第三节氧化磷酸化
合集下载
有氧呼吸及三羧酸循环

第三节
糖的有氧氧化
Aerobic Oxidation of Glucose
• 葡萄糖在有氧条件下,彻底氧化成水和 CO2的反应过程称为有氧氧化。这是糖 氧化的主要方式。
一、有氧氧化的反应过程
分为三个阶段:
胞液
第一阶段
G
丙酮酸
(同酵解)
线粒体
第二阶段
丙酮酸
乙酰CoA
三羧酸循环 第三阶段 氧化磷酸化
以乙酸为主要食物的细菌
(物质循环中的重要一环)
乙酰CoA合成酶
乙酸 + ATP +CoASH → 乙酰CoA + H2O +AMP +PPi
3.磷酸戊糖途径(磷酸己糖支路)
• 磷酸戊糖——磷酸戊糖为代表性中间产物。 • 支路——糖酵解在磷酸己糖处分生出的新途径。
2
磷酸戊糖 途径
细胞质中
A.过程 氧化阶段(脱碳产能)
lipoic acid
COOH
+2H -2H
H2 C
H2C
CH (CH2)4 COOH
SH
SH
dihydrolipoic acid
辅酶A结构
OH CH3
OH OH
HS CH2CH2NH C CH2CH2NH C C C CH2 O P O P O
O
O H CH3
OO
3'AMP
巯基乙胺 β -丙氨酸
•酪氨酸
琥珀酰CoA → 血红素
•亮 赖氨 氨既酸 酸 是“焚苹果烧酸 炉又是百宝琥库珀酰”CoA苯丙氨酸
色氨酸
三羧酸循环
延胡索酸
酪氨酸
(2)乙醛酸循环——三羧酸循环支路
CoASH
糖的有氧氧化
Aerobic Oxidation of Glucose
• 葡萄糖在有氧条件下,彻底氧化成水和 CO2的反应过程称为有氧氧化。这是糖 氧化的主要方式。
一、有氧氧化的反应过程
分为三个阶段:
胞液
第一阶段
G
丙酮酸
(同酵解)
线粒体
第二阶段
丙酮酸
乙酰CoA
三羧酸循环 第三阶段 氧化磷酸化
以乙酸为主要食物的细菌
(物质循环中的重要一环)
乙酰CoA合成酶
乙酸 + ATP +CoASH → 乙酰CoA + H2O +AMP +PPi
3.磷酸戊糖途径(磷酸己糖支路)
• 磷酸戊糖——磷酸戊糖为代表性中间产物。 • 支路——糖酵解在磷酸己糖处分生出的新途径。
2
磷酸戊糖 途径
细胞质中
A.过程 氧化阶段(脱碳产能)
lipoic acid
COOH
+2H -2H
H2 C
H2C
CH (CH2)4 COOH
SH
SH
dihydrolipoic acid
辅酶A结构
OH CH3
OH OH
HS CH2CH2NH C CH2CH2NH C C C CH2 O P O P O
O
O H CH3
OO
3'AMP
巯基乙胺 β -丙氨酸
•酪氨酸
琥珀酰CoA → 血红素
•亮 赖氨 氨既酸 酸 是“焚苹果烧酸 炉又是百宝琥库珀酰”CoA苯丙氨酸
色氨酸
三羧酸循环
延胡索酸
酪氨酸
(2)乙醛酸循环——三羧酸循环支路
CoASH
植物生理学:第4章 植物的呼吸作用-续3

➢ 生长活动已停止的成熟组织或器官,除一部分用于维持 细胞的活性外,有相当部分能量以热能形式散失掉,因 而呼吸效率低。
4
➢ 根据上述情况可把呼吸分为两类:
