德系豪华油电混合动力-奔驰S400-Hybrid
奔驰S400混合动力介绍(下)

68-CHINA ·March(接上期)(4)电机安装在自动变速器的钟形壳内,采用励磁三相交流同步电机设计,可将电能转化为机械能,也可将机械能转化为电能,这种转化安静、平顺且高效。
电机可实现电力驱动、助推、交流发电机模式和再生制动功能。
2.主要功能作为传统的驱动模式,与上一代相似,主要包含以下功能与操作模式:(1)无声启动车辆启动会近乎无声,并且内燃机不会启动,直到驾驶员所需的输出功率大于电机的当前可用输出功率时,内燃机才会启动。
静音启动取决于室外温度和内燃机的工作温度。
该功能包含以下先决条件和步骤:开启点火开关;启动车辆;READY指示灯亮起,车辆已准备就绪,随时可以出发;向下踩压制动踏板并选择挡位。
(2)纯电力驱动新S级混合动力车的新特性为纯电力驱动,可在低负荷时纯电动进行起步和行驶,速度约为35km/h,具体情况取决于高压蓄电池的电量(图22)。
图22 电力驱动(3)内燃机驱动具有最佳油耗的内燃机提供动力,电机会辅助内燃机(如在加速期间),产生电动助力(图23)。
图23 内燃机驱动(4)滑行模式当绿色的READY指示灯亮起,且在速度小于140km/h时,驾驶员将脚从油门上移开后,内燃机会关闭。
(5)再生制动当驾驶员松开油门或激活制动器时,电机会对高压蓄电池进行充电。
ESP ®控制单元将驾驶员所需的全部制动转矩分为两部分:再生部分(图24)与液压部分,原理与上一代相同。
图24 再生效应◆文/福建 林宇清奔驰S400混合动力介绍(下)林宇清(本刊编委会委员)曾在福建奔驰汽车有限公司担任经销商技术支持,取得了奔驰厂家的最高等级技术资质-诊断技师认证(C DT),并积累了众多疑难故障案例和较为全面的诊断思路。
目前就职于云度新能源汽车股份有限公司,担任质量改进工程师。
Copyright©博看网 . All Rights Reserved.栏目编辑:刘玺 lx@Database资料库2020/03·汽车维修与保养691.膨胀容器;2.低温冷却器;3.变速器油热交换器;4.双金属阀(高于60℃关闭);5.止回阀;6.限制器(2mm);M43/6.低温回路循环泵1;N129/1.电力电子控制单元;A.高温冷却液;B.适中温度的冷却液;C.较低温冷却液;D.低温冷却液。
混合动力汽车构造图解(奔驰S400)

混合动力汽车构造图解(奔驰S400)混合动力汽车系统组成新款梅赛德斯-奔驰S400 hybrid基于S350研发而成,但其传动系统做出了明显改进。
改进包括进一步研发的3.5L V6汽油发动机、附加的持续通电同步电动机、为配合混合动力模块而专门设计的七挡自动变速箱、所需的动力和控制电子装置、变压器和锂离子蓄电池。
奔驰混合动力汽车系统组成▼S400 hybrid 配备了平行混合动力驱动系统。
通过该驱动系统,发动机和电动机均与驱动轮机械相连(发动机和电动机的平行连接)。
电动机和发动机所提供的功率可以进行叠加,这就意味着二者可分别保持更低的额定功率,但仅使用电动驱动系统无法驱动车辆。
奔驰S500 Plug-In Hybrid(插电式混合动力系统)的动力蓄电池相比S400 hybrid 车型容量增大了10倍,而且可以经过外部充电插座进行充电。
S500 Plug-In Hybrid车型最多可以利用电动机以纯电动模式行驶30km。
S500 Plug-In Hybrid系统组成▼1—湿式离合器(NAK);2—再生制动系统(RBS);724.2—自动变速箱;A9/5—电动制冷剂压缩机;A79/1—电动机;A100g1—高电压蓄电池;G1—车载电气系统蓄电池;M1—起动机;M276.8—发动机;M42—电动辅助油泵(集成在变速箱内);M56—真空泵(电动);N33/5—高电压正温度系数加热器;N68—电子动力转向控制单元;N82/2—蓄电池管理系统控制单元;N83/1—直流转换器控制单元;N83/5—充电装置;N129/1—功率电子装置控制单元;X58/23—充电装置供电插座混合动力汽车工作模式驱动模式▼混合动力驱动系统各种驱动模式的当前动力流可在驾驶室管理及数据系统(COMAND)显示单元上加以显示。
在驱动模式下,动力仅由发动机流向后轴。
加速模式▼在加速模式下,动力由发动机和电动机流向后轴。
高压蓄电池对电动机供电,然后由电动机产生驱动转矩,以对发动机所产生的转矩提供支持。
奔驰S400混合动力方案

Hybrid Concept inS 400 HYBRIDSystem DescriptionBild auf der Vorgabeseite in der Größe215x149 mm einfügenMercedes-Benz ServiceSystem DescriptionHybrid Concept in S 400 HYBRIDDaimler AG · Technical Information and Workshop Equipment (GSP/OI) · D-70546 StuttgartInformation and copyrightOrdering workshop informationAll printed workshop information from GSP/OI, such as Introduction intoService Manuals, System Descriptions, Function Descriptions, TechnologyGuides, Technical Data Manuals and adhesive labels, can be ordered asfollows:In GermanyFrom our GSP/OI shop on the InternetLink:http://gsp-ti-shop.deor alternativelyE-mail:customer.support@Telephone:+49-(0)1805/010-7979Fax:+49-(0)1805/010-7978Outside GermanyPlease get in touch with the contact person responsible for your market.Product portfolioComprehensive information about our full Product Portfoliocan also be found at our Internet Portal.Link:Questions and suggestionsIf you have any questions or suggestions concerning this product, please writeto us.E-mail:customer.support@Fax:+49-(0)1805/010-7978or alternativelyAddress:Daimler AGGSP/OISHPC R822, W002D-70546 Stuttgart© 2009 by Daimler AGThis document, including all its parts, is protected by copyright.Any further processing or use requires the previous written consent ofDaimler AG, Department GSP/OIS, HPC R822, W002, D-70546 Stuttgart.This applies in particular to reproduction, distribution, alteration, translation,microfilming and storage and/or processing in electronic systems, includingdatabases and online services.Image No. of title image:P00.00-4414-00Order No. of this publication:6516 1367 0204/2009Contents Preface 5OverviewIntroduction 6 Technical data 10 Block diagram 12 Display concept 14SubsystemsEngine 18 Electric motor 20 Automatic transmission 22 Electric refrigerant compressor 23 Power electronics module 24 DC/DC converter module 25 Power electronics and DC/DC converter cooling 26 High-voltage battery module 27 High-voltage battery cooling 28 Brake pedal assembly 30 RBS brake booster 31 Electric vacuum pump 32 Electrohydraulic power steering 33Operating strategyOverview 34 Driving mode 36 Torque coordination 40 Automatic engine stop 44 Automatic engine start 48 Energy management 52 Alternator interface 53System Description of Hybrid Concept in S 400 HYBRIDContentsDeceleration mode 54Regenerative braking 58Ignition ON/OFF 62Starting 63Monitoring/deactivation 64On-board electrical systemLocation of control units 66Networking of high-voltage/12 V on-boardelectrical systems 68Interlock 69Service informationDiagnosis 