开题报告-壳聚糖纳米粒子吸附铜离子的性能研究

合集下载

壳聚糖复合磁性生物炭吸附去除水中Cu(Ⅱ)的性能和机理

壳聚糖复合磁性生物炭吸附去除水中Cu(Ⅱ)的性能和机理

壳聚糖复合磁性生物炭吸附去除水中Cu(Ⅱ)的性能和机理李杰;高洪涛【摘要】以粉碎松树枝粉末为原料高温热解制备生物炭,然后采用水热方法与Fe3O4和壳聚糖复合,制备复合吸附剂,并将其用于水中Cu(Ⅱ)的吸附去除.研究发现复合吸附剂可有效去除Cu(Ⅱ),反应1.5h后可达到吸附平衡,其最大平衡吸附量为74.83 mg·g-1.对其吸附机理研究表明,Cu(Ⅱ)在复合吸附剂表面的吸附过程包括表面扩散、颗粒内部扩散和吸附平衡扩散三个阶段,其吸附反应动力学可采用准二级反应动力学方程拟合,吸附等温线符合Langmuir模型.对其反应热力学研究表明Cu(Ⅱ)在复合生物炭表面的吸附主要为物理吸附.%The biochar was prepared by using thermal decomposition of powders obtained by pulverizing the pine branch,which was then combined with both magnetic Fe3O4 and chitosan to form the composite adsorbent.It has been used for Cu(Ⅱ) removal from aqueous solution.There were three steps in the endothermic adsorption process,including the surface diffusion,the intraparticle diffusion and the final equilibrium.The maximum adsorption capacity was 74.83 mg · g-1 at the equilibrium time of 90 min.The investigations on adsorption kinetics and isotherms showed that the pseudo-second-order kinetic and Langmuir isotherm model could well fit the experimental data.Further investigations on the activation energy and thermodynamics of the adsorption process elucidated that the Cu(Ⅱ) adsorption on the adsorbent was an endothermic and spontaneous physi-sorption process.【期刊名称】《青岛科技大学学报(自然科学版)》【年(卷),期】2018(039)002【总页数】5页(P16-20)【关键词】复合生物炭;Cu(Ⅱ);吸附性能;吸附机理【作者】李杰;高洪涛【作者单位】青岛科技大学生态化工国家重点实验室培育基地,山东青岛266042;青岛科技大学生态化工国家重点实验室培育基地,山东青岛266042【正文语种】中文【中图分类】X52重金属废水具有极强致毒性、富集性和持久性,对社会环境和人类健康带来了严重的危害[1]。

壳聚糖改性吸附剂的制备及其吸附性能研究

壳聚糖改性吸附剂的制备及其吸附性能研究
环保安全
壳聚糖改性吸附剂制备过程简单,安全环保,不会产生二 次污染。
05
结论
研究成果总结
壳聚糖改性吸附剂的制备方法
本研究成功开发了一种壳聚糖改性吸附剂的制备方法,该方法简单、 高效,适用于大规模生产。
吸附性能显著提高
通过改性处理,壳聚糖吸附剂的吸附容量和吸附速率均得到显著提升, 能够有效去除水中的重金属离子和有机污染物。
拓展应用领域
将壳聚糖改性吸附剂应用于其他领域, 如土壤修复、放射性核素去除等,以 拓展其应用范围。
开发新型改性材料
尝试其他天然高分子材料进行改性处 理,以期获得性能更优异的吸附剂。
加强实际应用研究
进一步验证壳聚糖改性吸附剂在实际 应用中的效果,为其在水处理领域的 推广应用提供有力支持。
THANKS
吸附剂的结构。
扫描电子显微镜分析
观察改性吸附剂的表面形貌、 孔径分布和孔容等结构特征。
X射线衍射分析
用于分析改性吸附剂的晶体结 构和晶格常数。
热重分析
研究改性吸附剂的热稳定性及 失重行为。
03
壳聚糖改性吸附剂的吸附性能研究
吸附机理
01
02
03
物理吸附
通过分子间范德华力吸附 污染物。
化学吸附
通过吸附剂表面的活性基 团与污染物发生化学反应, 形成稳定的化学键。
离子交换吸附
壳聚糖改性吸附剂表面的 氨基和羧基可以与污染物 中的阳离子和阴离子进行 离子交换。
吸附动力学研究
吸附速率
研究吸附过程中不同时间点的吸附量,分析吸附 速率随时间的变化规律。
吸附平衡时间
确定达到吸附平衡所需的时间,为实际应用提供 参考。
动力学模型
建立吸附动力学模型,用于描述吸附速率与污染 物浓度、吸附剂用量等因素之间的关系。

壳聚糖对重金属离子Cu和Pb的吸附研究

壳聚糖对重金属离子Cu和Pb的吸附研究

龙源期刊网
壳聚糖对重金属离子Cu和Pb的吸附研究作者:雷志丹雷琳李龙张晓青惠华英雷志钧
来源:《中国当代医药》2012年第14期
[摘要] 目的处理实验室废水中的重金属离子。

方法本文对壳聚糖对模拟废水中的微量重金属离子Cu和Pb的吸附进行了研究,确定了最佳吸附条件。

结果在实验室条件下,Cu2+的最佳pH = 9,Pb2+的最佳pH = 6,壳聚糖最佳用量均为10 g/L,最佳吸附时间均为20 min,温度均为常温,壳聚糖脱乙酰度均为85%。