①维持呼吸-用以维持细胞的活性的呼吸。 相对稳定的,每克干重植物约消耗15~20mg葡萄糖。
②生长呼吸-用于供生长发育所需要的呼吸。 如生物大分子的合成,离子吸收等。植株幼嫩生长活跃
20 ℃左右。经36—48小时,就可达到催芽要求(芽长半 粒谷,根长一粒谷)。晾芽以后就可播种。
16
种子播种过深或长期淹水 缺氧,会影响正常的有氧呼 吸,对物质转化和器官的形 成都不利,特别是根的生长 和分化会受到明显的抑制。
油料种子萌发时,耗氧多,呼吸商小,所以更需要注意 浅播,保证O2的供应。 有不少种子在萌发早期或吸胀过程中都表现出抗氰呼吸 的存在。这可能与提高种子温度加快萌发时的物质代谢有 关。
第4章
植 物 的 呼 吸 作 用
第一节 呼吸作用的概念及生理意义
第二节 呼吸代谢途径的多样性 第三节 电子传递与氧化磷酸化
一、电子传递链 二、氧化磷酸化 三、呼吸链电子传递途径的多样性 四、末端氧化酶的多样 五、抗氰呼吸及生理意义 第四节 呼吸作用中的能量代谢 第五节 呼吸作用的指标及影响因素 第六节 呼吸作用与农业生产
2、呼吸途径 种子成熟过程呼吸途径也发生变化。水
稻植株在开花初期籽粒的呼吸途径以EMT-TCAC途径 为主,以后随着种子的成熟,PPP途径加强。
7
(二)种子的安全贮藏与呼吸作用
干燥种子的呼吸作用与粮食贮藏有密切关系
含水量很低的风干种子呼吸速率微弱, 为什么?
➢ 一般油料种子含水量在8%~9 %、淀粉种子含水量在12%~ 14%以下,种子中原生质处于 凝胶状态,呼吸酶活性低,呼 吸极微弱,可以安全贮藏,此时 的含水量称之为安全含水量。
4
➢ 根据上述情况可把呼吸分为两类:
①维持呼吸-用以维持细胞的活性的呼吸。 相对稳定的,每克干重植物约消耗15~20mg葡萄糖。
②生长呼吸-用于供生长发育所需要的呼吸。 如生物大分子的合成,离子吸收等。植株幼嫩生长活跃
20 ℃左右。经36—48小时,就可达到催芽要求(芽长半 粒谷,根长一粒谷)。晾芽以后就可播种。
16
种子播种过深或长期淹水 缺氧,会影响正常的有氧呼 吸,对物质转化和器官的形 成都不利,特别是根的生长 和分化会受到明显的抑制。
油料种子萌发时,耗氧多,呼吸商小,所以更需要注意 浅播,保证O2的供应。 有不少种子在萌发早期或吸胀过程中都表现出抗氰呼吸 的存在。这可能与提高种子温度加快萌发时的物质代谢有 关。
第4章
植 物 的 呼 吸 作 用
第一节 呼吸作用的概念及生理意义
第二节 呼吸代谢途径的多样性 第三节 电子传递与氧化磷酸化
一、电子传递链 二、氧化磷酸化 三、呼吸链电子传递途径的多样性 四、末端氧化酶的多样 五、抗氰呼吸及生理意义 第四节 呼吸作用中的能量代谢 第五节 呼吸作用的指标及影响因素 第六节 呼吸作用与农业生产
2、呼吸途径 种子成熟过程呼吸途径也发生变化。水
稻植株在开花初期籽粒的呼吸途径以EMT-TCAC途径 为主,以后随着种子的成熟,PPP途径加强。
7
(二)种子的安全贮藏与呼吸作用
干燥种子的呼吸作用与粮食贮藏有密切关系
含水量很低的风干种子呼吸速率微弱, 为什么?
