三角函数图像和性质教案总结练习题

合集下载

三角函数的图像与性质知识点及题型归纳总结

三角函数的图像与性质知识点及题型归纳总结

三角函数的图像与性质知识点及题型归纳总结知识点讲解1.“五点法”作图原理在确定正弦函数])2,0[(sin π∈=x x y 的图像时,起关键作用的5个点是)0,2(),1,23(),0,(),1,2(),0,0(ππππ-.在确定余弦函数])2,0[(cos π∈=x x y 的图像时,起关键作用的5个点是)1,2(),0,23(),1,(),0,2(),1,0(ππππ-.2.3.)sin(ϕ+=wx A y 与)0,0)(cos(>>+=w A wx A y ϕ的图像与性质 (1)最小正周期:wT π2=. (2)定义域与值域:)sin(ϕ+=wx A y ,)ϕ+=wx A y cos(的定义域为R ,值域为[-A ,A ]. (3)最值假设00>>w A ,. ①对于)sin(ϕ+=wx A y ,⎪⎩⎪⎨⎧-∈+-=+∈+=+;)(22;)Z (22A Z k k wx A k k wx 时,函数取得最小值当时,函数取得最大值当ππϕππϕ ②对于)ϕ+=wx A y cos(,⎩⎨⎧-∈+=+∈=+;)(2;)Z (2A Z k k wx A k k wx 时,函数取得最小值当时,函数取得最大值当ππϕπϕ (4)对称轴与对称中心. 假设00>>w A ,. ①对于)sin(ϕ+=wx A y ,⎪⎪⎩⎪⎪⎨⎧+==+∈=+=+=±=+∈+=+).0,()sin(0)sin()()sin(1)sin()(2000000x wx y wx Z k k wx xx wx y wx Z k k wx 的对称中心为时,,即当的对称轴为时,,即当ϕϕπϕϕϕππϕ ②对于)ϕ+=wx A y cos(,⎪⎪⎩⎪⎪⎨⎧+==+∈+=+=+=±=+∈=+).0,()cos(0)cos()(2)cos(1)cos()(000000x wx y wx Z k k wx x x wx y wx Z k k wx 的对称中心为时,,即当的对称轴为时,,即当ϕϕππϕϕϕπϕ 正、余弦曲线的对称轴是相应函数取最大(小)值的位置.正、余弦的对称中心是相应函数与x 轴交点的位置.(5)单调性. 假设00>>w A ,. ①对于)sin(ϕ+=wx A y ,⎪⎩⎪⎨⎧⇒∈++∈+⇒∈++-∈+.)](223,22[)](22,22[减区间增区间;Z k k k wx Z k k k wx ππππϕππππϕ ②对于)ϕ+=wx A y cos(,⎩⎨⎧⇒∈+∈+⇒∈+-∈+.)](2,2[)](2,2[减区间增区间;Z k k k wx Z k k k wx πππϕπππϕ (6)平移与伸缩由函数x y sin =的图像变换为函数3)32sin(2++=πx y 的图像的步骤;方法一:)322(ππ+→+→x x x .先相位变换,后周期变换,再振幅变换,不妨采用谐音记忆:我们“想欺负”(相一期一幅)三角函数图像,使之变形.−−−−−→−=个单位向左平移的图像3sin πx y 的图像)3sin(π+=x y 12−−−−−−−−→所有点的横坐标变为原来的纵坐标不变的图像)32sin(π+=x y 2−−−−−−−−−→所有点的纵坐标变为原来的倍横坐标不变的图像)32sin(2π+=x y−−−−−→−个单位向上平移33)32sin(2++=πx y方法二:)322(ππ+→+→x x x .先周期变换,后相位变换,再振幅变换.的图像x y sin =12−−−−−−−−→所有点的横坐标变为原来的纵坐标不变−−−−−→−=个单位向左平移的图像62sin πx y的图像)22sin()6(2sin ππ+=+=x x y 2−−−−−−−−−→所有点的纵坐标变为原来的倍横坐标不变−−−−−→−+=各单位向上平移的图像3)32sin(2πx y 3)32sin(2++=πx y注:在进行图像变换时,提倡先平移后伸缩(先相位后周期,即“想欺负”),但先伸缩后平移(先周期后相位)在题目中也经常出现,所以必须熟练掌握,无论哪种变化,切记每一个变换总是对变量x 而言的,即图像变换要看“变量x ”发生多大变化,而不是“角ϕ+wx ”变化多少.