =+,可得23a b =.由已知可得,FB a =,AB,由FB AB ⋅=,可得6ab =,从而3a =,2b =.所以,椭圆的方程为22194x y +=.(2)设点P 的坐标为11(,)x y ,点Q 的坐标为22(,)x y . 由已知有120y y >>,故12sin PQ AOQ y y ∠=-. 又因为2sin y AQ OAB =∠,而4OAB π∠=,故2AQ =.由AQ AOQ PQ=∠,可得1259y y =. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =. 易知直线AB 的方程为20x y +-=,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由1259y y =,可得5(1)k += 两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.24.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b+>+知,C 不经过点1P ,所以点2P 在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.(2)设直线2P A 与直线2P B 的斜率分别为1k ,2k ,如果l 与x 轴垂直,设l :x t =,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为 (t,(t,.则121k k +=-=-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设11(,)A x y ,22(,)B x y ,则122841kmx x k +=-+,21224441m x x k -=+. 而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)25.【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)N x ,0(,)NP x x y =-,0(0.)NM y =.由2NP NM =得 0x x =,02y y =. 因为00(,)M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F -.设(3,)Q t -,(,)P m n ,则(3,)OQ t =-,(1,)PF m n =---,33OQ PF m tn ⋅=+-, (,)OP m n =,(3,)PQ m t n =---,由1OP PQ ⋅=得2231m m tn n --+-=,又由(1)知222m n +=, 故330m tn +-=.所以0OQ PF ⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直与OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .26.【解析】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b =因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符. 当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=.又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为. 27.【解析】(Ⅰ)设F 的坐标为(,0)c -.依题意,12c a =,2pa =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=. 所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =. (Ⅱ)设直线AP 的方程为1(0)x my m =+≠,与直线l 的方程1x =-联立,可得点2(1,)P m --,故2(1,)Q m-.将1x my =+与22413y x +=联立,消去x , 整理得22(34)60m y my ++=,解得0y =,或2634my m -=+. 由点B 异于点A ,可得点222346(,)3434m mB m m -+-++. 由2(1,)Q m-,可得直线BQ 的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+, 故2223(,0)32m D m -+.所以2222236||13232m m AD m m -=-=++.又因为APD △22162232||2m m m ⨯⨯=+,整理得23|20m m -+=,解得||m =,所以m =. 所以,直线AP的方程为330x -=,或330x -=. 28.【解析】(I)由题意知c e a ==,22c =,所以1a b ==,因此椭圆E 的方程为2212x y +=.(Ⅱ)设()()1122,,,A x y B x y ,联立方程2211,2x y y k x ⎧+=⎪⎪⎨⎪=-⎪⎩得()22114210k x x +--=, 由题意知0∆>,且()12122111221x x x x k +==-+,所以121=-=AB x .由题意可知圆M 的半径r为1233r AB ==由题设知12k k =,所以21k =因此直线OC的方程为1y =.联立方程2211,2,x y y ⎧+=⎪⎪⎨⎪=⎪⎩得2221221181,1414k x y k k ==++,因此OC =.由题意可知1sin21SOT rOC r OCr∠==++,而1OC r==令2112t k =+, 则()11,0,1t t>∈,因此1OC r==≥,当且仅当112t =,即2t =时等号成立,此时1k =,所以1sin 22SOT ∠≤,因此26SOT π∠≤, 所以SOT ∠最大值为3π. 综上所述:SOT ∠的最大值为3π,取得最大值时直线l的斜率为1k =.29.【解析】(Ⅰ)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (Ⅱ)由(Ⅰ)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y .令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.30.【解析】(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=,故12229M x x kb x k +==-+,299M M by kx b k =+=+. 于是直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 所以直线OM 的斜率与l 的斜率的乘积为定值. (Ⅱ)四边形OAPB 能为平行四边形. 因为直线l 过点(,)3mm , 所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . 由2229,9,y x k x y m ⎧=-⎪⎨⎪+=⎩得2222981P k m x k =+,即P x =. 将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+. 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x =.=2(3)23(9)mk k k -⨯+.解得14k =24k =因为0,3i i k k >≠,1i =,2,所以当l的斜率为44OAPB 为平行四边形.31.【解析】(Ⅰ)由题意得2221,,2.b caa b c =⎧⎪⎪=⎨⎪⎪=+⎩解得2a =2.故椭圆C 的方程为2212x y +=. 设M (N x ,0).因为0m ≠,所以11n -<<.直线PA 的方程为11n y x m--=, 所以M x =1m n -,即(,0)1mM n-.(Ⅱ)因为点B 与点A 关于x 轴对称,所以(,)B m n -, 设(,0)N N x ,则N x =1mn+. “存在点(0,)Q Q y 使得OQM ∠=ONQ ∠等价”,“存在点(0,)Q Q y 使得OM OQ=OQ ON”即Q y 满足2Q M N y x x =.因为1M m x n =-,1N mx n=+,2212m n +=, 所以22221Q MN m y x x n ===-.所以Q y或Q y =.故在y 轴上存在点Q ,使得OQM ∠=ONQ ∠. 点Q的坐标为或(0,.32.【解析】(1)由题设条件知,点M 的坐标为21(,)33a b,又OM k =,从而2b a =,进而得,2a c b ===,故5c e a ==.(2)由题设条件和(I )的计算结果可得,直线AB的方程为1yb+=,点N的坐标为1,)2b -,设点N 关于直线AB 的对称点S 的坐标为17(,)2x ,则线段NS 的中点T 的坐标为117,)4244x b b +-+.又点T 在直线AB 上,且1NS AB k k ⋅=-,从而有11744171x b b b +-+=⎨+⎪=⎪⎪⎪⎩,解得3b =,所以b = 故椭圆E 的方程为221459x y +=. 33.【解析】(Ⅰ)由题意知42=a ,则2=a,又c a =,222a cb -=, 可得1=b ,所以椭圆C 的方程为1422=+y x . (Ⅱ)由(I )知椭圆E 的方程为141622=+y x . (i )设λ=||||),,(00OP OQ y x P ,由题意知),(00y x Q λλ--, 因为142020=+y x ,又14)(16)(2020=-+-y x λλ,即1)4(42020=+y x λ, 所以2=λ,即2||||=OP OQ . (ii )设),(),,(2211y x B y x A ,将m kx y +=代入椭圆E 的方程, 可得01648)41(222=-+++m kmx x k , 由0>∆,可得 22164k m +<,则有222122141164,418k m x x k km x x +-=+-=+, 所以22221414164||km k x x +-+=-. 因为直线m kx y +=与y 轴交点的坐标为),0(m ,所以OAB ∆的面积||||2121x x m S -=22241||4162k m m k +-+=222241)416(2km m k +-+=222241)414(2k m k m ++-= 令t km =+2241,将m kx y +=代入椭圆C 的方程, 可得 0448)41(222=-+++m kmx x k , 由0∆≥,可得 2241k m +≤,由①②可知 10≤<t ,因此t t t t S 42)4(22+-=-=,故 S ≤当且仅当1=t 时,即2241k m +=时取得最大值32,由(i )知,ABQ ∆面积为S 3, 所以ABQ ∆面积的最大值为36.34.