结论壳聚糖对水中微量重金属离子有较好的吸附效果,可作为重金属离子的吸附剂用于实验室重金属离子废水的处理。

[关键词] 壳聚糖;重金属离子;吸附;Cu2+;Pb2+
[中图分类号] X703[文献标识码] A[文章编号] 1674-4721(2012)05(b)-0025-02。

壳聚糖的交联改性及其吸附铜和铅离子的研究

壳聚糖的交联改性及其吸附铜和铅离子的研究

c i t r a t e( CA) a n d e p i c h 1 o r 0 h y d r i n( ECH ) a s c r o s s ~ l i n k e r s . Th e c h e mi c a l s t r u c t u r e o f t h e c r o s s —
v i a c r o s s - l i n k i n g wa s c a r r i e d o u t i n t h i s s t u d y .Mo d i f i e d CTS b e a d s we r e p r e p a r e d u s i n g s o d i u m
和铅 离子 的吸 附动 力 学和吸 附等 温特 性 , 并进行 了吸 附剂 的再 生 实验 结果 表 明 : 改性后 的壳聚糖
对铜 和铅 离子 的吸 附 可 由二 级吸 附动 力 学和 L a n g mu i r 吸 附等 温模 型 描 述 , C TS — C A — E C H 珠 粒 具
Ad s o r p t i o n o f P b( I I )a n d Cu ( I I )I o n s b y Cr o s s 。 Li n k e d Ch i t o s a n B e a d s
SU N Ya nf a n g, LI U Yu n
壳聚 糖 的 交联 改性 及 其 吸 附铜 和 铅 离子 的研 究
孙 艳芳 ,刘 芸
( 西 安 交 通 大学 理 学 院 , 7 1 0 0 4 9 , 西安)
摘要 :针 对 壳聚糖 上 的氨 基 在酸 性溶 液 中 易质 子化 , 从 而限制 了应 用 的 问题 , 对 壳聚糖 的 交联 改性 进行 了研 究 。首先 用柠檬 酸 三钠 和环 氧氯 丙烷 为 交联 剂 制备 了改性 壳聚 糖 ( C TS — C A — E C H) 珠粒 ,

铜离子在透明壳聚糖薄膜上的吸附动力学特性

铜离子在透明壳聚糖薄膜上的吸附动力学特性

Adsorption kinetic character of copper ions onto a modified chitosan transparent thin membrane from aqueous solutionJournal of Hazardous Materials 182 (2010) 408–415Zihong Cheng, Xiaoshuai Liu, Mei Han, Wei Ma*China 大连理工大学制备了一种改性的壳聚糖透明薄膜(MCTTM),由于其对水溶液中铜离子的去除能力强,被作为研究吸附动力学的吸附剂。

MCTTM的形态和结构通过SEM和FTIR分析来表征。

外部质量传递,颗粒内扩散,拟一级和拟二级动力学模型被用来描述这一吸附过程。

研究结果表明,吸附过程可以用拟二级动力学模型来描述,这表明吸附过程是螯合离子交换的化学吸附过程,这一点通过FTIR和吸附自由能的分析得到证实。

外部质量传递和颗粒内扩散过程是速率控制步骤。

1.Introduction日益增长的由重金属离子引起的城市和工业废水污染是一个令人担忧的环境问题,因为它对植物、动物和人类都有毒性。

与有机废物不同的是,这些无机污染物备受关注,因为它们不能生物降解,常常在生物组织内积累,高毒性从而引起各种疾病和不适,并且还有可能致癌[1, 2]。

铜是一种必需的微量营养素,少量时对人体至关重要,达到高含量(超过1.3mg/L)时,据报道会引起胃肠问题,神经中毒,黄疸和肝中毒[4]。

而且,在作业工人中肺癌患者的增加与连续吸入含铜喷雾有关[5]。

这促使在过去的几年中为开发出治理含铜废水的新工艺而进行了大量的研究。

从废水中去除重金属离子的传统技术,如化学沉淀,离子交换,电渗析,溶剂萃取,膜分离,被认为是有限的,因为其中的一些技术不能将离子浓度降低到需要的水平而常常需要高的投资和操作费用,还有一些会产生需要治理的二次污染物,如由于沉淀过程产生的大量的污泥[6, 7]。

靶向药物载体——壳聚糖磁性微球的制备和性能研究的开题报告

靶向药物载体——壳聚糖磁性微球的制备和性能研究的开题报告

靶向药物载体——壳聚糖磁性微球的制备和性能研究的开题报告一、研究背景及意义靶向药物是指通过设计特定的药物分子结构,使其能够选择性地作用于特定的生物分子或组织,从而达到更好的治疗效果。