例如,函数x y 2sin =的图像向右平移6π个单位,得到的图像表达式是)32sin()6(2sin ππ-=-=x x y ,而不是)62sin(π-=x y ;再如,将图像)6sin(π+=x y 上各点的横坐标扩大到原来的2倍(纵坐标不变),得到的函数图像表达式是)621sin(x x y +=,而不是)6(21sin π+=x y .此点要引起同学们的的别注意.题型归纳及思路提示思路提示一般将所给函数化为)sin(ϕ+=wx A y 或)cos(ϕ+=wz A y ,0.0>>w A ,然后依据x y x y cos ,sin ==的性质整体求解.题型1 三角函数性质的应用一、函数的奇偶性例4.16函数)0)(sin(πϕϕ≤≤+=x y 是R 上的偶函数,则ϕ等于( ) A .0 B .4π C .2πD .π 解析 因为函数)sin(ϕ+=x y 是R 上的偶函数,所以其图像关于y 轴对称,有正弦函数的对称性知,当0=x 时,1sin ±=ϕ,又πϕ≤≤0,所以2πϕ=.故选C.评注 由x y sin =是奇函数和x y cos =是偶函数可拓展得到关于三角函数奇偶性的重要结论: (1)若)sin(ϕ+=x A y 为奇函数,则)(Z k k ∈=πϕ; (2)若)sin(ϕ+=x A y 为偶函数,则)(2Z k k ∈+=ππϕ; (3)若)cos(ϕ+=x A y 为奇函数,则)(2Z k k ∈+=ππϕ;(4)若)cos(ϕ+=x A y 为偶函数,则)(Z k k ∈=πϕ; 若)tan(ϕ+=x A y 为奇函数,则)(2Z k k ∈=πϕ,该函数不可能为偶函数. 变式1 已知R a ∈,函数)(sin )(R x a x x f ∈-=为奇函数,则a 等于( ). A .0 B .1 C .-1 D .1±变式2 设R ∈ϕ,则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的( ).A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不比哟啊条件 变式3设)sin()(ϕ+=wx x f ,其中0>w ,则)(x f 是偶函数的充要条件是( ).A .1)0(=fB . 0)0(=fC . 1)0(='fD . 0)0(='f 例4.17设函数))(22sin()(R x x x f ∈-=π,则)(x f 是( ).A. 最小正周期为π的奇函数B. 最小正周期为π的偶函数C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数解析 x x x f 2cos )22sin()(-=-=π,所以是最小正周期为x 的偶函数.故选B.变式1 若函数)(21sin )(2R x x x f ∈-=,则)(x f 是( )A. 偶函数且最小正周期为πB. 奇函数且最小正周期为πC. 偶函数且最小正周期为π2D. 奇函数且最小正周期为π2变式2 下列函数中,既是)2,0(π上的增函数,又是以π为周期的偶函数的是( )A .x y 2cos =B .x y 2sin =C .x y cos =D .x y sin = 二、函数的周期性 例4.18函数)62cos()62sin(ππ++=x x y 的最小正周期为( )A .2π B .4πC .π2D .π 解析 函数)34sin(21)62cos()62sin(πππ+=++=x x x y ,242ππ==T .故选A评注 关于三角函数周期的几个重要结论:(1)函数b wx A y b wx A y b wx A y ++=++=++=)tan(,)cos(,)sin(ϕϕϕ的周期分别为wT π2=,wT π=. (2)函数)cos(,)sin(ϕϕ+=+=wx A y wx A y ,)tan(ϕ+=wx A y 的周期均为wT π=(3)函数)0()cos(),0()sin(≠++=≠++=b b wx A y b b wx A y ϕϕ的周期均wT π2=.变式1 函数)32cos()62sin(ππ++=x x y 的最小正周期和最大值分别为( )A .1,πB .2,πC .1,2πD .2,2π变式2 已知函数))(cos (sin sin )(R x x x x x f ∈-=,则)(x f 的最小正周期为_____. 变式3 设函数x x x f 3sin 3sin )(+=,则)(x f 为( )A. 周期函数,最小正周期为3πB. 周期函数,最小正周期为32πC. 周期函数,最小正周期为π2D. 