【解析】2(c,0)=3F c c (I )设,由条件知,222=2, 1.2c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (Ⅱ)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,2238=16(43)0,441k k k x k ±∆->>=+当即时,12241PQ xk=-=+从而O PQ d OPQ=∆又点到直线的距离所以的面积1=2OPQS d PQ∆⋅=244,0,.44OPQtt t St tt∆=>==++则44,20.t t kt+≥==∆>因为当且仅当,即OPQι∆所以,当的面积最大时,的方程为22y x y x=-=-或.35.【解析】(Ⅰ)设直线l的方程为()0y kx m k=+<,由22221y kx mx ya b=+⎧⎪⎨+=⎪⎩,消去y得,()22222222220b a k x a kmx a m a b+++-=,由于直线l与椭圆C只有一个公共点P,故0∆=,即22220b m a k-+=,解得点P的坐标为22222222,a kmb mb a k b a k⎛⎫-⎪++⎝⎭,由点P在第一象限,故点P的坐标为22⎛⎫⎝;(Ⅱ)由于直线1l过原点O,且与l垂直,故直线1l的方程为0x ky+=,所以点P到直线1l的距离d=整理得22d=,因为22222ba k abk+≥,2222a b≤=-,当且仅当2bka=时等号成立,所以点P到直线1l的距离的最大值为ba-.36.【解析】(Ⅰ)根据c=22(,),23bM c b aca=将222b a c=-代入223b ac=,解得1,22c ca a==-(舍去)故C的离心率为12.(Ⅱ)由题意,原点O为12F F的中点,2MF∥y轴,所以直线1MF与y轴的交点(0,2)D是线段1MF的中点,故24ba=,即24b a=①由15MN F N=得112DF F N=。
文科数学2010-2019高考真题分类训练专题九解析几何第二十五讲椭圆答案

专题九 解析几何第二十五讲 椭圆答案部分 2019年2x =,则22AF x =,所以23BF AB x ==.由椭圆定义122BF BF a +=,即42x a =.又1224AF AF a x +==,22AF x =,所以12AF x =. 因此点A 为椭圆的上顶点,设其坐标为()0,b .由222AF BF =可得点B 的坐标为3,22b ⎛⎫-⎪⎝⎭. 因为点B 在椭圆()222210x y a b a b +=>>上,所以291144a +=.解得23a =.又1c =,所以22b =.所以椭圆方程为22132x y +=.故选B.2.解析:由题意可得:232p p p ⎛⎫-= ⎪⎝⎭,解得8p =.故选D .3.解析(I )由题意得,b 2=1,c =1. 所以a 2=b 2+c 2=2.所以椭圆C 的方程为2212x y +=.(Ⅱ)设P (1,y 1),Q (2,y 2), 则直线AP 的方程为1111y y x x -=+.令y =0,得点M 的横坐标111M x x y =--. 又11y kx t =+,从而11||||1M x OM x kx t ==+-.同理,22||||1x ON kx t =+-.由22,12y kx t x y =+⎧⎪⎨+=⎪⎩得222(12)4220k x ktx t +++-=. 则122412kt x x k +=-+,21222212t x x k-=+. 所以1212||||||||11x x OM ON kx t kx t ⋅=⋅+-+-()12221212||(1)(1)x x k x x k t x x t =+-++-22222222212||224(1)()(1)1212t k t kt k k t t k k -+=-⋅+-⋅-+-++12||1tt+=-. 又||||2OM ON ⋅=,所以12||21tt+=-. 解得t=0,所以直线l 为y kx =,所以直线l 恒过定点(0,0). 4.解析 (1)设椭圆C 的焦距为2c . 因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥轴,所以DF 232==, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥轴,所以点A 的横坐标为1. 将=1代入圆F 2的方程(-1) 2+y 2=16,解得y =±4. 因为点A 在轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2+2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图所示,联结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥轴,所以EF 1⊥轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E是线段BF2与椭圆的交点,所以32 y=-.因此3 (1,)2E--.5.解析:设椭圆的右焦点为F',连接PF',线段PF的中点A在以原点O为圆心,2为半径的圆,连接AO,可得24PF AO'==,设P的坐标为(m,n),可得2343m-=,可得32m=-,15n=,由(2,0)F-,可得直线PF的斜率为15215322=-+.6.解:(1)连结1PF,由2POF△为等边三角形可知在12F PF△中,1290F PF∠=︒,2PF c=,13PF c=,于是122(31)a PF PF c=+=,故C的离心率是31cea==.(2)由题意可知,满足条件的点(,)P x y存在当且仅当1||2162y c⋅=,1y yx c x c⋅=-+-,22221x ya b+=,即||16c y=,①222x y c+=,②22221x ya b+=,③由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥当4b =,a ≥时,存在满足条件的点P . 所以4b =,a的取值范围为)+∞.7.解析(Ⅰ)设椭圆的半焦距为c,由已知有2b =,又由222a b c =+,消去b得222a c ⎫=+⎪⎪⎝⎭,解得12c a =. 所以,椭圆的离心率为12. (Ⅱ)由(Ⅰ)知,2a c =,b = ,故椭圆方程为2222143x y c c+=.由题意,(),0F c -,则直线l 的方程为3()4y x c =+. 点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,,,消去y 并化简,得到2276130x cx c +-=,解得1x c =,2137c x =-,代入到l 的方程,解得132y c =,2914y c =-. 因为点P 在x 轴上方,所以3,2P c c ⎛⎫⎪⎝⎭.由圆心C 在直线4x =上,可设()4,C t . 因为OC AP ∥,且由(Ⅰ)知()2,0A c -,故3242c t c c=+,解得2t =. 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l2=,可得2c =.所以,椭圆的方程为2211612x y +=.8.解析 设(,)M m n ,,0m n >,椭圆C :22:13620x y C +=的6a =,b =,2c =,23c e a ==,由于M 为C 上一点且在第一象限,可得12||||MF MF >, 12MF F △为等腰三角形,可能1||2MF c =或2||2MF c =,即有2683m +=,即3m =,n = 2683m -=,即30m =-<,舍去.可得M .9.解析(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- ,整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM u u u u r =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||EM =u u u u r ,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭.2010-2018年1.C 【解析】不妨设0a >,因为椭圆C 的一个焦点为(20),,所以2c =,所以222448a b c =+=+=,所以C 的离心率为2c e a ==.故选C . 2.D 【解析】由题设知1290F PF ∠=o,2160PF F ∠=︒,12||2F F c =,所以2||PF c =,1||PF =.由椭圆的定义得12||||2PF PF a +=,2c a +=,所以1)2c a =,故椭圆C 的离心率1c e a ===.故选D .3.C 【解析】由题意25=a ,=a P 到该椭圆的两个焦点的距离之和为2=a ,故选C .4.B 【解析】由题意可知29a =,24b =,∴2225c a b =-=,∴离心率3c e a ==,选B .5.A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,3c e a ==,故选A .6.A 【解析】当03m <<,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=o,则tan 60ab ≥=o ≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=o,则tan 60ab ≥=o ≥, 得9m ≥,故m 的取值范围为(0,1][9,)+∞U ,选A .7.B 【解析】不妨设直线l 过椭圆的上顶点(0,)b 和左焦点(,0)c -,0,0b c >>,则直线l的方程为0bx cy bc -+=124b =⨯,解得223b c =, 又222b ac =-,所以2214c a =,即12e =,故选B .8.A 【解析】由题意,不妨设点P 在x 轴上方,直线l 的方程为()(0)y k x a k =+>,分别令x c =-与0x =,得||()FM k a c =-,||OE ka =,设OE 的中点为G ,由OBG FBM ∆∆:,得||||||||OG OB FM BF =,即2()ka a k a c a c =-+,整理得13c a =,所以椭圆C 的离心率13e =,故选A . 9.B 【解析】∵抛物线C :28y x =的焦点坐标为(2,0),准线l 的方程为2x =- ①,设椭圆E 的方程为22221(0)x y a b a b+=>>,所以椭圆E 的半焦距2c =,又椭圆的离心率为12,所以4,a b ==E 的方程为2211612x y +=②,联立①②, 解得(2,3),(2,3)A B ---或(2,3),(2,3)A B ---,所以||6AB =,选B . 