➢ 一般油料种子含水量在8%~9 %、淀粉种子含水量在12%~ 14%以下,种子中原生质处于 凝胶状态,呼吸酶活性低,呼 吸极微弱,可以安全贮藏,此时 的含水量称之为安全含水量。
生物化学及分子生物学(人卫第九版)-06-01节生物氧化

递电子体
递氢体
线粒体氧化体系的递氢体和递电子体
水溶性辅酶或辅基: NAD+ /NADH, NADP+/NADPH 为双电子传递体
功能基团:芳环中五价氮和三价 氮间的变化
线粒体氧化体系的递氢体和递电子体
水溶性辅酶或辅基:FAD/FADH2, 为单双电子传递体 结构中含核黄素 FMN/FMNH2
复合体IV的电子传递过程
复合体IV的CuB-Cyta3将电子传递给O2、生成水
二、NADH和FADH2是呼吸链的电子供体
NADH和FADH2是线粒体呼吸链的电子供体,形成两条呼吸链
1、NADH氧化呼吸链 NADH →复合体Ⅰ→CoQ →复合体Ⅲ→Cyt c →复合体Ⅳ→O2
2、琥珀酸氧化呼吸链 琥珀酸 →复合体Ⅱ →CoQ →复合体Ⅲ→Cyt c →复合体Ⅳ→O2
复合体Ⅱ:琥珀酸-泛醌还原酶,即三羧酸循环中的琥珀酸脱氢酶
电子传递:琥珀酸→FAD→几种Fe-S →Q
复合体Ⅱ:无H+泵的功能
(三)复合体Ⅲ将电子从还原型泛醌传递给细胞色素c
复合体Ⅲ:泛醌-细胞色素C还原酶 人复合体Ⅲ含有 Cyt b(b562, b566)、Cyt c1和一种可移动的铁
辅基:铁硫中心(Fe-S)含铁离子和硫原子 通过 Fe2+ ⇌ Fe3++e- 反应传递电子
单电子传递体
Fe-S
Fe2S2
Fe4S4
线粒体氧化体系的递氢体和递电子体
细胞色素蛋白 (cytochrome , Cyt)
含血红素样辅基的蛋白质
分Cyt a、b、c 及不同的亚类
细胞色素a,b,c 结合的血红素辅基
小结
氧化磷酸化: 在线粒体完成氧化与磷酸化的偶联过程
(武大张楚富版生化原理)第十一章.电子传递与氧化磷酸化

复合物 III
细胞色素 C还原酶
Cyt c
Cyt aa3
复合物 IV
细胞色素C
氧化酶
30
O2
电子传递链的顺序:
FADH2 (-0.06)
NADH -0.32
FMN -0.30
CoQ 0.04
Cytb 0.07
Cytc1 0.22
Cytc Cytaa3 O2 0.25 0.29 0.55 0.82
31
1978年获诺贝尔化学奖
3、质子梯度的形成 4、ATP合酶与ATP合成的机制
38
化学渗透假说
(chemiosmotic hypothasis)
膜间隙
电子传递的自由能
驱动H+从线粒体基质
跨过内膜进入到膜间 隙,从而形成H+跨线
H+
e-
内膜
基质
底物 电子传递链
H+
粒体内膜的电化学梯
度,这个梯度的电化
学势( ΔH+ )驱动
CH3
CH2 (CH2 CH C CH2)3 H
HO CH
CH3
H3C
NN
CH CH2
Fe
O
NN
HC
CH3
CH2 CH2 COOH
CH2 CH2 COOH
Cyta辅基
CH2 CH
CH3
H3C
NN
CH CH2
Fe
NN
H3C
CH3
CH2 CH2 COOH
CH2 CH2 COOH
Cytb辅基 21
蛋白质
ATP的形成与电子传递偶联
ATP的形成与底物的磷酸基的转移偶联
34
(二)磷氧比( P/O ) p344
生物氧化和氧化磷酸化

此过程中既不会因氧化过程中能量骤然释放而伤害
机体,又能使释放的能量尽可得到有效的利用。
18
生物氧化与体外氧化之相同点:
☆生物氧化中物质的氧化方式有加氧、脱氢、 失电子,遵循氧化还原反应的一般规律。 ☆都服从热力学规律。 ☆物质在体内外氧化时所消耗的氧量、最终产 物(CO2,H2O)和释放能量均相同。