非周期函数 二、函数的单调性 例4.19函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是( )A .]3,0[πB .]127,12[ππC .]65,3[ππD .],65[ππ解析 因为)62sin(2)26sin(2ππ--=-=x x y ,所以)26sin(2x y -=π的递增区间实际上是 )62sin(2π-=x y 的递减区间.令)(2326222Z k kx x k ∈+≤-≤+ππππ, 解得)(653Z k k x k ∈+≤≤+ππππ. 令0=k ,得653ππ≤≤x ,又因为],0[π∈x , 所以653ππ≤≤x .即函数]),0[)(26sin(2ππ∈-=x x y 的增区间为]65,3[ππ.故选C评注 三角函数的单调性,需将函数)sin(ϕ+=wx A y 看成由一次函数和正弦函数组成的复合函数,利用复合函数单调区间的单调方法转化为解一元一次不等式.如函数)0,0)(sin(>>+=w A wx A y ϕ的单调区间的确定基本思想是吧ϕ+wx 看做是一个整体,如由)(2222Z k kx wx k ∈+≤+≤-πϕππ解出x 的范围,所得区间即为增区间;由)(23222Z k kx wx k ∈+≤+≤+πϕππ解出x 的范围,所得区间即为减区间.若函数)sin(ϕ+=wx A y 中0,0>>w A ,可用诱导公式将函数变为)sin(ϕ---=wx A y ,则)sin(ϕ--=wx A y 的增区间为原函数的减区间,减区间为原函数的的增区间.如)4sin()4sin(ππ--=-=x x y ,令22422πππππ+≤-≤-k x k ,即)(43242Z k k x k ∈+≤≤-ππππ,可得)](432,42[Z k k k ∈+-ππππ为原函数的减区间.对于函数)tan(),cos(ϕϕ+=+=wx A y wx A y 的单调性的讨论与以上类似处理即可. 变式1 若函数)(sin x f x y +=在]43,4[ππ-内单调递增,则)(x f 可以是( ).A .1B .x cosC .x sinD .x cos -变式2 已知0>w ,函数)4sin()(π+=wx x f 在),2(ππ上单调递减,则w 的取值范围是( ) A .]45,21[ B .]43,21[ C .]21,0( D .]2,0( 变式3 已知函数)0(,),3cos()3cos(sin 3)(>∈-+++=w R x wx wx wx x f ππ.(1)求函数)(x f 的值域; (2)若)(x f 的最小正周期为]2,0[,2ππ∈x ,求)(x f 的单调递减区间. 四、函数的对称性(对称轴、对称中心) 例4.30函数)32sin(π+=x y 图像的对称轴方程可能是( )A .6π-=x B .12π-C .6π=x D .12π=x解析 解法一:已知x y sin =的对称轴方程是)(2Z k k x ∈+=ππ令)(232Z k k x ∈+=+πππ,得)(122Z k k x ∈+=ππ, 当0=k 时,12π=x ,故选D.解法二,当6π-=x 时,032=+πx .其正弦值为0;当12π-=x 时,632ππ=+x ,其正弦值不等于1或-1当6π=x 时,3232ππ=+x ,其正弦值不等于1或-1 当12π=x 时,232ππ=+x ,这时12sin=π.故选D评注 关于三角函数对称的几个重要结论; (1)函数x y sin =的对称轴为)(2Z k k x ∈+=ππ,对称中心为))(0.(Z k k ∈π;(2)函数x y cos =的对称轴为)(Z k k x ∈=π,对称中心为))(0,2(Z k k ∈+ππ;(3)函数x y tan =函数无对称轴,对称中心为))(0,2(Z k k ∈π;(4)求函数)0()sin(≠++=w b wx A y ϕ的对称轴的方法;令)(2Z k k wx ∈+=+ππϕ,得)(2Z k w k x ∈-+=ϕππ;对称中心的求取方法;令)(Z k k wx ∈=+πϕ,得wk x ϕπ-=,即对称中心为)(b wk ,ϕπ-.(5)求函数)0()cos(≠++=w b wx A y ϕ的对称轴的方法;令)(Z k k wx ∈=+πϕ得wk x ϕππ-+=2,即对称中心为))(,2(Z k b wk ∈-+ϕππ变式1 已知函数)0)(3sin()(>+=w wx x f π的最小正周期为π,则该函数的图像( ).A .