10.B 【解析】由题意得:222549m =-=,因为0m >,所以3m =,故选C . 11.A 【解析】设椭圆的左焦点为1F ,半焦距为c ,连结1AF ,1BF ,则四边形1AF BF 为平行四边形,所以11||||||||4AF BF AF BF +=+=,根据椭圆定义,有11||||||||4AF AF BF BF a +++=,所以84a =,解得2a =.因为点M 到直线l :340x y +=的距离不小于45,即44,155b b ≥≥,所以21b ≥,所以2221,41a c c --≥≥,解得0c <0c a <心率的取值范围为(0,]2.12.D 【解析】由题意可设,sin )Q αα,圆的圆心坐标为(0,6)C ,圆心到Q 的距离为||CQ===,当且仅当2sin3α=-时取等号,所以max max||||PQ CQ r+==≤,所以QP,两点间的最大距离是.13.D【解析】设1122(,),(,)A x yB x y,则12x x+=2,12y y+=-2,2211221x ya b+=①2222221x ya b+=②①-②得1212121222()()()()x x x x y y y ya b+-+-+=,∴ABk=1212y yx x--=212212()()b x xa y y+-+=22ba,又ABk=0131+-=12,∴22ba=12,又9=2c=22a b-,解得2b=9,2a=18,∴椭圆方程为221189x y+=,故选D.14.D【解析】∵1,2,c a b=== D.15.C【解析】∆21F PF是底角为30o的等腰三角形221332()224cPF F F a c c ea⇒==-=⇔==16.5【解析】设11(,)A x y,22(,)B x y,由2AP PB=u u u r u u u r,得1212212(1)x xy y-=⎧⎨-=-⎩,即122x x=-,1232y y=-.因为点A,B在椭圆上,所以222222224(3)44xx mxy m⎧+-=⎪⎪⎨⎪+=⎪⎩,得21344y m=+,所以2222221591(32)(5)444244x m y m m m=--=-+-=--+≤,所以当5m=时,点B横坐标的绝对值最大,最大值为2.17.2【解析】设左焦点为1F,由F关于直线by xc=的对称点Q在椭圆上,得||||OQ OF=,又1||||OF OF=,所以1F Q QF⊥,不妨设1||QF ck=,则||QF bk=,1||F F ak=,因此2c ak=,又2a ck bk=+,由以上二式可得22c ak a b c==+, 即c a a b c=+,即22a c bc =+,所以bc =,2e =. 18.22【解析】设11(,)A x y ,22(,)B x y ,分别代入椭圆方程相减得 1212121222()()()()0x x x x y y y y a b-+-++=,根据题意有12122,2x x y y +=+=, 且121212y y x x -=--,所以22221()02a b +⨯-=,得222a b =,整理222a c =,所以22e =.19.12【解析】设MN 交椭圆于点P ,连接1F P 和2F P ,利用中位线定理可得AN BN +=122222412F P F P a a +=⨯==.2032(,)b A c a,2(,)b B c a -,由题意可知点D 为1F B 的中点,所以点D 的坐标为2(0,)2b a-,由B F AD 1⊥,所以11AD F B k k ⋅=-,232b ac =,解得33e =. 21.22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b -- 将点B 坐标带入椭圆方程得22221()53()13b c b--+=, 又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩∴椭圆方程为22312x y +=. 22.13-【解析】由题意可知,21F MF ∆中,︒=∠︒=∠︒=∠90,30,60211221MF F F MF F MF ,所以有⎪⎩⎪⎨⎧==+==+12212221222132)2(MF MF a MF MF c F F MF MF ,整理得13-==a c e ,故答案为13-. 23由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225a c =.故c e a ==.24.(0,1)±【解析】设点A 的坐标为(,)m n ,B 点的坐标为(,)c d .12(F F,可得1()F A m n =u u u r,2()F B c d =u u u u r, ∵125F A F B =u u u r u u u u r,∴55m nc d +==,又点,A B 在椭圆上, ∴2213m n +=,22(5()135m n ++=,解得0,1m n ==±, ∴点A 的坐标是(0,1)±.25.【解析】(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+.由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)44364(48)20x x y y y x =--+-=-=∆. 因为00,0x y >,所以001x y ==. 因此,点P的坐标为. ②因为三角形OAB,所以1 2AB OP ⋅=AB . 设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为.综上,直线l的方程为y =+26.【解析】(1)设11(,)A x y ,22(,)B x y ,则2211143x y +=,2222143x y +=.两式相减,并由1212y y k x x -=-得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=, 于是34k m=-.①由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22x FA ===-u u u r .同理2||22x FB =-u u u r .所以121||||4()32FA FB x x +=-+=u u u r u u u r .故2||||||FP FA FB =+u u u r u u u r u u u r27.【解析】(1)由题意得2c =,所以c =又3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=. (2)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232mx x +=-,212334m x x -=,则12|||AB x x=-==,易得当20m=时,max||AB,故||AB.(3)设11(,)A x y,22(,)B x y,33(,)C x y,44(,)D x y,则221133x y+=①,222233x y+=②,又(2,0)P-,所以可设1112PAyk kx==+,直线PA的方程为1(2)y k x=+,由122(2)13y k xxy=+⎧⎪⎨+=⎪⎩消去y可得2222111(13)121230k x k x k+++-=,则2113211213kx xk+=-+,即2131211213kx xk=--+,又1112ykx=+,代入①式可得13171247xxx--=+,所以13147yyx=+,所以1111712(,)4747x yCx x--++,同理可得2222712(,)4747x yDx x--++.故3371(,)44QC x y=+-u u u r,4471(,)44QD x y=+-u u u r,因为,,Q C D三点共线,所以34437171()()()()04444x y x y+--+-=,将点,C D的坐标代入化简可得12121y yx x-=-,即1k=.28.【解析】(1)设椭圆的焦距为2c,由已知得2259ca=,又由222a b c=+,可得23.a b=由||AB==,从而3,2a b==.所以,椭圆的方程为22194x y+=.(2)设点P的坐标为11(,)x y,点M的坐标为22(,)x y,由题意,21x x>>,点Q的坐标为11(,).x y--由BPM△的面积是BPQ△面积的2倍,可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =. 易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩ 消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y,可得1x =. 由215x x =5(32)k =+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-. 当89k =-时,290x =-<,不合题意,舍去; 当12k =-时,212x =,1125x =,符合题意.所以,k 的值为12-.29.【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)N x ,0(,)NP x x y =-u u u r ,0(0.)NM y =u u u u r.由NP =u u u r u u u r得 0x x =,02y y =. 因为00(,)M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F -.设(3,)Q t -,(,)P m n ,则(3,)OQ t =-u u u r ,(1,)PF m n =---u u u r ,33OQ PF m tn ⋅=+-u u u r u u u r, (,)OP m n =u u u r ,(3,)PQ m t n =---u u u r,由1OP PQ ⋅=u u u r u u u r 得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以0OQ PF ⋅=u u u r u u u r ,即OQ PF ⊥u u u r u u u r.又过点P 存在唯一直线垂直与OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .30.【解析】(Ⅰ)设椭圆的离心率为e .由已知,可得21()22b c a c +=.又由222b a c =-,可得2220c ac a +-=,即2210e e +-=. 又因为01e <<,解得12e =. 所以,椭圆的离心率为12. (Ⅱ)(ⅰ)依题意,设直线FP 的方程为(0)x my c m =->,则直线FP 的斜率为1m. 由(Ⅰ)知2a c =,可得直线AE 的方程为12x yc c+=,即220x y c +-=,与直线FP 的方程联立,可解得(22)3,22m c cx y m m -==++, 即点Q 的坐标为(22)3(,)22m c cm m -++.