10
c)
烯醇式磷酸化合物
COOH O C O CH2 P O O
磷酸烯醇式丙酮酸
14.8千卡/摩尔
11
② 氮磷键型
O NH N CH3 CH2COOH
磷酸肌酸 10.3千卡/摩尔
O NH N CH3 P O NH2 C NH O CH2CH2CH2CHCOOH
磷酸精氨酸 7.7千卡/摩尔
P O
C NH O
第六章 生物氧化
Biological Oxidation
第一节 生物能学简介
第二节 生物氧化概述 第三节 线粒体电子传递体系 第四节 氧化磷酸化作用
1
第一节 生物能学简介
生物能学就是应用物理化学、生物物理 学和量子物理学的原理和方法,来研究生物 系统中能量的流动和传递规律的科学。
一、生物能的转换及生物系统中的能流 二、自由能的概念及化学反应中自由能的计算 三、高能化合物
(根据电子传递体氧化还原态时的吸收光谱变化进行检测)
45
呼吸链中各种氧化还原对的标准氧化还原电位 氧化还原对 NAD+/NADH+H+ FMN/ FMNH2 FAD/ FADH2 Cyt b Fe3+/Fe2+ Q10/Q10H2 Cyt c1 Fe3+/ Fe2+ Cyt c Fe3+/Fe2+ Cyt a Fe3+ / Fe2+ Cyt a3 Fe3+ / Fe2+ 1/2 O2/ H2O
电子传递与氧化磷酸化

(7)细胞色素C氧化酶(复合物Ⅳ)
由 cyt.a和a3 组成。复合物中除了含有铁卟啉 外,还含有2个铜原子(CuA,CuB)。cyta与CuA相 配合,cyta3与CuB相配合,当电子传递时,在细胞 色素的Fe3+ Fe2+间循环,同时在Cu2+ Cu+间循环, 将电子直接传递给O2,也叫末端氧化酶。
△G0’= -nF△E0’ = -nF (E0’受体 - E0’ 供体)
其中:n 是转移的电子数,F 是法拉第常数。
呼吸链中电子流动方向与ATP的生成
NADH
FADH2
2e-
三.电子传递抑制剂(P184)
凡能够阻断呼吸链中某一部位电子流的物质,称为 呼吸链电子传递抑制剂.
返回
各种抑制剂的作用位点
铁硫聚簇借Fe2+和 Fe3+的互变传递电子,每次传递
一个电子.(Fe3+ +e- Fe2+ )
Cys S
S
S Cys
+e-
Fe3+
Fe3+
Cys S
S
S Cys
Cys S
S
S Cys
Fe3+
Fe2+
Cys S
S
S Cys
(4)辅酶Q(泛醌,CoQ,是许多酶的辅酶)
辅酶Q(泛醌, CoQ, Q)是电子传递链中的唯一的一种非蛋 白质组分,功能基团是苯醌,在电子传递过程中可在醌型 (氧化型)与氢醌型(还原型)之间相互转变。NADH和 FADH2上的H和电子都必须经过辅酶Q最终传递到氧分子,因 此,它是电子传递链的中心和电子集中点。
NADH + H+ + FMN
呼吸作用(精)

第三节 电子传递与氧化磷酸化
一、呼吸链的概念和组成
所谓呼吸链即呼吸电子传递链, 是线粒体内膜上由呼吸传递体组 成的电子传递总轨道。 呼吸链传递体传递电子的顺序是: 代谢物→NAD+→FAD→UQ→细胞色 素系统→O2。
第三节 电子传递与氧化磷酸化
二、氧化磷酸化
当底物脱下的氢经呼吸链(氢和电子 传递体)传至氧的过程中,伴随着ADP 和Pi 合成ATP的过程称氧化磷酸化。 1.底物水平磷酸化 2. 氧化磷酸化
总反应:C6H12O6+6O2→6CO2+6H2O
第一节 呼吸作用的概念及生理意义
(二)无氧呼吸
无氧呼吸是指生活细胞在无氧条件下, 把某些有机物分解成为不彻底的氧化 产物,同时释放能量的过程。