关于点)0,3(π对称 B .关于直线4π=x 对称 C .关于点)0,4(π对称 D .关于直线3π=x 对称变式2 )4sin(π-=x y 的图像的一个对称中心是( )A .)0,(π-B .)0,43(π-C . )0,43(πD .)0,2(π变式3 52sin52cos xx y +=的图像中,相邻两条对称轴之间的距离是______. 变式4 将函数x x y cos 3sin -=的图像沿x 轴向右平移a 个单位)0(>a ,所得图像关于y 轴对称,则a 的最小值是( ).A .67πB .2πC .6πD .3π五、三角函数性质的综合 思路提示三角函数的性质(如奇偶性、周期性、单调性、对称性)中,尤为重要的是对称性.因为对称性⇒奇偶性(若函数图像关于坐标原点对称,则函数)(x f 为奇函数;若函数图像关于y 轴对称,则函数)(x f 为偶函数);对称性⇒周期性(相邻的两条对称轴之间的距离是2T ;相邻的对称中心之间的距离为2T;相邻的对称轴与对称中心之间的距离为4T);对称性⇒单调性(在相邻的对称轴之间,函数)(x f 单调,特殊的,若0,0),sin()(>>=w A wx A x f ,函数)(x f 在],[21θθ上单调,且],[021θθ∈,设{}21,max θθθ=,则θ≥4T深刻体现了三角函数的单调性与周期性、对称性之间的紧密联系)例4.21设x b x a x f 2cos 2sin )(+=,其中,0,,≠∈ab R b a 若)6()(πf x f ≤对一切R x ∈恒成立,则①;0)1211(=πf ②)5()107(ππf f <; ③)(x f 既不是奇函数也不是偶函数; ④)(x f 的单调递增区间是)](32,6[Z k k k ∈++ππππ; ⑤存在经过点),(b a 的直线与函数)(x f 的图像不相交. 以上结论正确的是_______(写出所有正确命题的序号)分析 函数)2sin()(22ϕ++=x b a x f ,a b =ϕtan ,其中一条对称轴为6π=x ,函数的最小正周期π=T ,通过对称轴⇒对称中心(对称轴与零点相距4T的奇数倍)通过对称轴⇒奇偶性(若函数)(x f 为奇函数,则6π等于4T 的奇数倍;若函数)(x f 为偶函数,则6π等于4T的偶数倍);通过对称性⇒单调性(在相邻的两条对称轴之间,)(x f 单调递增或单调递减).解析 )2sin()(22ϕ++=x b a x f ,其中a b =ϕtan ,))6((πf x f ≤对一切R x ∈恒成立,知直线6π=x 是)(x f 的对称轴,又)(x f 的最小正周期为π. 对于①:)436()1211(πππ+=f f 可看做6π=x ,加了43个周期所对应的函数值,所以0)1211(=πf .故①正确对于②:函数)(x f y =周期2π=T ,因为25107πππ=-,所以)5()107(ππf f =,因此)5()107(ππf f <错误,故②不正确. 对于③:因为6π既不是4T 的奇倍数,也不是4T的偶倍数,所以函数)(x f 的图像既不关于原点对称,也不关于y 轴对称,所以函数)(x f 既不是奇函数也不是偶函数,故③正确 对于④:依题意,函数)(x f 相邻两条对称轴32,621ππ==x x ,在区间)](32,6[Z k k k ∈++ππππ上函数)(x f 单调,不能确定是单调递增,还是单调递减,故④不正确.对于⑤:因为x b x a x f 2cos 2sin )(+=)2sin(22ϕ++=x b a (其中ab =ϕtan ),所以22)(b a x f +≤,又0≠ab ,所以22b a b +≤,因此经过点),(b a 的直线与函数)(x f 的图像相交,⑤不正确,应填①③. 例4.22设)2cos(sin )6cos(4)(ππ+--=wx wx wx x f ,其中0>w(1)求)(x f 的值域; (2)若)(x f y =在区间]2,23[ππ-上为增函数,求w 的最大值. 