72Deenergization 73Working on the vehicle 74Requirements of service personnel 76Training 77Questions and answersQuestions about the hybrid drive 78AnnexAbbreviations 80Index 81Notes 82 System Description of Hybrid Concept in S 400 HYBRIDPrefaceSystem Description of Hybrid Concept in S 400 HYBRID Dear Reader,This system description presents the hybrid concept of the S 400 HYBRID from Mercedes-Benz.It allows you to familiarize yourself with the technical highlights of this new concept in advance of its market launch. This brochure primarily intended to provide information for people employed in service, mainte-nance and repair as well as for aftersales staff. It is assumed that the reader is already familiar with the Mercedes-Benz model series and major assemblies currently on the market.In terms of the contents, the emphasis in this system description is on presenting new and modified compo-nents, systems, system components and their func-tions.This system description aims to provide an overview of the technical innovations and an insight into the systems.However, this system description is not intended as a basis for repair work or technical diagnosis. For such needs, more extensive information is available in the Workshop Information System (WIS) and in the Diag-nosis Assistance System (DAS).These systems are updated on a monthly basis. There-fore, the information available there reflects the latest technical status of our vehicles.The contents of this brochure are not updated and no provision is made for supplements. We will publicize modifications and new features in the relevant WIS documents. The information presented in this system description may therefore differ from the more up-to-date information found in the WIS.All the information relating to specifications, equip-ment and options is valid as of the copy deadline in March 2009 and may therefore differ from the current production configuration.Daimler AGTechnical Information and Workshop Equipment (GSP/OI)IntroductionO v e r v i e wb System Description of Hybrid Concept in S 400 HYBRIDThe new Mercedes-Benz S 400 HYBRID is based on the S 350 but its drivetrain has undergone significant modification. The modifications include the further developed 3.5-liter V6 gasoline engine, the additional permanently energized synchronous motor, the 7-speed automatic transmission (7G-TRONIC) which has been specially designed to accommodate the hybrid module, the required power and control elec-tronics, the voltage converter and the lithium-ion battery.The compact hybrid module consists of a disk-shaped electric motor, which also serves as a starter and high-voltage alternator. The system has two advantages: on the one hand, it helps to save fuel and, on the other, it increases driving pleasure. One reason for this is the "boost effect", whereby the electric motor powerfully supports the combustion engine in the high-consump-tion acceleration phase. The driver benefits from the interaction of the two major assemblies in the form of an even more impressive torque curve and superior power development every time the vehicle starts off or accelerates.The hybrid module is also equipped with a convenient start-stop function which shuts off the engine when the vehicle is stopped e.g. at traffic lights. When it is time to drive on, the electric motor starts the combus-tion engine almost unnoticeably and very comfortably. This also makes a contribution to fuel economy and protecting the environment because the engine starts almost immediately with the first ignition. This means that the emissions are also minimized during the start-up phase.When the vehicle decelerates, the electric motor oper-ates as a high-voltage alternator and is able to recover braking energy through the "regenerative braking" process. In doing so, the electric motor works harmo-niously to support the engine braking effect of the combustion engine and the conventional wheel brakes in a seamless series of steps. The recovered energy is stored in a high-performance compact lithium-ion battery for later usage as required. The "major assembly coordinator" integrated in the engine control unit is responsible for managing the hybrid drive system with its energy management and torque coordination modules.i Why a hybrid?The automobiles of the future will be increasingly influenced by the following factors:•Limited natural resources•Long-term rises in energy prices•Legal stipulations