1、酒精发酵 C6H12O6→2C2H5OH+2CO2
2、乳酸发酵 C6H12O6→2CH3CHOHCOOH
第四节 呼吸作用的生理
指标及其影响因素
(二)呼吸商 植物组织在一定时间内,放出 二氧化碳的量与吸收氧气的量的比 值叫做呼吸商(RQ),又称呼吸系数。
第四节 呼吸作用的生理
指标及其影响因素
二、内部因素对呼吸速率的影响
•不同的植物种类、代谢类型、生 育特性、生理状况,呼吸速率各有 所不同。 •一般而言,凡是生长快的植物呼 吸速率就高,生长慢的植物呼吸速 率就低。例如细菌和真菌繁殖较快, 其呼吸速率高于高等植物。
返回
第二节
呼吸代谢的生化途径
三、戊糖磷酸途径(PPP途径)
EMP-TCA途径并不是高等植 物中有氧呼吸的唯一途径,葡 萄糖氧化为磷酸丙糖可不需经 过醛缩酶的反应,即戊糖磷酸 途径(PPP),又称己糖磷酸途 径(HMP)或己糖磷酸支路。
第十二章 生物氧化

(1)NADH氧化呼吸链:
FMN → Q (Fe-S) CytC → Cytaa3 → O2 →
琥珀酸 → FAD → Q
NADH
→
Cytb
→
CytC1
→
(2)琥珀酸氧化呼吸链(FADH2氧化呼链):
→ Cytb → CytC1 → (Fe-S) CytC → Cytaa3 →
O2
43
CO
氰化物
NADH氧化呼吸链中氢和电子的传递
48
高能化合物
高能键: 水解时释放的能量> 21KJ/mol 的化学 键。用“~”符号表示。 如ATP(三磷酸腺苷)分子含2个高能键。
磷酸 腺苷
P ~ P~ P - A
30.55KJ/mol 14.2KJ/mol
49
ADP(二磷酸腺苷)分子含1个高能键。
T:3 D:2 M: 1
磷酸
腺苷
P~ P - A
琥珀酸 琥珀酸脱氢酶
COOH CH CH COOH
延胡索酸
+
2H+ + 2e-
15
OH CH3CHCOOH
乳酸
乳酸脱氢酶
NAD
+
O CH3CCOOH
丙酮酸
NADH
16
加水脱氢
酶催化醛氧化成酸的反应即属于这一类。
H 2O H R C OH OH ø O R C O H + 2H + + 2e -
45
琥珀酸氧化呼吸链中氢和电子的传递
琥珀酸、-磷酸甘油、脂酰CoA等代谢物通过 FADH2氧化呼吸链氧化。
46
47
第三节 氧化磷酸化
FMN → Q (Fe-S) CytC → Cytaa3 → O2 →
琥珀酸 → FAD → Q
NADH
→
Cytb
→
CytC1
→
(2)琥珀酸氧化呼吸链(FADH2氧化呼链):
→ Cytb → CytC1 → (Fe-S) CytC → Cytaa3 →
O2
43
CO
氰化物
NADH氧化呼吸链中氢和电子的传递
48
高能化合物
高能键: 水解时释放的能量> 21KJ/mol 的化学 键。用“~”符号表示。 如ATP(三磷酸腺苷)分子含2个高能键。
磷酸 腺苷
P ~ P~ P - A
30.55KJ/mol 14.2KJ/mol
49
ADP(二磷酸腺苷)分子含1个高能键。
T:3 D:2 M: 1
磷酸
腺苷
P~ P - A
琥珀酸 琥珀酸脱氢酶
COOH CH CH COOH
延胡索酸
+
2H+ + 2e-
15
OH CH3CHCOOH
乳酸
乳酸脱氢酶
NAD
+
O CH3CCOOH
丙酮酸
NADH
16
加水脱氢
酶催化醛氧化成酸的反应即属于这一类。
H 2O H R C OH OH ø O R C O H + 2H + + 2e -
45
琥珀酸氧化呼吸链中氢和电子的传递
琥珀酸、-磷酸甘油、脂酰CoA等代谢物通过 FADH2氧化呼吸链氧化。
46
47
第三节 氧化磷酸化