传统的药物治疗常常是广谱的,虽然能够起到一定的治疗作用,但会对健康细胞造成一定的损害。

而靶向药物则能够达到更精准、更有效的治疗效果,减少药物在人体中的副作用。

壳聚糖是一种来源丰富、重要的生物材料,具有良好的生物相容性、生物活性,是一种理想的药物载体材料。

磁性微球则是一种新型的药物载体形式,具有较大的比表面积、活性位点丰富,能够实现更高的药物吸附量和释药效率。

因此,将壳聚糖与磁性微球相结合制备靶向药物载体,具有良好的应用前景。

二、研究内容和目标本课题旨在制备一种具有良好生物相容性和药物靶向性的壳聚糖磁性微球靶向药物载体,并研究其在药物吸附、释药方面的性能,并针对其在实际应用中的一些问题进行优化。

研究内容包括:1、制备壳聚糖磁性微球靶向药物载体;2、对制备的载体进行物理化学性质测试;3、对载体的药物吸附、释药性能进行研究;4、探究载体在不同条件下的吸附、释药性能差异,并对其性能进行优化。

研究目标包括:1、成功制备壳聚糖磁性微球靶向药物载体;2、对所制备的载体进行全面的物理化学性质测试,明确其性能;3、研究所制备的载体在不同条件下的药物吸附和释药特性,并探究其优化方法;4、为进一步的药物靶向研究提供一定的理论和应用基础。

三、研究方法和步骤1、制备壳聚糖磁性微球靶向药物载体壳聚糖磁性微球靶向药物载体的制备可采用化学共沉淀法,将铁盐和碱性纤维素(如纤维素、壳聚糖等)在水解和还原剂的作用下共沉淀,形成一种纳米粒子尺寸的壳聚糖磁性微球。

2、对制备的载体进行物理化学性质测试通过扫描电子显微镜、透射电子显微镜、荧光分光光度计等测试方法,对制备的壳聚糖磁性微球靶向药物载体进行形态、颗粒大小、表面形貌等物理化学性质的测试。