on environmental compati-bility and CO 2 emissions•Changes in purchasing behavior in favor of more environmentally friendly and economical vehiclesi NoteOnly trained workshop staff (electrical technician for high-voltage on-board electrical systems in motor vehicles) may carry out work on a high-voltage on-board electrical system.IntroductionO v e r v i e wSystem Description of Hybrid Concept in S 400 HYBRID The S 400 HYBRID is equipped with a parallel hybrid drive. With this drive system, both the combustion engine and the electric motor are mechanicallyconnected to the drive wheels (parallel connection of engine and motor).The power supplied by the electric motor and the engine can be added together, which means that the individual power ratings of both can be kept lower. It is not possible to drive the vehicle solely using theelectric drive system.Overview of drive concept 112V alternator2Internal combustion engine 3Electric motor47-speed automatic transmission (7G-TRONIC)5Power electronics module 6High-voltage battery module 7DC/DCconvertermodule 812 V batteryIntroductionO v e r v i e wb System Description of Hybrid Concept in S 400 HYBRIDView of vehicle from right frontDesignationMarket launchModel designation W 221/V 221Engine TransmissionS 400 HYBRIDECE 06/2009Japan 08/2009 USA 09/2009China 09/2009221.095/221.195272.974722.950IntroductionO v e r v i e wOverview of hybrid components 1High-voltage battery module 2DC/DCconvertermodule 3Power electronics module 4Electric motor 5Pedal assembly 6RBS brake booster7Electric vacuum pump8Electric refrigerant compressor 9Low temperature cooler10Low-temperature circuit circulation pump 11Electrohydraulic power steering12Hydraulic unit with regenerative braking system control unitTechnical dataO v e r v i e wUnitS 400 HYBRIDCombustion engine Rated output at engine speed kW (hp)rpm 205 (279)6,000Rated torque at engine speed Nm rpm 3502,400 – 5,000No. of cylinders —6Displacement cm 33,498Max. rpm rpm 6,500Compression ratio —10.7:1Valves per cylinder —4Mixture formation—Microprocessor-controlled gasoline injectionwith hot film mass air flow sensorPower transmission Drive—Rear wheel drive Automatic transmission —7G-TronicElectric motor Type Permanently energized synchronous motorRated output kW (hp)15 (20)Rated torque at engine speed Nm rpm 1601,000Max. starting torque Nm 215Rated voltageVolts126Technical dataO v e r v i e wUnitS 400 HYBRIDHigh-voltage battery Type Lithium-ion battery Rated voltage V 126 (35 cells x 3.6V)Capacity Ah 7Weightkgapprox. 28Combustion engine and hybrid module combined Rated output at engine speed kW (hp)rpm 220 (299)6,000Rated torque at engine speed Nm rpm3852,400 – 4,000Performance Maximum speed km/h 250Accelerationfrom 0 to 100 km/h s 7.2Fuel consumption 1l/100 km 7.9CO 2 emissions 1g/km186Weight penalty of hybrid components Electric motor kg 20High-voltage battery kg 28Power electronics 2kg 8DC/DC converter 2kg3.21As per NEDC cycle2 Without wiring harnessTechnical dataO v e r v i e wA1Instrument cluster A1p13Multifunction displayA9/5Electric refrigerant compressor A40/3COMAND controller unit A79Electric motorA89DTR controller unit (with DISTRONIC PLUS or adaptive cruise control)A91/1Electrohydraulic power steeringA100b2High-voltage battery cell temperature sensors A100g1High-voltage battery A100s1Protection switch A101Tank leak diagnostic moduleB10/13Low-temperature circuit temperature sensor B37Accelerator pedal sensor CAN BInterior CAN CAN C Drivetrain CAN CAN D Diagnostic CAN CAN E Chassis CAN CAN F Central CANCAN H Vehicle dynamics CAN CAN I Drivetrain sensor CAN K88Pyrotechnical separatorK108Circulation pump relay 1 (power electronics)K108/1Circulation pump relay 2 (power electronics)L6/1Left front rpm sensor L6/2Right front rpm sensor L6/3Left rear rpm sensor L6/4Right rear rpm sensorTechnical dataO v e r v i e wM13/8Circulation pump 1 (power electronics)M3Fuel pumpM13/9Circulation pump 2 (power electronics)M42Additional electric transmission oil pump N2/7Restraint systems control unit N3/10ME-SFI [ME] control unitN10/1Front SAM control unit with fuse and relay moduleN22/1AAC [KLA] control unitN30/6Regenerative braking system (RBS) control unit N62/1Radar sensors control unit (SGR)(with DISTRONIC PLUS or adaptive cruise control)N73EZS control unitN82/2 Battery management system control unit (BMS)N83/1 DC/DC converter control unit N89 Additional transmission oil pump control unit N93Central gateway control