由已知|FQ |=32c ,有222(22)33[]()()222m c c cc m m -++=++,整理得2340m m -=,所以43m =,即直线FP 的斜率为34.(ii )由2a c =,可得b =,故椭圆方程可以表示为2222143x y c c+=.由(i )得直线FP 的方程为3430x y c -+=,与椭圆方程联立22223430,1,43x y c x y c c-+=⎧⎪⎨+=⎪⎩消去y ,整理得2276130x cx c +-=,解得137cx =-(舍去),或x c =. 因此可得点3(,)2cP c,进而可得5|2|c FP ==,所以53||||||22c cFP FQ Q c P -=-==.由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP . 因为QN FP ⊥,所以339||||tan 248c cQN FQ QFN =⋅∠=⨯=,所以FQN △的面积为2127||||232c FQ QN =,同理FPM △的面积等于27532c ,由四边形PQNM 的面积为3c ,得22752733232c c c -=,整理得22c c =,又由0c >,得2c =.所以,椭圆的方程为2211612x y +=.31.【解析】(Ⅰ)由椭圆的离心率为2,得2222()a a b =-, 又当1y =时,2222a x a b =-,得2222a a b-=,所以24a =,22b =,因此椭圆方程为22142x y +=. (Ⅱ)设1122(,),(,)A x y B x y ,联立方程2224y kx mx y =+⎧⎨+=⎩ 得222(21)4240k x kmx m +++-=, 由0∆> 得2242m k <+ (*)且122421kmx x k +=+ , 因此122221my y k +=+ , 所以222(,)2121km mD k k -++ ,又(0,)N m - , 所以222222()()2121km m ND m k k =-++++ 整理得:2242224(13)(21)m k k ND k ++=+ ,因为NF m =所以2422222224(31)831(21)(21)ND k k k k k NF+++==+++令283t k =+,3t ≥ 故21214t k ++=所以2221616111(1)2ND t t NFt t=+=++++. 令1y t t=+,所以211y t'=-. 当3t ≥时,0y '>,从而1y t t =+在[3,)+∞上单调递增, 因此1103t t +≥,等号当且仅当3t =时成立,此时0k =,所以22134ND NF+=≤,由(*)得m <<且0m ≠,故12NDNF ≥, 设2EDF θ∠=, 则1sin 2NF ND θ=≥ , 所以θ得最小值为6π. 从而EDF ∠的最小值为3π,此时直线l 的斜率时0. 综上所述:当0k =,(m ∈⋃时,EDF ∠取得最小值为3π. 32.【解析】(Ⅰ)设椭圆C 的方程为22221(0,0)x y a b a b+=>>.由题意得2,2a c a=⎧⎪⎨=⎪⎩解得c =所以2221b a c =-=.所以椭圆C 的方程为2214x y +=. (Ⅱ)设(,)M m n ,且22m -<<,则(,0),(,)D m N m n -.直线AM 的斜率2AM nk m =+,由AM DE ⊥,则1AM DE k k ⋅=-, 故直线DE 的斜率2DE m k n+=.所以直线DE 的方程为2()m y x m n +=--.直线BN 的方程为(2)2ny x m=--.联立2(),(2),2m y x m n n y x m +⎧=--⎪⎪⎨⎪=-⎪-⎩,解得点E 的纵坐标222(4)4E n m y m n -=--+. 由点M 在椭圆C 上,得2244m n -=.所以45E y n =-. 又12||||||||25BDE E S BD y BD n =⋅=⋅△,1||||2BDN S BD n =⋅△,所以BDE △与BDN △的面积之比为4:5. 33.【解析】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b ==因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符.当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00x y ==;220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为. 34.【解析】(I )由题意得,2a =,1b =.所以椭圆C 的方程为2214x y +=.又c =c e a == (II )设()00,x y P (00x <,00y <),则220044x y +=.又()2,0A ,()0,1B ,所以直线PA 的方程为()0022y y x x =--. 令0x =,得0022y y x M =--,从而002112y y x M BM =-=+-. 直线PB 的方程为0011y y x x -=+. 令0y =,得001x x y N =--,从而00221x x y N AN =-=+-. 所以四边形ABNM 的面积12S =AN ⋅BM 00002121212x y y x ⎛⎫⎛⎫=++ ⎪⎪--⎝⎭⎝⎭()22000000000044484222x y x y x y x y x y ++--+=--+00000000224422x y x y x y x y --+=--+2=.从而四边形ABNM 的面积为定值.35.【解析】(Ⅰ)设11(,)M x y ,则由题意知10y >.由已知及椭圆的对称性知,直线AM 的倾斜角为4π, 又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=, 解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. (Ⅱ)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得 2222(34)1616120k x k x k +++-=.由2121612(2)34k x k -⋅-=+得2122(34)34k x k -=+,故12||2|34AM x k =+=+.由题设,直线AN 的方程为1(2)y x k=-+,故同理可得212||43AN k =+.由2||||AM AN =得2223443kk k=++,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22'()121233(21)0f t t t t =-+=-≥,所以()f t 在(0,)+∞单调递增,又260,(2)60f f =<=>, 因此()f t 在(0,)+∞有唯一的零点,且零点k在2)2k <<.36.【解析】(Ⅰ)设椭圆的半焦距为c,由题意知24,2a c ==所以2,a b ===C 的方程为22142x y +=. (Ⅱ)(i)设()()0000,0,0P x y x y >>,由M (0,m ),可得()()00,2,,2.P x m Q x m - 所以直线PM 的斜率002m m m k x x -== ,直线QM 的斜率0023'm m mk x x --==-. 此时'3k k =-,所以'k k为定值3-. (ii)设()()1122,,,A x y B x y ,直线P A 的方程为y kx m =+, 直线QB 的方程为3y kx m =-+.联立 22142y kx m x y =+⎧⎪⎨+=⎪⎩ ,整理得()222214240k x mkx m +++-=.由20122421m x x k -=+可得()()21202221m x k x -=+ ,所以()()21122221k m y kx m m k x -=+=++, 同理()()()()2222222262,181181m k m x y m kx k x---==+++.所以()()()()()()()222221222222223221812118121m m k m x x k x k x k k x -----=-=++++,()()()()()()()()2222212222622286121812118121k m m k k m y y m m k x k x k k x----+--=+--=++++ ,所以2212161116.44ABy y k k k x x k k -+⎛⎫===+ ⎪-⎝⎭由00,0m x >>,可知>0,所以16k k+≥,等号当且仅当k =.6=,即m =,符号题意.所以直线AB. 37.【解析】(Ⅰ)设(,0)F c ,由113||||||c OF OA FA +=,即113()cc a a a c +=-, 可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=. (Ⅱ)设直线的斜率为(0)k k ≠,则直线l 的方程为(2)y k x =-,设(,)B B B x y ,由方程组221,43(2),x y y k x ⎧+=⎪⎨⎪=-⎩消去y , 整理得2222(43)1616120k x k x k +-+-=,解得2x =或228643k x k -=+, 由题意得228643B k x k -=+,从而21243B ky k -=+, 由(Ⅰ)知(1,0)F ,设(0,)H H y ,有(1,)H FH y =-u u u r ,2229412(,)4343k kBF k k -=++u u u r ,由BF HF ⊥,得0BF HF ⋅=u u u r u u u r ,所以222124904343Hky k k k -+=++, 解得29412H k y k -=,因此直线MH 的方程为219412k y x k k-=-+,设(,)M M M x y ,由方程组2194,12(2),k y x k k y k x ⎧-=-+⎪⎨⎪=-⎩消去y ,得2220912(1)M k x k +=+, 在MAO ∆中,MOA MAO ∠=∠⇔||||MA MO =,即2222(2)M MMMx y x y -+=+,化简得1M x =,即22209112(1)k k +=+,解得4k =-或4k =,所以直线l的斜率为4k =-或4k =. 38.【解析】=22421a b+=,解得228,4a b ==. 所以C 的方程为22184x y +=. (Ⅱ)设直线l :y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y将y kx b =+代入22184x y +=得222(21)4280k x kbx b +++-=. 故1222221M x x kb x k +-==+,221M M by k x b k =⋅+=+. 