3、对载体的药物吸附、释药性能进行研究通过体外模拟实验试验,研究壳聚糖磁性微球靶向药物载体的药物吸附、释药特性,并对其性能进行分析、探讨和优化。

Fe_3O_4_壳聚糖磁性微球的制备及对Cu_2_的吸附性能

Fe_3O_4_壳聚糖磁性微球的制备及对Cu_2_的吸附性能

第27卷第2期2012年4月郑州轻工业学院学报(自然科学版)JOURNAL OF ZHENGZHOU UNIVERSITY OF LIGHT INDUSTRY (Natural Science )Vol.27No.2Apr.2012收稿日期:2012-02-22基金项目:河南省高校科技创新人才支持计划资助项目(2008HASTIT019);国家自然基金面上项目(20976168)作者简介:陈志军(1963—),男,河南省信阳市人,郑州轻工业学院教授,博士,主要研究方向为高分子及复合材料.文章编号:1004-1478(2012)02-0001-04Fe 3O 4-壳聚糖磁性微球的制备及对Cu 2+的吸附性能陈志军,朱海燕,郝营,尹甲兴,王雪兆,齐连怀,孙旭亮,魏永豪(郑州轻工业学院材料与化学工程学院,河南郑州450002)摘要:用壳聚糖包覆羧基化Fe 3O 4磁性纳米粒子制备了Fe 3O 4-壳聚糖磁性微球,分别用X -射线衍射、扫描电镜、热重分析等方法和手段对所制备的样品进行了结构表征.利用原子吸收光谱,探讨了时间、pH 值、Cu 2+浓度等对Fe 3O 4-壳聚糖磁性微球吸附溶液中Cu 2+量的影响.结果表明:Fe 3O 4-壳聚糖磁性微球粒径分布较均匀,平均粒径约为110nm ;Fe 3O 4-壳聚糖磁性微球能够吸附Cu 2+,最大吸附量可达21.3mg /g.随着吸附剂用量的增加、温度的升高,单位吸附量减小,室温下吸附较佳;Cu 2+初始浓度、pH 对吸附的影响很大,Cu 2+初始浓度在120mg /L ,5.0<pH <7.0时吸附较好;随着吸附时间的增加,单位吸附量也增加,8h 时基本达到吸附平衡.关键词:Fe 3O 4;壳聚糖磁性微球;Cu 2+吸附中图分类号:TQ589文献标志码:APreparation of Fe 3O 4-chitosan magnetic microspheres and their application in Cu 2+adsorption propertyCHEN Zhi-jun ,ZHU Hai-yan ,HAO Ying ,YIN Jia-xing ,WANG Xue-zhao ,QI Lian-huai ,SUN Xu-liang ,WEI Yong-hao(College of Material and Chem.Eng.,Zhengzhou Univ.of Light Ind.,Zhengzhou 450002,China )Abstract :Fe 3O 4-chitosan magnetic microspheres were prepared by modifying carboxyl Fe 3O 4nanoparticle with chitosan.The resulted samples were characterized by X-ray diffraction ,scanning electron microscope and thermogravimetry.The adsorption amounts of Cu 2+were detected with an atomic absorption spectrosco-py.In addition ,the effect of parameters such as contact time ,pH and Cu 2+initial concentration on the adsorption capacities was also discussed.The results have showed that Fe 3O 4-chitosan magnetic micro-spheres have a narrow size distribution with a mean diameter of 110nm.Fe 3O 4-chitosan magnetic micro-spheres are able to adsorb Cu 2+,and the maximum absorption quantity can reach 21.3mg /g.With the in-crease of adsorbent dosage and temperature ,the unit adsorption capacity decreased and the adsorption was better at room temperature.The adsorption of the magnetic microspheres is greatly influenced by the factors of initial concentration of Cu 2+and pH value ,and the adsorption capacity was higher at 120mg /L ,and 5.0<pH <7.0.The adsorption capacity increased with increasing contact time and the equilibrium was es-郑州轻工业学院学报(自然科学版)tablished within8h.Key words:Fe3O4;chitosan magnetic microsphere;Cu2+adsorption0引言目前,印刷、采矿、电解等行业的工业废水中含有大量Cu2+等重金属离子,严重污染土壤和水体,且Cu2+等重金属离子不可生物降解,易在有机体内积累,导致有机体各种疾病的发生[1].现行的可有效去除废水中Cu2+等重金属离子的方法主要有置换沉淀、溶剂萃取、活性炭吸附、离子交换、化学沉淀等[2-3].但这些方法容易对环境产生二次污染,不利于环境保护和可持续发展.磁分离技术作为一种较新的分离手段,兼有高效、经济、环保等特点,引起人们广泛关注[4].壳聚糖具有絮凝、吸附、无毒、对环境友好等性能,已成为水处理研究的热点[5-6].将Fe3O4和壳聚糖复合制备壳聚糖磁性微球,可使壳聚糖和磁分离技术在水处理方面的应用更有前景[7].本文拟用壳聚糖包覆羧基化Fe3O4磁性纳米粒子制备Fe3O4-壳聚糖磁性微球,并研究该类微球对Cu2+的吸附性能,以使其可有效应用于含Cu2+工业废水的处理.1实验1.1试剂及仪器试剂:FeCl3,乙二醇,无水乙酸钠,柠檬酸三钠,天津科密欧化学试剂开发中心产;N-羟基丁二酰亚胺(NHS),碳化二亚胺(EDC),美国阿尔法爱莎公司产.以上试剂均为分析纯.壳聚糖(生化试剂),国药集团化学试剂有限公司产.仪器:德国Bruker公司AXS D8X-射线衍射仪(XRD),日本JSM—7001F型热场发射扫描电子显微镜(FESEM),美国Diamond TG/DTA型热失重测试仪,美国Varian公司AA240FS型火焰原子吸收光度计.1.2Fe3O4-壳聚糖磁性微球的制备采用水热法制备得到磁性Fe3O4纳米粒子[8].将0.2g Fe3O4纳米粒子和0.1g柠檬酸三钠置于100mL三颈瓶中,加水溶解,80ħ下机械搅拌,得到羧基化Fe3O4磁性纳米粒子.称取1.0g羧基化Fe3O4磁性纳米粒子,100mL水超声溶解后加入250mL三颈瓶中,然后加入1.24g N-羟基丁二酰亚胺(NHS),0.42g碳化二亚胺(EDC)及2%乙酸-壳聚糖溶液25mL,机械搅拌,得到Fe3O4-壳聚糖磁性微球.1.3Fe3O4-壳聚糖磁性微球对Cu2+吸附性能的计算根据下面公式计算Fe3O4-壳聚糖磁性微球对Cu2+的单位吸附量M=1000(C-C)V/m其中,M为单位吸附量/(mg·g-1);C0,C分别为Cu2+的初始质量浓度和平衡质量浓度/(mg·L-1);V为Cu2+溶液体积/L;m为Fe3O4-壳聚糖磁性微球的质量/mg.2结果与讨论2.1Fe3O4-壳聚糖磁性微球性能表征2.1.1物相分析———X-射线衍射(XRD)图1中a是Fe3O4纳米粒子的XRD图,b是Fe3O4-壳聚糖磁性微球的XRD图.由图1中b可以看出,在2θ=18.36ʎ,30.14ʎ,35.54ʎ,43.14ʎ,53.58ʎ,57.1ʎ,62.7ʎ,74.24ʎ处均出现了不同强弱的衍射峰,分别对应立方相Fe3O4的(111),(220),(311),(400),(422),(511),(440),(533).对比可以发现,修饰壳聚糖前后,Fe3O4各衍射峰的峰位基本没有发生变化,说明壳聚糖包覆羧基化Fe3O4的过程中并没有改变Fe3O4纳米粒子的尖晶石结构.图1Fe3O4-壳聚糖磁性微球XRD图·2·2012年陈志军,等:Fe 3O 4-壳聚糖磁性微球的制备及对Cu 2+的吸附性能2.1.2扫描电镜(SEM )测试图2分别为羧基化Fe 3O 4磁性纳米粒子和Fe 3O 4-壳聚糖磁性微球的SEM 照片.