unit N118Fuel pump control unitN129/1Power electronics control unit S9/3Hybrid brake light switchS62/51Hybrid engine hood contact switch X11/4Data link connector Y3/8Electric controller unit (VGS)Y130Engine oil pump valveDisplay conceptO v e r v i e wThe current power flows of the various driving modes of the hybrid drive can be displayed on the display unit of the COMAND system.In driving mode , power flows only from the combus-tion engine to the rear axle.In acceleration mode , power flows from the combus-tion engine and from the electric motor to the rear axle. The high-voltage battery supplies power to the electric motor, which then generates drive torque to support the torque produced by the combustionengine.Acceleration modeDriving modeDisplay conceptO v e r v i e wIn alternator mode , power flows from the rear axle to the electric motor. The kinetic energy of the vehicle is converted into electrical energy by the electric motor. The electric motor acts as a high-voltage alternator and charges the high-voltage battery.Alternator modeDisplay conceptO v e r v i e wA consumption bar chart shows the fuel consumption and the electrical energy generated.Display of fuel consumption and energy balanceA Fuel consumption over last 15 minB Display of energy recovered by high-voltage battery in last 15 minDisplay conceptO v e r v i e wThe energy flows during the various operating modes and the current charge level of the high-voltage battery can also be displayed on the instrument cluster.The message "READY" is output as soon as the hybrid drive system is operational.When the ECO start-stop function is available, the green READY indicator lights up.When the ECO start-stop function is temporarilyunavailable, the yellow READY indicator lights up.i Charge indicatorThe charge level of the high-voltage battery shown on the instrument cluster and COMAND system is an adjusted figure which only represents the battery capacity which is actually available. The actual charge level of the high-voltage battery in terms of the SOC (State of Charge) can be read out via the Diagnosis Assistance System (DAS).Instrument cluster displaysEngineS u b s y s t e m sEngine 272.974 has been modified and optimized for the hybrid drive. The output has been increased by 5kW through the use of new cylinder heads, modified camshafts with a different camshaft control system and different pistons.The use of the Atkinson principle increases thethermal efficiency and lowers specific fuel consump-tion. This improves consumption under partial-load conditions.The rotor of the electric motor is connected directly to the crankshaft and positioned between the engine andautomatic transmission.View of engine from right rear 1Electrical plug connection 2UVW screw connection A79Electric motorL20Rotor position sensori NoteThe Atkinson principle optimizes the valve timing by briefly opening the intake valves between the intake and compression phase. This makes the expansion phase longer than the compression phase.EngineS u b s y s t e m sPerformance graph A Combustion engine output B Maximum combined output(electric motor and combustion engine)CMaximum boost outputTorque diagramA Combustion engine torqueB Maximum combined torque(electric motor and combustion engine)C Maximum boost torqueElectric motorS u b s y s t e m sThe disk-shaped electric motor is a permanently ener-gized synchronous motor which is installed between the combustion engine and automatic transmission. It performs the function of a starter and high-voltage alternator. This design is also referred to as an inte-grated starter-alternator.The electric motor acts as a damping element to reduce drive/torsional vibrations. Depending on the operating mode, the electric motor can apply torque in the direction of rotation of the crankshaft in order to start the combustion engine (drive mode ) or apply torque in the opposite direction to the rotation of the crankshaft in order to charge the high-voltage battery (alternator mode ). During start-off, the electric motor supports the combustion engine (boost mode) and, during brake application, part of the braking energy is converted into electrical energy (regenerative braking).Switching between the individual operating modes (motor mode/alternator mode) is controlled by the power electronics control unit. The power electronics are connected to the three power connections of the electric motor by three busbars. The