于是直线OM 的斜率12M OM M y k x k ==-,即12OM k k ⋅=-. 所以直线OM 的斜率与直线l 的斜率的乘积为定值. 39.【解析】(Ⅰ)设(),0F c -,由已知离心率c a =及222a b c =+,又因为()0,B b ,故直线BF 的斜率()020b bk c c-===--.(Ⅱ)设点()()(),,,,,P P Q Q M M P x y Q x y M x y ,(i )由(Ⅰ)可得椭圆方程为2222154x y c c +=,直线BF 的方程为22y x c =+,将直线方程与椭圆方程联立, 消去y ,得2350x cx +=,解得53P cx =-.因为BQ BP ⊥,所以直线BQ 方程为 122y x c =-+,与椭圆方程联立,消去y ,整得221400x cx -=,解得4021Q cx =.又因为PM MQ λ= ,及0M x =,可得78M P P Q M Q x x x x x x λ-===-. (ii )由(i )有78PMMQ =,所以777815PM PM MQ ==++,即157PQ PM =,又因为||sin =9PM BQP ∠,所以=||sin BP PQ BQP ∠=15||sin 73PM BQP ∠=.又因为4223P P y x c c =+=-,所以3BP c ==,因此33c =,1c =,所以椭圆方程为22154x y +=. 40.【解析】(Ⅰ)由题设知2c a =,1b =结合222a b c =+,解得a = 所以椭圆的方程式为2212x y +=. (Ⅱ)由题设知,直线PQ 的方程式为1+1y k x =-()(2)k ≠,代入2212x y +=, 得22(12)4(1)2(2)0k x k k x k k +--+-=. 由已知Δ>0.设11(,)P x y ,22(,)Q x y ,120x x ≠, 则1212224(1)2(2),1212k k k k x x x x k k --+==++. 从而直线,AP AQ 的斜率之和121212121122AP AQ y y kx k kx k k k x x x x +++-+-+=+=+ =121212112(2)()2(2)x x k k k k x x x x ++-+=+- =4(1)2(2)22(1)22(2)k k k k k k k k -+-=--=-.41.【解析】(Ⅰ)由椭圆的定义,((122||||224a PF PF =+=++=,故2a =.设椭圆的半焦距为c ,由已知12PF PF ⊥,因此122||c F F ====即c =1b =.故所求椭圆的标准方程为2214x y +=. (Ⅱ)如题(21)图,由11,||||PF PQ PQ PF λ⊥=,得222111||||||1|QF PF PQ PF λ=+=+.由椭圆的定义,12||||2PF PF a +=,12||||2QF QF a +=, 进而11||||||4PF PQ QF a ++=. 于是21(11||4PF a λλ++=. 解得12||11PF λλ=+++,故22122(11)||2||11a PF a PF λλλλ++-=-=+++由勾股定理得22222122||||||(2)4PF PF PF c c +===,从而2222222(11)41111a c λλλλλλ⎛⎫++-+=++++++, 两边除以24a ,得()()22222221(11)1111e λλλλλλ+++=+++++,若记211t λλ=++,则上式变成22224(t 2)111842e t t +-⎛⎫==-+ ⎪⎝⎭. 由3443λ≤<,并注意到211λλ++λ的单调性,得34t ≤<,即11143t <≤,进而21529e <≤25e <≤. 42.【解析】223(c,0)== 3.3F c c(I )设,由条件知, 2223=2, 1.2c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (Ⅱ)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12PQ x =-=从而O PQ d OPQ =∆又点到直线的距离所以的面积21=241OPQ S d PQ k ∆⋅=+244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即 OPQ ι∆所以,当的面积最大时,的方程为2222y x y x =-=--或. 43.【解析】(Ⅰ)设直线l 的方程为()0y kx m k =+<,由22221y kx mx y a b=+⎧⎪⎨+=⎪⎩,消去y 得,()22222222220b a k x a kmx a m a b +++-=,由于直线l 与椭圆C 只有一个公共点P ,故0∆=,即22220b m a k -+=,解得点P 的坐标为22222222,a km b m b a k b a k ⎛⎫- ⎪++⎝⎭,由点P 在第一象限, 故点P的坐标为22⎛⎫⎝; (Ⅱ)由于直线1l 过原点O ,且与l 垂直,故直线1l 的方程为0x ky +=,所以点P 到直线1l的距离d =,整理得22d =,因为22222b a k ab k +≥,2222a b ≤=-,当且仅当2bk a=时等号成立, 所以点P 到直线1l 的距离的最大值为b a -.44.【解析】(Ⅰ)根据c =22(,),23b M c b ac a=将222b a c =-代入223b ac =,解得1,22c ca a==-(舍去) 故C 的离心率为12. (Ⅱ)由题意,原点O 为12F F 的中点,2MF ∥y 轴,所以直线1MF 与y 轴的交点(0,2)D 是线段1MF 的中点,故24b a=,即24b a = ①由15MN F N =得112DF F N =。
理科数学2010-2019高考真题分类训练专题九解析几何第二十六讲椭圆

专题九 解析几何第二十六讲 椭圆2019年1.(2019全国I 理10)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 2.(2019全国II 理21(1))已知点A (−2,0),B (2,0),动点M (,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;3.(2019北京理4)已知椭圆()222210x y a b a b +=>>的离心率为12,则(A )22.2a b =(B )22.34a b=(C )2a b=(D )34a b=4.(2019全国III 理15)设12F F ,为椭圆C 22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.2010-2018年一、选择题1.(2018全国卷Ⅱ)已知1F ,2F 是椭圆22221(0)+=>>:x y C a b a b的左,右焦点,A 是C 的左顶点,点P 在过A 12△PF F 为等腰三角形,12120∠=︒F F P ,则C 的离心率为A .23B .12C .13D .142.(2018上海)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( )A .B .C .D .3.(2017浙江)椭圆22194x y +=的离心率是A .3 B .3 C .23D .59 4.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3 B .3 C .3 D .135.(2016年全国III)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A .13B .12C .23D .346.(2016年浙江)已知椭圆1C :2221x y m +=(1m >)与双曲线2C :2221x y n-=(0n >)的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则A .m n >且121e e >B .m n >且121e e <C .m n <且121e e >D .m n <且121e e <7.(2014福建)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .268.(2013新课标1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=19.(2012新课标)设1F 、2F 是椭圆E :)0(12222>>=+b a by a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆ 是底角为o30的等腰三角形,则E 的离心率为 A 、21 B 、32 C 、43 D 、54二、填空题10.(2018浙江)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB =u u u r u u u r ,则当m =___时,点B 横坐标的绝对值最大.11.(2018北京)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.12.(2016江苏省)如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b+=>>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是 .13.(2015新课标1)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 的正半轴上,则该圆的标准方程为_________.14.(2014江西)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .15.(2014辽宁)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.(2014江西)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.17.(2014安徽)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为_____.18.(2013福建)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于19.(2012江西)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.20.(2011浙江)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =u u u r u u u u r;则点A 的坐标是 .三、解答题21.