从图2可以看出,羧基化Fe 3O 4纳米粒子尺寸分布均匀,平均粒径在90nm 左右;Fe 3O 4-壳聚糖磁性微球平均粒径在110nm 左右,说明壳聚糖已经包覆在羧基化Fe 3O 4磁性纳米粒子的表面,壳聚糖包覆厚度约为10nm (壳聚糖厚度ˑ2=粒径差).2.1.3热重(TG )分析图3为Fe 3O 4-壳聚糖磁性微球的TG 曲线.从图3可以看出,在整个温度范围内有3个质量减少台阶:20ħ 165ħ之间的质量减少是由于水和小分子溶剂的分解引起的;165ħ 400ħ的质量减少了约5.1%,主要是壳聚糖主链的热分解;700ħ为壳聚糖最终分解温度,此时壳聚糖已经完全分解,体系中仅含有稳定的Fe 3O 4颗粒,壳聚糖的总含量约为6.2%.2.2Cu 2+吸附性能研究2.2.1吸附剂用量的影响室温下,分别称取不同量的Fe 3O 4-壳聚糖磁性微球加入到含Cu 2+溶液的离心瓶中,吸附8h 后,取上清液测量Cu 2+的残留浓度,计算吸附量.图4是Fe 3O 4-壳聚糖磁性微球用量对Cu 2+吸附性能的影响曲线.由图4可知,单位吸附量随着Fe 3O 4-壳聚糖磁性微球用量的增加而减小.当Fe 3O 4-壳聚糖磁性微球为20mg 时,单位吸附量最大,约为4.2mg /g ;当Fe 3O 4-壳聚糖磁性微球用量达85mg 时,吸附量约为2.0mg /g.2.2.2pH 值的影响在其他条件相同的前提下,改变溶液的pH 值,Fe 3O 4-壳聚糖磁性微球对Cu 2+的吸附量变化很明显,如图5所示.由图5可知,随着溶液pH 值的升高,磁性微球对Cu 2+的吸附量也增大.当pH ≤7.0时,Cu 2+与溶液中的H +对磁性微球中壳聚糖上的—NH 2等功能基团的吸附为竞争关系;当溶液pH <5时,H +浓度较高,在竞争吸附中占优势,H +先与壳聚糖中的—NH 2形成—NH 3+,使Cu 2+丧失了与—NH 2络合的部分机会;当5.0<pH <7.0时,H +浓度降低,此时Cu 2+在吸附过程中占优势,优先被壳聚糖吸附,从而吸附量增加;当溶液pH >7.0时,Cu 2+主要以Cu (OH )2形式存在,吸附作用大大减弱.·3·第2期郑州轻工业学院学报(自然科学版)2.2.3温度的影响其他条件保持不变,考察温度对Cu2+吸附性能的影响,如图6所示.从图6可看出,Fe3O4-壳聚糖磁性微球对Cu2+的吸附性能随着温度的升高吸附量逐渐降低,温度较低时单位吸附量较大.由此可知Fe3O4-壳聚糖磁性微球对Cu2+的吸附属于放热反应,升高温度不利于吸附.考虑到低温节能的要求,最佳温度取25ħ(室温).2.2.4时间的影响在其他条件不变的情况下,考察不同吸附时间对吸附性能的影响,如图7所示.由图7可知,Fe3O4-壳聚糖磁性微球对Cu2+的单位吸在室温下,保持其他条件不变,改变Cu2+附量随吸附时间的增加而增加.当吸附时间为8h时吸附量达到最大,约为6.7mg/g;8h后单位吸附量有所下降,因此最佳吸附时间为8h.2.2.5Cu2+初始浓度的影响初始浓度,考察其对吸附的影响.图8为Cu2+初始浓度对Fe3O4-壳聚糖磁性微球单位吸附量的影响曲线.由图8可知,随着Cu2+初始浓度的增加,单位吸附量也逐渐增大.当Cu2+浓度达到140mg/L时,吸附量为21.3mg/g;继续增加Cu2+起始浓度,Fe3O4-壳聚糖磁性微球对Cu2+的吸附逐渐趋于平衡.3结论本文制备了Fe3O4-壳聚糖磁性微球,并对其进行了XRD,SEM等性能表征.结果表明,制备的Fe3O4-壳聚糖磁性微球中Fe3O4为尖晶石结构,磁性微球的平均粒径约为110nm,壳聚糖层厚度约为10nm,磁性微球壳聚糖含量约为6.2%.由Fe3O4-壳聚糖磁性微球对Cu2+粒子的吸附实验可知:Fe3O4-壳聚糖磁性微球对Cu2+粒子的最大吸附量可达21.3mg/g;随着吸附剂用量增加、温度升高,单位吸附量减小,室温下吸附较佳;Cu2+初始浓度、pH对吸附的影响较大,Cu2+初始浓度在120mg/L,5.0<pH<7.0时吸附较好;随着吸附时间的增加,单位吸附量也增加,8h后基本达到吸附平衡.(下转第21页)·4·2012年张飞,等:瑞克纤孔菌发酵条件优化及菌丝化学成分定性分析不含有生物碱、酚类化合物、鞣质、黄酮类化合物、强心甙和蒽醌类物质.3结论瑞克纤孔菌自然发生于多种林木的树枝和树干,营养要求苛刻.实验中对瑞克纤孔菌培养条件进行优化.结果显示,玉米淀粉、甘露醇和葡萄糖为适宜碳源,其中玉米淀粉为最适碳源;硝酸钠等无机氮源不适宜该真菌生长,适宜氮源为蛋白胨和酵母粉,以蛋白胨为最适;菌丝生长的适宜温度为25 30ħ;适宜pH=6.0 6.5.实验中,培养基添加蛋白胨、酵母粉等天然营养基质,可有效促进瑞克纤孔菌菌丝体生长,原因是蛋白胨和酵母粉除含有多种有机氮素营养以外,还含有多种微量元素和维生素等生长因子.微量元素和生长因子等对瑞克纤孔菌菌丝体生长的影响,有待于进一步研究.实验中对瑞克纤孔菌菌丝体成分进行定性分析.结果表明,瑞克纤孔菌菌丝体含有氨基酸、多肽、蛋白质、有机酸、还原糖、多糖和甙、皂甙、甾体和三萜类化合物、内酯、香豆素和挥发油,不含有生物碱、酚类化合物、鞣质、黄酮类化合物、强心甙和蒽醌类物质.参考文献:[1]Annesi T,D’Amico L,Bressanin D,et al.Characterization of Italian isolates of Inonotus rickii[J].Phytopathol Medi-terr,2010,49(3):301.[2]崔宝凯,余长军,李海蛟.中国纤孔菌属两新记录种[J].林业科学研究,2009,22(60):784.[3]郑俊娟,林琦,刘伟,等.瑞克纤孔菌在皂荚上的首次发现[J].菌物学报,2011,30(1):128.[4]陈艳秋,李玉.桦褐孔菌的研究进展[J].微生物学通报,2005,32(2):124.[5]崔宝凯,戴玉成,杨宏.药用真菌粗毛纤孔菌概述[J].中国食用菌,2009,28(4):6.[6]周国英,兰贵红,何小燕.食用菌多糖研究开发进展[J].实用预防医学,2004,11(1):203.[7]刘迎秋,包海鹰.桦褐孔菌Inonotus obliquus化学成分及药理作用[J].中国食用菌,2008,27(4):34.[8]Lorertzen K,Anke T.Basidiomycetes as a source for new bioactive natural products[J].Current Organic Chemis-try,1998,2(3):329.[9]刘高强,王晓玲.灵芝免疫调节和抗肿瘤作用的研究进展[J].菌物学报,2010,29(1):152.[10]孙迎节.蒙山九州虫草药用价值及其诱导肿瘤细胞凋亡的分子机理研究[D].济南:山东大学,2003:40-45.(上接第4页)参考文献:[1]Bailey S E,Olin T J,Bricka R M.A review of potentially low-cost sorbent for heavy metals[J].Water Res,1999,33(11):2469.[2]Chmielewski A G,Urbanski T S,Migdal W.Separation tech-nologies for metals recovery from industrial wastes[J].Hy-drometallurgy,1997,45(3):333.[3]Dabrowski A,Hubicki Z,Podkoscielny P.Selective remov-al of heavy metal ions from waters and industrialwastewaters by ion-exchange method[J].Chemosphere,2004,56(2):91.[4]陈志军,魏永豪,朱海燕.交联P(St-r-AA)包覆的Fe3O4粒子的制备及其对Cu2+吸附的研究[J].高分子材料科学与工程,2011,27(10):177.[5]苑宝玲,王洪杰.水处理新技术原理与应用[M].北京:化学工业出版社,2006.[6]Hong R Y,Pan T T,Li H Z.Microwave synthesis of mag-netic Fe3O4nanoparticles used as a precursor of nanocom-posites and ferrofluids[J].J of Magnetism and MagneticMaterials,2006,303:60.[7]李保强,贺全志,罗阳.磁性壳聚糖微球制备及在放射性水污染应用研究进展[J].水处理技术,2010,36(6):10.[8]Deng Y H,Qi D W,Deng C H,et al.Superparamagnetichigh-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2shell for removal of microcystins[J].J of the American ChemSociety,2008,130:28.·12·第2期。