three-phase currents are regulated depending on the operating mode and rotor position. These phase currents generate a magnetic field which, together with the field of the rotor, generates torque to produce rota-tional movement.Sectional view 1Stator carrier2Rotor with increment ring and position sensor track 3Intermediatehousing 4Stator with coils5Electric screw connection and temperature sensor couplingL20Rotor position sensorElectric motorS u b s y s t e m sInformation about the current rotor position isrequired in order to regulate the electric motor. For this purpose, the rotor position sensor supplies an amplitude signal even when the electric motor is stationary and forwards this to the power electronics control unit so that angle can be calculated and the rotational speed derived from this. A temperature sensor integrated in the stator winding records the temperature of the winding and transmits this to the power electronics control unit as a voltage signal. If a certain temperature threshold is exceeded, appropriate power limitation functions are activated in the power electronics in order to protect the electricmotor from overheating.Exploded view 1Stator with coils1/1Electric screw connection and temperature sensor coupling 2Stator carrier3Rotor with increment ring and position sensor track 4Intermediatehousing B70Crankshaft Hall sensor L20Rotor position sensorAutomatic transmissionS u b s y s t e m sThe S 400 HYBRID is equipped with a 7-speed auto-matic transmission (7G-TRONIC). The transmission has been modified for the hybrid drive system. Along with new software for transmission control, an addi-tional electric transmission oil pump is also installed.It is necessary to ensure that oil continues to be supplied to the transmission hydraulics when the engine is off or being restarted as part of the start-stop function in order to prevent any delay between the driver's request to start off and the point when the vehicle actually starts to move.For this reason, the additional electric transmission oil pump supplies oil for the transmission control system when the internal transmission oil pump is shut off because the combustion engine has also beenswitched off.Sectional view of automatic transmission 1Carrierring2Internal transmission oil pump3Additional electric transmission oil pump (M42)Electric refrigerant compressorS u b s y s t e m sIn order to provide adequate cooling output even when the engine has been automatically stopped, the drive system for the refrigerant compressor has to be separated from the combustion engine to provide independent climate control for the vehicle interior and independent cooling for the high-voltage battery. This is achieved by means of an electrically driven refrigerant compressor. This cooling system only operates as required and thus also helps to optimize fuel consumption.The electric refrigerant compressor draws in and compresses the refrigerant (R134a) and pumps the refrigerant through the system. Depending on the evaporator temperature, the electric refrigerant compressor is steplessly regulated by the AAC [KLA] control unit from 800 to 9,000 rpm.The electric refrigerant compressor consists of the following three main groups:•Control unit with integrated power electronics (1)•Electric motor (2)•Spiral compressor (3)The control unit of the electric refrigerant compressor regulates the speed of the electric motor and the quantity of refrigerant. The electric motor drives the spiral compressor. This consists of two spiral coils nested inside each other, whereby the first coil is permanently attached to the housing and the second moves in a circular pattern inside the first. The spiral coils thus touch each other at several points and form a number of chambers of ever decreasing size within the coils. The refrigerant is thus compressed and moves towards the center of these chambers, whereit then exits the spiral in compressed form.View of refrigerant compressor 1Control unit 2Electric motor 3SpiralcompressorPower electronics moduleS u b s y s t e m sThe power electronics control unit is integrated in the power electronics module. This is positioned on the right underneath the exhaust manifold. It is fitted with a heat shield to protect it against thermal radiation.The power electronics control unit supplies the elec-tric motor with three-phase AC voltage upon request. It monitors the temperature of the electric motor as well as performing