(2018全国卷Ⅰ)设椭圆:C 2212+=x y 的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.22.(2018全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)M m (0)m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r .证明:||FA u u u r ,||FP u u u r,||FB u u u r成等差数列,并求该数列的公差.23.(2018天津)设椭圆22221x x a b+=(0a b >>)的左焦点为F ,上顶点为B .已知椭圆的离A 的坐标为(,0)b ,且FB AB ⋅= (1)求椭圆的方程;(2)设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求的值. 24.(2017新课标Ⅰ)已知椭圆C :22221(0)x y a b a b+=>>,四点1(1,1)P ,2(0,1)P ,3(2P =-,4(1,2P =中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.25.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足NP =u u u r u u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .26.(2017江苏)如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.27.(2017天津)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △6AP 的方程. 28.(2017山东)在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>2,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l:1y k x =-E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k,且12k k ,M 是线段OC 延长线上一点,且:2:3MC AB =,M e 的半径为MC ,,OS OT 是M e 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.x29.(2016年北京)已知椭圆C :22221(0)x y a ba b+=>>(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.30.(2015新课标2)已知椭圆C :2229x y m +=(0m >),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边行?若能,求此时l 的斜率;若不能,说明理由.31.(2015北京)已知椭圆C :()222210x y a b ab+=>>的离心率为,点()01P ,和点()A m n ,()0m ≠都在椭圆C 上,直线PA 交轴于点M . (Ⅰ)求椭圆C 的方程,并求点M 的坐标(用,表示);(Ⅱ)设O 为原点,点B 与点A 关于轴对称,直线PB 交轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.32.(2015安徽)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM(Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程. 33.(2015山东)平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,左、右焦点分别是1F 、2F .以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222144x y a b+=,P 为椭圆C 上任意一点,过点P 的直线=+y kx m交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .( i )求||||OQ OP 的值; (ii )求△ABQ 面积的最大值.34. (2014新课标1) 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>F 是椭圆E 的右焦点,直线AF ,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.35.(2014浙江)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.36.(2014新课标2)设1F ,2F 分别是椭圆C :()222210y x a b a b+=>>的左,右焦点,M是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .37.(2014安徽)设1F ,2F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,过点1F的直线交椭圆E 于,A B 两点,11||3||AF BF = (Ⅰ)若2||4,AB ABF =∆的周长为16,求2||AF ;(Ⅱ)若23cos 5AF B ∠=,求椭圆E 的离心率. 38.(2014山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的离心率为32,直线y x =被椭圆C 截得的线段长为4105. (I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点. (ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.39.(2014湖南)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (I)求12,C C 的方程;(Ⅱ)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=u u u r u u u r u u u r?证明你的结论.40.(2014四川)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(i )证明:OT 平分线段PQ (其中O 为坐标原点); (ii )当||||TF PQ 最小时,求点T 的坐标. 41.(2013安徽)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点P .(Ⅰ)求椭圆C 的方程;(Ⅱ)设0000(,)(0)Q x y x y ≠为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.42.(2013湖北)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.43. (2013天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,, 过点F 且与 轴(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左、右顶点, 过点F 且斜率为的直线与椭圆交于C ,D 两点. 若··8AC DB AD CB +=u u u r u u u r u u u r u u u r, 求的值.第20题图44.(2013山东)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,F F ,离心率为2,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l . (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.45.(2012北京)已知椭圆C 22221(0)x y a b a b+=>>的一个顶点为(2,0)A,离心率为2.直线(1y k x =-)与椭圆C 交于不同的两点M ,N . (Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMN时,求k 的值. 46.(2013安徽)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a , b 的值.47.(2012广东)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点到(0,2)Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.48.(2011陕西)设椭圆C ()222210x y a b a b +=>>过点(0,4),离心率为35(Ⅰ)求C 的方程;(Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 49.(2011山东)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE交椭圆C 于点G ,交直线3x =-于点(3,)D m -. (Ⅰ)求22m k +的最小值; (Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG V 的外接圆方程;若不能,请说明理由.50.(2010新课标)设1F ,2F 分别是椭圆E :2x +22y b=1(01b <<)的左、右焦点,过1F的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求AB ;(Ⅱ)若直线l 的斜率为1,求b 的值.51.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =u u u r u u u r.(Ⅰ)求椭圆C 的离心率; (Ⅱ)如果|AB |=154,求椭圆C 的方程.。
理科数学2010-2019高考真题分类训练26专题九 解析几何第二十六讲 椭圆—附解析答案

的最大距离是
A. 5 2 B. 46 2 C. 7 2 D. 6 2
8.(2013 新课标 1)已知椭圆ax22+by22=1(a>b>0)的右焦点为 F(3,0),过点 F 的直线交椭圆于
A、B 两点.若 AB 的中点坐标为(1,-1),则 E 的方程为
A.4x52 +3y62 =1
B.3x62 +2y72 =1
二、填空题
10.(2018 浙江)已知点 P(0,1) ,椭圆 x2 y2 m ( m 1)上两点 A , B 满足 AP 2PB , 4
则当 m =___时,点 B 横坐标的绝对值最大.