壳聚糖γ-聚谷氨酸负载溶菌酶复合纳米粒子制备及抗菌性能研究【开题报告】

壳聚糖γ-聚谷氨酸负载溶菌酶复合纳米粒子制备及抗菌性能研究【开题报告】

毕业论文开题报告高分子材料与工程壳聚糖/γ-聚谷氨酸负载溶菌酶复合纳米粒子制备及抗菌性能研究一、选题的背景和意义壳聚糖(chitosan)又称可溶性甲壳质、甲壳胺、几丁聚糖等,是由自然界广泛存在的甲壳质经脱乙酰反应后得到,其化学名称为β-(1,4)-2-乙酰氨基-2-脱氧-D-葡聚糖,是一种线性多糖。

壳聚糖作为一种带正电荷的天然多糖,其具有无毒、无刺激性、无致敏性、无致突变作用,降解产物为低分子壳寡糖和葡萄糖胺,具有良好的生物相容性和生物降解性。

壳聚糖是应用广泛的新型药用辅料之一,作为药物载体可以控制药物释放、增加药物吸收、降低药物毒副作用,提高疏水性药物对细胞膜的通透性和药物的稳定性及改变给药途径,还可以加强制剂的靶向给药能力。

在药物载体等研究领域壳聚糖将具有广泛的应用前景。

γ- 聚谷氨酸是一种生物可降解大分子,在生物体内能降解为谷氨酸而直接被吸收,生物相容性优良、低免疫原性、无毒副作用,这是其他材料所不可比拟的;水溶性极好,可增加药物的溶解性;主链上存在大量易修饰的羧基,可以提高载药量,也可以进行功能化修饰,形成性能更佳的衍生物;为弱阴离子型聚合大分子,能够在血液循环中保留较长时间,对靶向给药具有重要意义。