解析12sin 32cos 2cos 12sin 32cos sin 2cos sin 322cos sin )6sin sin 6cos(cos 42cos sin )6cos(4)(12+=+-+=++=++=+-=wx wx wx wx wxwx wx wx wxwx wx wx wxwx wx x f πππ)(因为]1,1[2sin -∈wx 所以函数)(x f 的值域为]31,31[+-. (2)解法一:12sin 3)(+=wx x f ,由)(x f y =在区间]2,23[ππ-上为增函数,的)0](2,2[],3[>-⊆-w w w ππππ 故⎪⎩⎪⎨⎧≤-≥-223ππwx wx ,得610≤<w ,则w 的最大值为61. 解法二:由12sin 3)(+=wx x f )0(>w 在区间]2,23[ππ-上为增函数,含原点的增区间的对称型可知函数)(x f 在]23,23[ππ-上也为增函数,故π32≥T ,即π6≥T ,得ππ622≥w ,故610≤<w ,则w 的最大值为61评注 一般的,若))((R x x f ∈为奇函数,在],[21θθ上为增函数,其中210θθ<<,若令},max{21θθθ=,则4T≤θ,即可求出w 的范围. 变式1 已知函数)sin(2)(wx x f =,其中常数0>w ,若)(x f y =在]32,4[ππ-上单调递增,求w 的取值范围.变式2 已知函数)0)(sin(2)(>=w wx x f ,)3()6(ππf f =在]4,3[ππ-上的虽小值为-2,则w 的最小值为_____.例4.23若)0)(3sin()(>+=w wx x f π,)3()6(ππf f =且在)3,6(ππ上有最小值无最大值,则______. 解析 依题意,如图4-24所示,在4236πππ=+=x 处)(x f 取得最小值,故Zk k w ∈+=+,2323ππππ得3148+=k w.取0=k ,得314=w .评注 本题融汇了三角函数)sin()(ϕ+=wx x f 的最值(对称轴)、周期性、单调性之间的相互关系与转化 题型2 根据条件确定解析式方向一:“知图求式”,即已知三角形函数的部分图像,求函数解析式. 思路提示已知函数图像求函数)0,0)(sin(>>+=w A wx A y ϕ的解析式时,常用的解析方法是待定系数法,由图中的最大值或最小值确定A ,由周期确定w ,由适合解析式点的坐标确定ϕ,但有图像求得的)0,0)(sin(>>+=w A wx A y ϕ的解析式一般不唯一,只有限定ϕ的取值范围,才能得出唯一解,将若干个点代入函数式,可以求得相关特定系数ϕ,,w A ,这里需要注意的是,要认清选择的点属于“五点”中的哪一个位置点,并能正式代入式中,依据五点列表法原理,点的序号与式子的关系是:“第一点”(及图像上升时与x 轴的交点)为0=+ϕwx ;“第二点”(即图像曲线的最高点)为2πϕ=+wx ;“第三点”(及图像下降时与轴的交点),为πϕ=+wx ;“第四点”(及图像曲线的最低点)为23πϕ=+wx ;“第五点”(及图像上升时与x 轴的交点)为πϕ2=+wx .例4.24函数),)(2(sin )(R A x A x f ∈+=ϕϕ的部分图像如图4-25所示,那么)0(f =( A .21-B .-1C .23-D .3-分析 对于)sin(ϕ+=wx A y 的解析式的确定,通过最值确定A ,周期T 确定w ,特征点(尤其是极值点)来确定ϕ;对于零点要分析向上零点还是向下零点. 解析 解法一:依题意Z k k A ∈+=+=,2232,2ππϕπ得Z k k ∈-=,62ππϕ, 所以1)62sin(2sin 2)0(-=-==ππϕk f ,故选B解法二:由函数)2(sin )(ϕ+=x A x f ,得π=T ,则相邻的零点与对称轴之间的距离为44π=T ,因此图中向上的零点是120π=x ,则满足0)122sin()12(=+⨯=ϕππA f 所以.,62Z k k ∈-=ππϕ故1)62sin(2sin 2)0(-=-==ππϕk f ,故选B评注 对于三角函数问题中的“知图求式”(及其性质),应重点关注以下方面 (1)周期(可推出w 的值域范围) (2)振幅(可推出A (A >0))(3)特征点(可形成三角方程,以求ϕ的值)对于本题代入零点)0,(0x ,(0x 为上零点),则满足0)sin(0=+ϕwx A ,所以)sin()sin(sin )0(,,2000wx A wx A A f Z k wx k -=-==∈-=ϕπϕ1)122sin(2-=⨯-=π,对于正弦型函数),0)(sin()(R w wx A x f ∈>+=ϕϕ,若已知上零点0x ,则)sin()0(0wx A f -=.