11.(2018
北京)已知椭圆
M:x a
2 2
y2 b2
1(a
b 0) ,双曲线 N:mx22
y2 n2
C.2x72 +1y82 =1
D.1x82 +y92=1
9.(2012
新课标)设 F1 、 F2 是椭圆 E :
x2 a2
y2 b2
1(a
b 0) 的左、右焦点, P 为直线
x
3a 2
上一点,
F2 PF1
是底角为 30o 的等腰三角形,则 E 的离心率为
A、 1 2
B、 2 3
C、 3 4
D、 4 5
y2 b2
1(0 b 1) 的左、右焦点,过点 F1 的
直线交椭圆 E 于 A, B 两点,若 AF1 3 BF1 , AF2 x 轴,则椭圆 E 的方程为_____.
18.(2013
福建)椭圆 :
x2 a2
y2 b2
1(a
b
0) 的左、右焦点分别为 F1, F2 ,焦距为 2c .若
理科数学2010-2019高考真题分类训练专题九解析几何第二十八讲抛物线答案

专题九 解析几何第二十八讲 抛物线答案部分2019年1.D 解析 由题意可得:232p p p ⎛⎫-= ⎪⎝⎭,解得8p =.故选D . 2.解析(I )由抛物线2:2C x py =-经过点()2,1-,得2p =.所以抛物线C 的方程为24x y =-,其准线方程为1y =. 3.解析 设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x ⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-.所以l 的方程为3728y x =-. (2)由3AP PB =uu u r uu r可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||AB =.4.解析(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- ,整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=.所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t =-==+.设12,d d 分别为点D ,E到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+. 设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t=±时,S =因此,四边形ADBE的面积为3或 2010-2018年1.D 【解析】通解 过点(2,0)-且斜率为23的直线的方程为2(2)3=+y x ,由22(2)34⎧=+⎪⎨⎪=⎩y x y x,得2540-+=x x ,解得1=x 或4=x ,所以12=⎧⎨=⎩x y ,或44=⎧⎨=⎩x y ,不妨设(1,2)M ,(4,4)N ,易知(1,0)F ,所以(0,2)=u u u u r FM ,(3,4)=u u u rFN ,所以8⋅=u u u u r u u u rFM FN .故选D .优解 过点(2,0)-且斜率为23的直线的方程为2(2)3=+y x ,由22(2)34⎧=+⎪⎨⎪=⎩y x y x,得2540-+=x x ,设11(,)M x y ,22(,)N x y ,则10>y ,20>y ,根据根与系数的关系,得125+=x x ,124=x x .易知(1,0)F ,所以11(1,)=-u u u u r FM x y ,22(1,)=-u u u rFN x y ,所以12121212(1)(1)()1⋅=--+=-+++u u u u r u u u rFM FN x x y y x x x x 45188=-++=.故选D .2.A 【解析】由已知1l 垂直于x 轴是不符合题意,所以1l 的斜率存在设为1k ,2l 的斜率为2k ,由题意有121k k ⋅=-,设11(,)A x y ,22(,)B x y ,33(,)D x y ,44(,)E x y 此时直线1l 方程为1(1)y k x =-,取方程214(1)y x y k x ⎧=⎨=-⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=-212124k k +=同理得 22342224k x x k ++= 由抛物线定义可知1234||||2AB DE x x x x p +=++++22122222121224244448816k k k k k k ++=++=++=≥当且仅当121k k =-=(或1-)时,取得等号.3.C 【解析】设()()22,2,,P pt pt M x y (不妨设0t >),则22,22p FP pt pt ⎛⎫=- ⎪⎝⎭u u u r ,∵13FM FP =u u u u r u u u r ,∴22,2362,3p p p x t pt y ⎧-=-⎪⎪⎨⎪=⎪⎩,∴22,332,3p p x t pt y ⎧=+⎪⎪⎨⎪=⎪⎩∴22112122OM t k t t t ==≤=++∴max ()2OM k =,故选C . 4.B 【解析】由题意,不妨设抛物线方程为22(0)y px p =>,由||AB =,||DE =4(A p,(2pD -,设O 为坐标原点,由||||OA OD =,得2216854p p +=+,得4p =,所以选B . 5.A 【解析】如图,11--===∆∆AF BF x x AC BC S S A B ACF BCF ,故选A . 6.D 【解析】当直线l 的斜率不存在时,这样的直线l 恰好有2条,即5x r =±,所以05r <<;所以当直线l 的斜率存在时,这样的直线l 有2条即可.设11(,)A x y ,22(,)B x y ,00(,)M x y ,则12012022x x x y y y +=⎧⎨+=⎩.又21122244y x y x ⎧=⎨=⎩,两式相减得121212()()4()y y y y x x +-=-,121212042AB y y k x x y y y -===-+.设圆心为(5,0)C ,则005CM y k x =-,因为直线l 与圆相切,所以000215y y x ⋅=--, 解得03x =,于是2204y r =-,2r >,又2004y x <,即2412r -<,所以04r <<,又05r <<,2r >所以24r <<,选D .7.C 【解析】过点Q 作QQ l '⊥交l 于点Q ',因为4PF FQ =u u u r u u u r,所以||:||3:4PQ PF =,又焦点F 到准线l 的距离为4,所以||||3QF QQ '==.故选C .8.D 【解析】易知抛物线中32p =,焦点3(,0)4F ,直线AB 的斜率k =故直线AB 的方程为3)4y x =-,代人抛物线方程23y x =,整理得22190216x x -+=. 设1122(,),(,)A x y B x y ,则12212x x +=,由物线的定义可得弦长 12||12AB x x p =++=,结合图象可得O 到直线AB 的距离3sin 3028p d ==o , 所以OAB ∆的面积19||24S AB d =⋅=. 9.D 【解析】∵(2,3)A -在抛物线22y px =的准线上,∴22p-=-.∴4p =, ∴28y x =,设直线AB 的方程为(3)2x k y =--①,将①与28y x =联立, 得2824160y ky k -++=②,则△=2(8)4(2416)0k k --+=, 即22320k k --=,解得2k =或12k =-(舍去), 将2k =代入①②解得8,8x y ==,即(8,8)B , 又(2,0)F ,∴43BF k =,故选D .10.C 【解析】∵OF =,由抛物线的定义可得P 点的坐标(±,∴POF ∆的面积为1122P OF y ==.11.C 【解析】依题意可得AF 所在直线方程为12xy +=代入24x y =得y =,又||:||(1):(1)1:FM MN y y =-+=12.C 【解析】设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=13.D 【解析】因为双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2,所以2.cb a=⇒=又渐近线方程为0,bx ay ±=所以双曲线1C 的渐近线0.y ±=而抛物22:2(0)C x py p =>的焦点坐标为(0,),2p||28p p =⇒=.