二、研究目标与主要内容(含论文提纲)壳聚糖/γ-聚谷氨酸因其具有良好的生物学特性而成为药物载体研究的热点。

药物经过壳聚糖/γ-聚谷氨酸负载后,不仅能够达到缓释控释的目的,还能够改变药物的给药方式,以此减少给药次数,降低药物不良反应,提高药物生物利用度。

本论文旨在研究:(1)壳聚糖/γ-聚谷氨酸负载溶菌酶复合纳米粒子的可行性;(2)壳聚糖/γ-聚谷氨酸负载溶菌酶复合纳米粒子的载药量和包封率;(3)壳聚糖/γ-聚谷氨酸负载溶菌酶复合纳米粒子的药物释放率。

论文提纲:1前言1.1研究背景1.2研究方案2实验部分2.1药品与仪器2.2实验步骤2.2.1找到壳聚糖和聚谷氨酸混合不出现凝胶的最佳比例2.2.2聚谷氨酸和溶菌酶相互作用制备纳米2.2.3 再包裹纳米粒子的制备方法一2.2.4再包裹纳米粒子的制备方法二2.2.5再包裹纳米粒子的制备方法三2.2.6测定载药量和包封率2.2.7体外释放2.2.8红外光谱分析2.2.9热分析3结果与讨论4结论5参考文献6致谢三、拟采取的研究方法、研究手段及技术路线、实验方案等壳聚糖分子中存在氨基和羟基,它们均具有较高的反应活性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开题报告
高分子材料与工程
壳聚糖纳米粒子吸附铜离子的性能研究
一、选题的背景和意义
壳聚糖分子中含有羟基,乙酰基和氨基,这决定了壳聚糖可进行多功能基团的化学
反应。作为自然界唯一带有阳离子的天然多糖,具有独特的生物性能,故在纳米载药、
载基因体系中倍受青睐[7-8]。壳聚糖如此多的生物活性使它在医药和生物材料领域备受关
注,正在作为一种新型的天然高分子材料应用于实践中。甲壳素和壳聚糖都可以形成分
子内和分子间氢键。甲壳素分子内有-OH-和-CO-基团,分子链之间存在强烈的氢键,所
以几乎不溶于水及一般的有机溶剂、稀酸、稀碱或浓碱。而壳聚糖分子内有-OH,-NH2,
-O基团,也可以形成多种分子内氢键,但是与甲壳素不同的是其分子链的刚性和堆积密
度均小于甲壳素,所以其溶解性较甲壳素好。在稀酸中,壳聚糖的-NH2被质子化为-NH3+,
破坏了原有的氢键和晶格结构,此时-OH与水分子结合,从而使壳聚糖溶解。壳聚糖为
亲水性阳离子聚合物,在乙酸溶液中能产生聚电解质效应。在极稀的壳聚糖溶液中,壳
聚糖的分子链充分伸直,类似刚性结构。甲壳素和壳聚糖是少数带正电荷的天然产物之
一,具有许多独特的物理、化学性质和生物功能,又具有许多独特的生理活性,是一种
非常有价值的新材料。
因CS本身所具有的特性,引起了人们的极大兴趣,在过去的30年中,其在农业、
工业和医药领域中的应用发展迅速。在农业中,CS曾被用作一种抗病毒液添加到肥料
中,帮助植物抵抗病毒侵害,以及作为重金属修复剂应用于农业和工业中。CS还曾作
为一种化妆品添加剂和纺织品助染剂而广泛应用。在造纸的过程中也常加入CS作为加
固剂。CS同时具有的生物活性、抗血凝成分和杀菌效果使其在外科手术中也有应用。
。纳米粒子由于具有量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道效应而显示出独特的物
理化学特性,近年来, 以CS 为原料制备的纳米粒子由于其在药物运输、基因治疗、污水处理等方面
具有广泛的用途而备受关注, 成为当前的研究热点。在水处理方面,壳聚糖可用作吸附剂、絮凝剂、
重金属离子螯合剂等。其最大优点是不会产生二次污染,目前最大用量是作为无毒的阳离子絮凝剂
处理有机废水和螯合废水中的有毒金属离子。相信结合两者的特性制备壳聚糖纳米粒子来处理有机
废水和螯合废水中的有毒金属离子也是一种新的探索。
1

二、研究目标与主要内容(含论文提纲)
采用离子交联法制备壳聚糖纳米粒子, 即利用壳聚糖与三聚磷酸钠(TPP)分子之间
的阴、阳离子的静电作用而生成纳米粒子.
聚乙二醇(PEG)是一种被广泛应用的生物材料, 具有亲水性、柔韧性、电中性及可
生物降解等特性.
配制壳聚糖醋酸溶液,再滴加多聚磷酸钠(TPP),TPP上的磷酸盐负离子和壳聚糖上
的氨基正离子发生分子间或分子内交联而形成纳米离子。改变TPP的浓度来改变纳米粒
子的尺寸。通过滴加不同量的TPP来改变纳米粒子的尺寸大小,以此来研究不同尺寸的
纳米粒子对金属离子的吸附能力,再用DSC检测来分析吸附和未吸附纳米粒子表征。
论文提纲:
1.概述
2.壳聚糖的性质
3.壳聚糖的应用
4.生化方面
5.医疗保健
6.纤维领域
7.化妆品行业
8.纳米粒子
9.实验部分
10实验药品与仪器设备
11.制备壳聚糖的醋酸溶液的配置
12.壳聚糖纳米粒子的制备
13.纳米粒子和金属溶液混合液的制备
14.硫酸铜溶液吸光度的测定
15.混合液离心
16.红外光谱分析
17.热分析
18.结果与讨论
19.铜离子的吸附率
2