diagnosis and providing forecastsof the available torque to the ME-SFI [ME] control unit.Design of power electronics module 1Power electronics module212 V plug connection for power electronics control unit 3High-voltage line to high-voltage batteryA Coolant inlet BCoolantoutletDC/DC converter moduleS u b s y s t e m sThe DC voltage converter (DC/DC converter) is located in the right front wheel well. It generates a high DC voltage and a 12 V DC voltage and also allows the exchange of energy between the high-voltage on-board electrical system and the 12 V on-board elec-trical system. High-voltage is converted into 12 V orvice versa.Design of DC/DC converter module 1DC/DC convertermodule2High-voltage plug connection (high-voltage battery)312 V plug connection for DC/DC converter control unit 4Circuit 30 screw connection A Coolant inlet BCoolantoutleti NoteSince battery energy is exchanged between the 12V on-board electrical system and the high-voltage on-board electrical system, it is possible to jump start the vehicle with a 12V jumper cable with the ignition switched on. In other words, a separate high-voltage charger is not required to start the vehicle if the battery has been discharged.Power electronics and DC/DC converter coolingS u b s y s t e m sThe power electronics module and the DC/DC converter module have a common low-temperaturecooling system which is separate from the coolingsystem of the combustion engine. This low-tempera-ture cooling system protects the power electronics module and the DC/DC converter module fromdamage due to overheating. The ME-SFI [ME] control unit records the coolant temperature in the power electronics cooling system by means of the voltage signal from the low-temperature circuit temperature sensor.Depending on the coolant temperature, the ME-SFI [ME] control unit actuates circulation pump relay 1 and circulation pump 1 is switched on. Circulation pump 2 is switched on via circulation pump relay 2. Circulation pump relay 2 is actuated by circuit 15 when the ignition is switched on.The coolant flows through the DC/DC converter module and the power electronics module andabsorbs thermal energy from these components. The coolant then flows through the low-temperature cooler, where it is cooled by the airstream and flowsback to circulation pump 1.Schematic illustration of power electronics cooling circuit 1Expansion tank2Low-temperature cooler 3Power electronics module 4DC/DC converter moduleB10/13Low-temperature circuit temperature sensor M13/8Circulation pump 1M13/9Circulation pump 2AFeed to low-temperature cooler, coolant temperature very high B High coolant temperature C Medium coolant temperature D Return from low-temperature cooler,coolant temperature lowHigh-voltage battery moduleS u b s y s t e m sThe high-voltage battery module is located at the rear of the engine compartment on the right. It protects the high-voltage battery from external heat and provides physical stability. The high-voltage battery module incorporates the high-voltage battery, the battery management system (BMS) control unit and theprotection switch. Refrigerant lines and electrical lines (high-voltage/12 V) can be connected to the high-voltage battery module. The high-voltage battery is a lithium-ion battery, which stores energy for the elec-tric motor.The advantages compared to nickel metal hydride batteries are:•Greater electrical efficiency•Higher energy density and thus lower weight and more compact dimensions The high-voltage battery is connected to the 12 V on-board electrical system via the DC/DC converter so that it can provide support to the 12 V on-board elec-trical system if necessary. The protection switch is actuated by the battery management system (BMS) control unit and internally isolates the high-voltage battery positive and negative terminals from the high-voltage on-board electrical system.Sectional view of high-voltage battery module 112 V plug connection for battery management system control unit2Refrigerant line connections3High-voltage plug connection (power electronics, electric refrigerant compressor)4High-voltage plug connection (DC/DC converter)5Protection switch6Blow-off fitting with membrane and bursting diskA100 High-voltage battery module A100g1High-voltage batteryN82/2Battery management system (BMS) control unitHigh-voltage battery coolingS u b s y s t e m sThe operating temperature of the high-voltage battery must be within a certain