故选D . 14.C 【解析】设抛物线的方程为22y px =,易知||212AB p ==,即6p =,∵点P 在准线上,∴P 到AB 的距离为6p =,所以ABP ∆面积为36,故选C . 15.2【解析】解法一 由题意知抛物线的焦点为(1,0),则过C 的焦点且斜率为k 的直线方程为(1)y k x =-(0)k ≠,由2(1)4y k x y x=-⎧⎨=⎩,消去y 得22(1)4k x x -=, 即2222(24)0k x k x k -++=,设11(,)A x y ,22(,)B x y ,则212224k x x k ++=,121x x =.由2(1)4y k x y x=-⎧⎨=⎩,消去x 得214(1)y y k =+, 即2440y y k --=,则124y y k+=,124y y =-, 由90AMB ∠=o,得1122(1,1)(1,1)MA MB x y x y ⋅=+-⋅+-u u u r u u u r1212121241()10x x x x y y y y =++++-++=,将212224k x x k ++=,121x x =与124y y k+=,124y y =-代入,得2k =. 解法二 设抛物线的焦点为F ,11(,)A x y ,22(,)B x y ,则21122244y x y x ⎧=⎨=⎩,所以2212124()y y x x -=-,则1212124y y k x x y y -==-+,取AB 的中点00(,)M x y ',分别过点A ,B 做准线1x =-的垂线,垂足分别为A ',B ',又90MB ∠=o,点M 在准线1x =-上,所以111||||(||||)(||||)222MM AB AF BF AA BB '''==+=+. 又M '为AB 的中点,所以MM '平行于x 轴,且01y =,所以122y y +=, 所以2k =.16.6【解析】如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点F',作MB l ⊥与点B ,NA l ⊥与点A ,由抛物线的解析式可得准线方程为2x =-,则2,4AN FF'==,在直角梯形ANFF'中,中位线'32AN FF BM +==,由抛物线的定义有:3MF MB ==,结合题意,有3MN MF ==, 故336FN FM NM =+=+=.17.22y px =的准线方程为2p x =-,又0p >,所以2px =-必经过双曲线221x y -=的左焦点(,所以2p-=,p = 18.1BC CD =,结合抛物线的定义得点D 为抛物线的焦点,所以||AD p a ==,(,0)2p D ,(,)2pF b b +,将点F 的坐标代入抛物线的方程得222()22p b p b a ab =+=+,变形得22()10b b a a--=,解得1b a =+1b a =,所以1b a=19.2,1x =-【解析】1,22p p ==;准线12px =-=-.20.62【解析】建立直角坐标系,使拱桥的顶点O 的坐标为(0,0),设抛物线的方程为22x py =-,l 与抛物线的交点为A 、B ,根据题意知(2,2)A --,(2,2)B - 则有()222-⨯=-a ,∴21-=a∴抛物线的解析式为221x y -= 水位下降1米,则3y =-,此时有6=x 或6-=x∴此时水面宽为62米.21.4【解析】利用抛物线的定义结合题设条件可得出p 的值为2,B 点坐标为(142,)所以点B22.【解析】(1)因为抛物线22y px =经过点(1,2)P ,所以42p =,解得2p =,所以抛物线的方程为24y x =. 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为1y kx =+(0k ≠).由241y x y kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得0k <或01k <<. 又PA ,PB 与y 轴相交,故直线l 不过点(1,2)-.从而3k ≠-. 所以直线l 斜率的取值范围是(,3)(3,0)(0,1)-∞--U U . (2)设11(,)A x y ,22(,)B x y . 由(1)知12224k x x k -+=-,1221x x k=. 直线PA 的方程为1122(1)1y y x x --=--. 令0x =,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-.由=QM QO λuuu r uuu r ,=QN QO μuuu r uuu r得=1M y λ-,1N y μ=-.所以1212121212112()1111111(1)(1)1M N x x x x x x y y k x k x k x x λμ---++=+=+=⋅-----2222241=211k k k k k -+=⋅-. 所以11λμ+为定值.23.【解析】(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B ,由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF k x +=+=+++=. 由题设知22448k k +=,解得1k =-(舍去),1k =. 因此l 的方程为1y x =-.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--, 即5y x =-+.设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.24.【解析】(1)设00(,)P x y ,211(,)4y A y ,222(,)4y B y .因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程221014()422y x y y ++=⋅即2210100280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴.(2)由(1)可知1202120028y y y y y x y +=⎧⎨=-⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB ∆的面积32212001||||4)2PABS PM y y y x ∆=⋅-=-. 因为220014y x +=0(0)x <,所以2200004444[4,5]y x x x -=--+∈. 因此,PAB ∆面积的取值范围是4. 25.【解析】(1)设()A x ,y 11,()B x ,y 22,l :2x ym =+由222x my y x=+⎧⎨=⎩可得y my --=2240,则y y =-124 又y x 211=2,y x 222=2,故()y y x x 21212=4=4因此OA 的斜率与OB 的斜率之积为y y x x ⋅1212-4==-14,所以OA OB ⊥. 故坐标原点O 在圆M 上.(2)由(1)可得y y m 12+=2,()x x m y y m +21212+=++4=24故圆心M 的坐标为()m m 2+2,,圆M 的半径r =由于圆M 过点(4,2)P -,因此0AP BP =u u u r u u u rg ,故()()()()121244++2+2=0x x y y -- 即()()x x x x y y y y -++++=121212124+2200由(1)可得y y 12=-4,x x 12=4. 所以2m m --=210,解得m =1或m =-12. 当1m =时,直线l 的方程为20x y --=,圆心M 的坐标为(3,1),圆M的半径为,圆M 的方程为()()x y -+-=223110当12m =-时,直线l 的方程为240x y +-=,圆心M 的坐标为91(,)42-,圆M 的半径为4,圆M 的方程为229185()()4216x y -++=. 26.【解析】(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+, 因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。