同理,若已知下零点0x ',则)sin()0(0x w A f '=. 变式一 函数0,0,,,)(sin()(>>+=w A w A wx A x f是常数ϕϕ所示,则=)0(f _______.变式二 已知函数)cos()(ϕ+=wx A x f 的图像如图4-27所示,32)(-=πf ,则=)0(f ( ) A .32- B .32C .21- D .21例4.25已知函数),0,0)(sin(πϕϕ<>>+=w A wx A y 的部分图像如图4-28所示,求函数)(x f 的解析式.分析 有最小值为-2确定A ,由周期确定w ,但本题的周期不易求解,我们可抓住,2127T >π,且12743π>T ,建立周期 T 的不等关系,从而得到w 的取值范围,在建立w 的等量关 系(根据零点),最终建立求得w ,而ϕ的确定可通过特征点(0,1)得到.解析 有图知2=A ,将点(0,1),代入)sin(ϕ+=wx A y 中,得ϕsin 21=,即21sin =ϕ,又πϕπ<<-,且(0,1)点在函数的单调增区间上,故6πϕ=,又431272T T <<π,得6797π<<T T ,又因为wT π2=,得67297ππ<<w T ,故718712<<w ,又点)0,127(π-在函数图像上,且127π-为函数)(x f 的下零点,所以Z k k ∈+=+-,26127ππππ,解得Z k k w ∈--=,710724,因此7187********<--<k ,得121167-<<-k ,又Z k ∈,因此1-=k ,此时2=w . 所以).62sin(2)(π+=x x f变式一 已知),)((cos )(2为常数ϕϕw wx x f +=,如果存在正整数w 常数ϕ使得函数)(x f 的图像经过点(1,0)如图4-29所示,求w 的值.方向二:知性质(如奇偶性、单调性、对称性、最值) 求解函数解析式(即ϕ,,w A 的值的确定)例4.26已知函数)0,0)(sin()(πϕϕ<≤>+=w wx x f 为)0,43π是一个对称中心,且在区间]2,0[π上为单调函数,求函数)(x f 的解析式.分析 本题的目标是求φ,w 因为)sin(ϕ+=wx y 为偶函数,则必关于y 轴对称,因此化为wx y cos =的形式,由函数在]2,0[π上单调,则]2,0[π最多只会是半个周期,即22π≥T ,从而得wT π2=得w 的范围,再代入对称中心求解.解析 由函数)0,0)(sin()(πϕϕ<≤>+=w wx x f 为R 上的偶函数,则2πϕ=,得wx x f cos )(=,且在区间]2,0[π上为单调函数,得22π≥T ,即π≥T ,故ππ≥w 2,又0>w 得20≤<w .,同时点)0,43(π为函数)(x f 的一个对称中心,的Z k k w ∈+=,243πππ,则Z k k w ∈+=,324,因此23240≤+<k ,得Z k k ∈≤<-,121所以0=k 或1得32=w 或2,所以函数)(x f 的解析式为x y 32cos =或x y 2cos =.评注 根据函数必关于y 轴对称,在三角函数中联想到wx y cos =的模型,从图象、对称轴、对称中心、最值点或单调性来求解.变式一:已知函数),20,0)(sin(4)(R x w wx x f ∈<<>+=πϕϕ图像的两条相邻对称轴的距离为3π,且经过点(0,2).(1)求)(x f 的最小正周期; (2)求函数)(x f 的解析式.题型3 函数的值域(最值) 思路提示求三角函数的最值,通常要利用正、余弦函数的有界性,一般是通过三角变换化归为下列基本类型处理. (1)b x a y +=sin ,设x t sin =,化为一次函数b at y +=在]1,1[-上的最值求解. (2)c x b x a y ++=cos sin ,引入辅助角)(tan ab=ϕϕ,化为c x b a y +++=)sin(22ϕ,求解方法同类型(1)(3)c x b x a y ++=sin sin 2,设x t sin =,化为二次函数c bt at y ++=2在闭区间]1,1[-∈t 上的最值求解,也可以是c x b x a y ++=sin cos 2或c x b x a y ++=sin 2cos 型.(4)c x x b x x a y +±+=)cos (sin cos sin ,设x x t cos sin ±=,则x x t cos sin 212±=,故21cos sin 2-±=t x x ,故原函数化为二次函数c bt t a y ++-±⋅=)21(2在闭区间]2,2[-上的最值求解.