20.样品的红外光谱分析
21.样品的DSC热分析
22.结论

三、拟采取的研究方法、研究手段及技术路线、实验方案等
采用离子交联法制备壳聚糖纳米粒子, 即利用壳聚糖与三聚磷酸钠(TPP)分子之间
的阴、阳离子的静电作用而生成纳米粒子.
聚乙二醇(PEG)是一种被广泛应用的生物材料, 具有亲水性、柔韧性、电中性及可
生物降解等特性.
配制壳聚糖醋酸溶液,再滴加多聚磷酸钠(TPP),TPP上的磷酸盐负离子和壳聚糖上
的氨基正离子发生分子间或分子内交联而形成纳米离子。改变TPP的浓度来改变纳米粒
子的尺寸。通过滴加不同量的TPP来改变纳米粒子的尺寸大小,以此来研究不同尺寸的
纳米粒子对金属离子的吸附能力,再用DSC检测来分析吸附和未吸附纳米粒子表征。
壳聚糖醋酸溶液的配制
由于壳聚糖不容于水,所以用冰醋酸加以溶解。配制不同浓度的壳聚糖醋酸溶液,
温度室温,搅拌4小时。反应液在室温下继续搅拌反应24h,反应结束后用1N NaOH溶
液调制pH=9,反应液在透析袋中用乙醇透析5天,最后分别得产物LAC。
纳米粒子的制备
在壳聚糖醋酸溶液中,将0.8mL三聚磷酸钠(TPP)溶液(浓度分别是1.0,2.0,
3.0,4.0,6.0 mg/mL)加入到上述10mL的壳聚糖,按照TPP用量的多少不同,可以依
次出现三种不同的溶液,分别是澄清溶液、带蓝色荧光的乳浊液和沉淀。其中带蓝色荧
光的乳浊液就是形成的纳米溶液。
壳聚糖纳米粒子和金属溶液的混合液的制备
在不同尺寸大小的纳米粒子溶液中,加入相同量的金属溶液,磁力搅拌3小时。
混合液离心
将不同的混合液装样,进行离心
DSC分析
差示扫描量热分析(DSC)采用的是Perkin-Elmer PYRIS I型差示扫描量热仪。精
确称取2-7mg的样品,放入特制的铝锅中,封好口,N2保护下,升温速率为20℃/min,
3

N2不断的更换(20ml/min)。对吸附金属离子的纳米粒子做一次表征。
四、参考文献
[1] Pontius F W. Regulations for aluminum in drinking water [ J ]. J. AWWA, 2000, 92 (4) :
18 22.
[2] Bresch P C, Nies B, Liebendorfer A, et al. Incorporation of basic fibroblast growth factor
into methylpyrrolidinone chitosan fleeces and determination of the in vitro release
characteristics [J]. Bomaterials, 1994, 13-600.
[3] Eikebrokk B. Coagulation - direct Filtration of soft,low alkalinity humic waters [ J ]. War.
Sci. Tech,1999, 40 (9) : 55
[4] Wang Y S,L iu L R, J iang Q, Zhang Q Q. Eur Polym J [ J ] , 2007, 43: 43
[5] 孙志杰.甲壳化学的研究进展与应用概况[ J ]. 药学实践杂志, 2005, 23 (5):257.
[6] 陈世清. 甲壳素与壳聚糖在工业水处理中的应用[ J ].工业水处理,1996,16 (2): 1.
[7] 刘之杰, 余 刚, 刘满红. 壳聚糖絮凝剂对聚合氯化铝的助凝作用[ J ]. 环境化学,
2004, 23(3) : 306..
[8] 曾德芳, 余 刚, 张彭义等. 壳聚糖复合絮凝剂在城市生活污水处理中的应用[ J ].
环境化学,2002, 21 (5) : 505
[9] 范锋, 孙晓飞. 半乳糖受体介导的肝靶向药物研究进展. 中南药学, 2007, 5(l): 62-65.
[10] 何强芳 ,李国明 ,巫海珍.应用化学 [ J ] ,2004, 21 (2) : 192
五、研究的整体方案与工作进度安排
第一阶段:2010.11.25~2010.12.5实验的准备。
第二阶段:2010.12.6~2011.1.10实验逐步展开。
第三阶段:2011.1.11~2011.1.28实验进入中后期,主要是样品的表征。
第四阶段:2011.1.21~2011.2.27实验进入完成阶段,主要是分析处理数据。
第五阶段:2011.2.28~2011.4.23论文修改和定稿。
六、研究的主要特点及创新点
探索壳聚糖纳米粒子吸附铜离子的吸附性能

相关文档
最新文档