range in order to ensure that the charging capacity, number of charging cycles and life expectancy of the high-voltage battery are opti-mized.The battery management system (BMS) control unit evaluates the data from the high-voltage battery cell temperature sensors in order to determine the current high-voltage battery temperature and, if necessary, requests cooling output via the ME-SFI [ME] control unit. The battery management system (BMS) control unit sends the request for cooling to the ME-SFI [ME] control unit via the drive train sensor CAN. This compares the request against the targets of the energy management system and allows actuation of the electric refrigerant compressor.Electric refrigerant compressor actuation is allowed depending on the charge level of the high-voltage battery and the maximum tolerable dischargevoltages/currents. Actuation is first allowed after the vehicle is started with the key and this permission is withdrawn when circuit 15 is switched off.If the energy management system allows actuation, this information is transmitted by the ME-SFI [ME] control unit to the central gateway control unit via the chassis CAN together with the request for cooling output. This approval is forwarded to the AAC [KLA] control unit on the interior CAN, which actuates the electric refrigerant compressor via the CAN network.The air conditioning shutoff valve is opened and the refrigerant flows through the evaporator integrated in the high-voltage battery module. Thermal energy is extracted from the high-voltage battery and battery management system (BMS) control unit.The cooling output is largely dependent on the actua-tion level of the electric refrigerant compressor. When the engine is idling or has been stopped automatically, the output of the electric refrigerant compressor is limited to a maximum of 2kW.The output of the electric refrigerant compressor can also be temporarily (<10 s) reduced right down to 0kW if rapid acceleration is required.。
奔驰S500Hybrid混合动力汽车技术特点

奔驰S500Hybrid混合动力汽车技术特点陈鸣洲;夏征;付贻玮;宋建桐【摘要】S500Hybrid是奔驰首款插电式混合动力汽车,它体现了奔驰未来在插电式混合动力汽车的特点,文章介绍了奔驰S500Hybrid的自动启动和自动停止,以及混合动力系统工作模式.【期刊名称】《汽车实用技术》【年(卷),期】2017(000)001【总页数】2页(P1-2)【关键词】奔驰;混合动力;电驱动【作者】陈鸣洲;夏征;付贻玮;宋建桐【作者单位】北京电子科技职业学院汽车工程学院,北京100176;中油管道检测技术有限责任公司,河北廊坊065000;北京电子科技职业学院汽车工程学院,北京100176;北京电子科技职业学院汽车工程学院,北京100176【正文语种】中文【中图分类】U464.1CLC NO: U464.1 Document Code: A Article ID: 1671-7988 (2017)01-01-02 随着传统燃料的不断消耗,新能源汽车的发展已经是世界各个国家、汽车企业都要面对新的难题、挑战及机遇[1,2]。
目前大部分的汽车企业都陆续推出了自己的混合动力汽车,奔驰作为百年的高档汽车品牌之一,在推出S300、S400等弱混合动力汽车之后,推出了奔驰S500Hybrid插电式混合动力汽车。
对于奔驰来说,这是真正意义上的首款新能源汽车,从电动辅助提速转变为了电动驱动,其具有大容量的高压蓄电池和充电借口。
由于S500Hybrid应用了插电式混合动力驱动技术,混合动力车辆装配了高压系统电压为140V。
发动机电控燃油喷射系统和点火系统的能源管理模块将高压转变为12V电压。
因此,电控燃油喷射系统和点火系统要通过传动系统局域网与发电机进行通信。
当发动机关闭时,12V电仍由高压蓄电池供电,当发动机运转时,有电机供电。
如果电力电子控制单元提供的能量无法满足现有能量要求,则发电机将开启。
在传动系统控制单元中有一个能源管理模块,它负责协调混合动力系统的能量传输,并根据电气因素创建蓄电池管理系统控制单元、电力电子控制单元和电动制冷剂压缩机的接口,为此通过CAN网络与所有相关控制单元传送信息。
新车:奔驰新S极

新车:奔驰新S极作者:黄帅来源:《汽车博览》2013年第06期作为奔驰的旗舰车型,新一代S级集中呈现了奔驰品牌追求完美的造车理念,同时也将整个汽车产业对豪华汽车的认识推向了新的高度。
在新一代S级的制造商奔驰看来:“S级是世界上最好的汽车”。
面对这款刚刚发布的汽车,我们既不会简单地认同这一观点,也不想直截了当地予以否定。
因为面对每一款汽车,无论是达契亚Lodgy,还是兰博基尼盖拉多,都须经历紧急制动测试、动态操控测试、实用性测试以及超过2000公里的油耗测试之后,我们才会给出定义。
当然,凭借ams团队已经看到、了解到的信息,我们可以暂时给出这样的评价:已经发展到第6代的奔驰S级在车身尺寸方面继续、有节制地增长,而在设计、定位方面,新S级的目标似乎并不是简单地超越前代,它的很多细节意在向迈巴赫靠拢。
与此同时,为了满足中国及美国消费者的使用需要,奔驰在研发初期就优先照顾了长轴距款车型。
相比上一代车型,短轴款S级的车身长度由原来的5.10米增长到了5.12米;长轴距款同样如此,其车身长度由5.23米增长到了5.25米。
之所以保持相对克制的水平,或许是因为:长轴距款S并非奔驰的终极目标,在它之上,奔驰还将推出一款XL号S级。
凭借大约5.40米的车身长度,XL号S级的车内空间已经逼近之前的入门款迈巴赫。
除此之外,奔驰还将基于S级推出车身造型更为饱满流畅的大型双门轿跑车CL。
与此同时,砍掉车顶的CL还将与来自英伦的大型敞篷跑车一争高下。
伴随车身尺寸的增长以及舒适性配置的增加,降低油耗成为奔驰研发团队的首要难题。
对此,奔驰又一次将空气动力学设计锁定为降低油耗的突破口。
单就这一点而言,S级或许已经满足了“世界上最好的汽车”的要求。
相比风阻系数为0.27的上一代车型,奔驰将普通S级的风阻系数降低到了0.24,S 300 Bluetec Hybrid的风阻系数甚至达到了0.23的水平。
而同时代的A8、7系的风阻系数分别为0.27及0.28。
奔驰48V轻混系统技术特点及典型故障两例(下)

44-CHINA ·May点评(接上期)故障现象一辆2021款奔驰S400L,搭载256 930型发动机,VIN 码为W1K2231591A00****,行驶里程为15 478km。
车主反映,该车停放数小时后,再次启动时车辆无反应,且仪表台上出现48V蓄电池故障的标识。
故障诊断与排除该车装配带集成式启动发电机的6缸火花点火型发动机M256 (ISG1),排量为3.0L,输出功率为270+16kW,发动机通过涡轮增压器进行增压。
第 1 代集成式启动发电机 (ISA) 可通过助力,在短时间内产生额外的16kW输出功率。
在超速运转模式下,超过80%的蓄电池能量可返回蓄电池中(能量回收)。
带集成式启动发电机 (ISA) 的48V车载电气系统还可启用其他功能,如预进入智能气候控制或无声启动(即几乎察觉不到发动机启动)。
另外,集成式启动发电机(ISA)还可调节怠速状态。
超速运转模式中,发动机可能会完全关闭,也可配合使用 DISTRONIC 主动式车距辅助系统。
M256发动机集成了48V电气化(轻混)系统,属于P1混动结构,带智能启动发电机的车载电气系统。
该系统包含一个直接安装在曲轴上的集成式启动发电机ISG(Integrated Starter Generator)。
P1混动系统的结构如图13所示。
奔驰48V轻混系统2021款奔驰S400L发动机无法启动Copyright 博看网 . All Rights Reserved.452022/05·汽车维修与保养此款发动机首次应用在车型 222(S级轿车)的改款车型中,开发时已将48V车载电气系统考虑在内,因此,省去了皮带驱动,这也成为了奔驰首款没有传动皮带的发动机。
12V发电机和12V启动机被集成式启动发电机(ISA)所取代,ISA位于内燃机和变速器之间。
除了具有发电机的功能外,也可使用来自48V车载电网蓄电池的能量生成扭矩以辅助内燃机,ISG和48V车载电网蓄电池的高输出功率,可让驾驶者几乎无法感知发动机的启动。
奔驰s400hybrid混合动力故障检测

奔驰s400hybrid混合动⼒故障检测奔驰s400hybrid混合动⼒故障检测摘要随着现今社会能源⽇益紧张、空⽓⽇渐污浊的情况下,⼈们越来越注重⾃⼰⽣活的环境质量好坏,⽽混合动⼒汽车⼀种节能,低碳排放的交通⼯具,因此在不久将来其⼀定会成为消费者热衷的车型,然⽽由于混合动⼒汽车的复杂程度较传统汽车相⽐有较⼤的难度,因此其检测维修也对维修⼈员提出较⾼要求,本⽂对混合动⼒汽车的检测与维修进⾏了简单的概述,并对奔驰s400hybrid车型的检测与维修⽅法进⾏简单的介绍。
关键词:驰s400hybrid;混合动⼒汽车;检测;维修⽬录1.引⾔ (3)2 混合动⼒汽车概述 (4)2.1 混合动⼒汽车概念 (4)2.2 混合动⼒汽车的特点 (4)2.3 混合动⼒汽车的分类 (5)3 混合动⼒汽车故障诊断概述 (6)3.1 汽车故障诊断的定义 (6)3.2 汽车故障诊断的⽅法及特点 (6)4 混合动⼒汽车各动⼒元件的故障诊断 (7)4.1 发动机的故障诊断 (7)4.1.1 发动机故障诊断技术的应⽤ (7)4.1.2 发动机的故障分类和分析 (8)5.奔驰s400hybrid混合动⼒汽车故障的检测 (9)5.1奔驰s400hybrid混合动⼒汽车检测维修需注意的事项 (10)5.2 奔驰s400hybrid混合动⼒汽车动⼒控制系统检测与维修 (10)5.3 奔驰s400hybrid混合动⼒汽车电池系统的检修 (10)6.结语 (11)参考⽂献 (12)1.引⾔汽车故障诊断与检测技术是随着汽车的发展从⽆到有逐渐发展起来的⼀门技术。
国外的⼀些发达国家,早在 20 世纪 40~50年代就发展成为以故障诊断和性能调试为主的单项检测技术。
进⼊ 60 年代后,故障诊断与检测技术获得较⼤的发展,逐渐将单项检测技术联线建站(出现汽车检测站),演变成为既能进⾏维修诊断,⼜能进⾏安全环保检测的综合检测技术。
随着电⼦技术的发展, 70 年代出现了检测控制⾃动化、数据采集⾃动化、数据处理⾃动化、检测结果⾃动打印的现代故障检测技术,检测效率极⾼。
梅赛德斯-奔驰S级轿车车书S-Class

传奇之路,再度启程自问世以来,梅赛德斯—奔驰汽车始终向世人展现着豪华轿车的精髓,并为众多极具品位且追求卓越的爱车人士带来了无限激情。
S级轿车的辉煌历史始于1951年——搭载6缸发动机的梅赛德斯—奔驰220车型,在首届法兰克福国际车展上耀世登场。
该车型虽然是首次亮相,但凭借其高水准的配备和优异的性能,很快赢得了公众的瞩目。
1972年,第一款S级车型(W116)面世,这是豪华轿车市场上极具代表性的梅赛德斯—奔驰正式车型。
卓越的舒适性、创新的技术以及全面的安全性是豪华轿车长久以来的标志性特征。
溃缩区、防抱死制动系统(A B S)、气囊以及电控稳定程式(E S P®)——这些汽车发展史上前所未有的创新技术,被成功地首先应用于S级轿车之上,并且早在其它车型相继采用之前就已深入人心,成为汽车发展史上的里程碑。
概览7动力|经典性能与强劲加速的完美融合S级轿车在不动声色间,就已展现了强劲的动力,带来真正的震撼感受,这也将成为未来汽车产业的标准。
降低S级轿车的燃油消耗量和二氧化碳排放量,开发智能混合动力发动机绝不只是一种理想,现在我们已经将其变为现实。
优雅|让每条道路都熠熠生辉每段路程都不尽相同,时而宽阔、平坦、独特,时而崎岖、偏僻、狭窄。
若想始终以轻松的心态,品味旅途中的舒适惬意,S级轿车就是您绝佳的选择。
概述9概述11沉静|全身心的放松均匀的呼吸、平稳的脉搏和清晰的思维是镇静沉着的驾驶方式的内在表现。
当您驾驶时,包括上百个传感器和无数电子系统在内的外部辅助系统同时为您提供安全保障,避免种种风险。
概述13座椅|与舒适一路同行人类用两条腿学走路时,身体演化为完美的“步行机”。
而现代科技使直立行走的人类演变成惯于久坐的生物,这意味着如何使坐姿尽可能轻松自然变得更为重要。
例如,采用符合人体工程学的主动式座椅。
旅行|世界尽收眼底有人说,要想欣赏真正的美景,就要融入到自然之中。
曾经,人们还在依赖非机动化的出行装备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
德系豪华油电混合动力-奔驰S400-Hybrid
德系豪华油电混合动力奔驰S400 Hybrid
第二次世界大战结束之后,长期处于战争状态的人们急于重建美好的生活,而很多生产武器的兵工厂也逐步转化为生产民用机械,一直作为德国军用车的梅赛德斯-奔驰也是如此,在保留四驱车优势的同时开发更豪华更舒适的高端轿车。
发展至今梅赛德斯-奔驰已经推出的是第九代,在全新改款后的九代S级推出了首款德系的油电混合动力车型-S400 Hybrid。
在了解它之前我们先来看看S级的进化史,从中网我们来看什么是传承……
1945年第二次世界大战结束之后,欧洲人忙于建设家园,改变自己的生活,大家工作非常积极,1951年便推出了第一款奔驰S级轿车,此时Ponton后轮眉设计已经出现,直至第九代上沿袭了这一经典。
人们对美好生活的向往,很快3年后就退出了第二代奔驰S级轿车,虽然平台同为W187,但是更多的豪华配置增加,同时四门设计也是首次出现。
1959年受美国车外形设计的影响,奔驰也推出了火箭式尾部的S级轿车,同时这一设计也提高了尾部安全性,此年奔驰提出了吸能区的理念。
四速自动变速器和空气悬挂在这一代S级上已经成为标配。
从第三代开始奔驰按照8年一换代的规律更新S级轿车。
1965年,欧洲人不喜欢美国人的张扬,内敛低调重新回到了S级的设计当中,第四代S 级轿车首次配备V8 6.3升发动机。
1971年第五代S级开始有了翻天覆地的变化,中网高度被压缩,创新性的双横臂式前悬挂以及零偏距转动和防俯冲装置首次成为标准配备,同时世界上首款配备ABS的汽车诞生。
1979年法兰克福车展
上,第六代S级轿车大放异彩,安全气囊成为当时S级最大的亮点,也是最早配备安全气囊的量产车。
时间直接跨入年代,1991年第七代奔驰S 级是我们最熟悉的一代,这一代开始奔驰不但重新规划了产品型号的名称,同时制动辅助系统BAS也开始投入应用,被国人称为“虎头奔”的七代S级赢得了非常大的亚洲市场,也推出了首款V12发动机,这款能够代表身份和地位的车型,在欧洲遭遇了冷水,欧洲人并不喜欢这大家伙,而是更希望S级能够内敛、运动。
于是第八代S级彻头彻尾的变了样,1998年第八代S级上市,而这一代S级在欧洲得到好评的同时,丢失了亚洲和北美市场的标杆。
应用了30多项创新技术成果,当之无愧的再次成为轿车设计的潮流引领者。
这些技术包括自动气缸关闭(在需要时将S 500的8缸发动机转变为4缸发动机),DISTRONIC限距控制系统以及2001年推出的、使梅赛德斯-奔驰进入汽车安全新纪元的
PRE-SAFE驾驶员及乘客预防性安全系统。
2005年之前,奔驰的设计师一直苦于如何将欧洲人喜欢的运动内敛,与亚洲和北美地区喜欢的地位感相融合,这一年第九代S级在这两者之前诞生了。
COMAND系统将车身科技于一身,一个鼠标键即可控制全车设备。
2009年,第一款德系的油电混合动力车型S400 Hybrid诞生了
2009款梅赛德斯-奔驰S级在国内一共推出了5款车型,S300、S350、S500、S600以及
S400Hybrid 混合动力。
售价从93万-259.8万不等。
其中最招人眼目的就是S400 hybrid混合动力车型。
小改款S级最大变化则是增加了日间行车灯,大灯总成有所调节,将示宽灯和转向灯融合为LED并安排在了同一位置,夜间行驶时双排的LED非常漂亮。
尾部设计没有大的改变依旧是迈巴赫的元素,只不过原来与车身同色的尾灯饰条消失了,一体的尾灯显得不那么精致,红色也觉得比较庸俗,如果换成樱桃红那就更美了。
油电混合动力车型如今已经不是什么新鲜玩意儿了,起步最早的日本厂商早已量产了油电混合动力车,而作为欧洲主流豪华车,如果翻版日本的混合动力技术显得有些够不上星辉的身份。
从PPT上看,奔驰S400 Hybrid 属于技术相对简单的轻度混合动力,这样肯定不行。
我们看到丰田以及其他品牌的油电混合动力车型,在电池上一直是个头疼的问题,镍氢电池体积大,重量沉,占据了很大的空间。
奔驰首次采用了与手机、游戏机相同的锂电电池,大小相当于两个铝制饭盒的大小。
而电动机动力来源则与变速箱融为一体,电磁线圈位于发动机和变速箱之间,便于吸收刹车能量和释放电能。
这样变尽可能小的改变车身构造,同时也降低了成本。
起初,车辆在滑行中,轻微刹车,这时四轮的刹车系统是不工作的,而是依靠电子线圈来减速,同时吸收刹车动能转化为电能储存在电池中,之后在深度刹车后,刹车片才会抱紧刹车盘进行常规刹车,同时车辆在低于10公里时速时会熄火至停车,当松开刹车后发动机会迅速启动,踩油门的同时电池会全力带动电动机设备输出最大扭矩来推动车辆。
除了熄火外,似乎这套系统与F1的KERS系统相同。
其实F1进入混合动力的时代比奔驰要早。
而汽油机方面,S400 hybrid采用的3.5L V6直喷发动机,这与S350的配置相同,不同的时它还附加了15KW、160Nm的电动机,使其在起步时可以达到4.0升发动机的效果,从而称作S400也不足为奇。
S级改款之后,另一项创新科技则是它的前排液晶屏幕,经常会有人抱怨,这么豪华的车,坐在前排副驾驶的人不能够享受5.1声道的影音效果,只能与司机闲聊天,因为前排屏幕在车辆形式状态下,处于安全是关闭视觉系统的。
而小改款S级的分屏显示改变了这一点,分屏显示并不是将屏幕分成两部分,则是在两个不同的角度看屏幕是完全不同的内容。
车辆行驶时,司机的视角只能看到导航或者行车电脑显示,而副驾驶则可以与后排乘员共享
影音,如图所示,司机角度看到的是行车电脑,副驾驶则在看大片。
这技术岂不更苦了司机了……
从本质上讲,轻度混合动力在节油方面效果并不是非常显著的,相比强度混合动力这只是基础,而如果将轻混配置在大排量车上的话,节油怎是显著的。
我相信对于科技永远都要走在别人前面的奔驰来说,S400 hybrid只是一个开端,证明奔驰已经打开了新动力的篇章,未来发展如何我们拭目以待。