(5)d x c b x a y ++=sin sin 与dx c bx a y ++=cos sin ,根据正弦函数的有界性,即可用分析法求最值,也可用不等式法求最值,更可用数形结合法求最值.这里需要注意的是化为关于x sin 或x cos 的函数求解释务必注意x sin 或x cos 的范围.例4.27函数x x x f cos sin )(=的最小值是( )A .-1B .21-C .21D .1分析 将函数)(x f 转化为)sin(ϕ+=wx A y 的形式求最值 解析 函数).(2sin 21cos sin )(R x x x x x f ∈==最小值为21-,故选B. 评注 若本题改为“]4,0[,cos sin )(π∈=x x x x f ”则最小值为0,在解题过程中,若存在换元环节,应注意新元取值范围的限定.变式1 函数)6cos(sin )(π+-=x x x f 的值域为( ).A .[-2,2]B .]3,3[-C .[-1,1]D .]23,23[-变式2 函数x x x x f cos sin 3sin )(2+=在区间]2,4[ππ-上的最大值是( ). A .1 B .231+ C .23D .31+ 例4.28函数)6sin(3)3sin(4x x y -++=ππ的最大值为( )A .7B .2332+ C .5 D .4 分析 由263πππ=-++x x ,利用诱导公式把)6(x -π转化为)3(π+x ,化不同角为相同角,将函数化为)sin()(ϕ+=wx A x f 的形式.解析 )]6(2cos[3)3sin(4x x y --++=πππ)3cos(3)3sin(4x x +++=ππ )43tan )(3sin(5=++=ϕϕπ其中x ,所以5=wax y .故选C.变式1 求函数)(2cos 2)32cos()(2R x x x f ∈++=ππ的值域 变式2 求函数])2,12[)(4sin()4sin(2)32cos()(πππππ-∈+-+-=x x x x x f 的值域.例4.29求函数x x x x f cos 4sin 2cos 2)(2-+=的最大值和最小值.分析 通过二倍角公式和同角公式将函数)(x f 的公式化简为)(cos cos 2R x c x b x a y ∈++=的形式,换元转化为求二次函数在给定区间上的最值.解析 ,1cos 4cos 3cos 4)cos 1()1cos 2(2)(222--=--+-=x x x x x x f 令]1,1[cos -∈=x t ,则])1,1[(37)32(3143)(22-∈--=--=t t t t t g ,因为]1,1[-∈t ,所以当1-=t 时,)(t f 取最大值6,即)(x f 的最大值为6;当32=t 时,)(t g 取最小值37-,即)(x f 的最小值为37-.变式1 已知4π≤x ,求函数x x y sin cos 2+=的最小值.变式2 求函数)20(2385cos sin 2π≤≤-+=x a xa x y 的最大值. 变式3 若0cos sin 2=++a x x 有实数解,试确定实数a 的取值范围. 变式4 若关于x 的方程0sin cos 2≥+-a x x 在]2,0(π上恒成立,求实数a 的取值范围.例4.30对于函数)0(sin 1sin )(π<<+=x xx x f ,下列结论中正确的是( ).A .有最大值无最小值B .有最小值无最大值C .有最大值且有最小值D .既无最大值又无最小值分析 形如dx c bx a y ++=sin sin 的函数的最值,可考虑用函数的有界性求解.解析 解法一:x x f sin 11)(+=,令]1,0(sin ∈=x t ,则ty 11+=在区间]1,0(上单调递减,即)(x f 只有最小值无最大值.故选B 解法二:1sin sin sin 1sin =-⇒+=x x y xx y ,得111sin 0≤-=<y x ,解得2≥y ,所以)(x f 只有最小值无最大值.故选B 变式1 求函数xxy sin 2cos 3+=的值域.变式2 若24ππ<<x ,则函数x x y 2tan 2tan =的最大值为_______.题型4 三角函数图像变换 思路提示由函数x y sin =的图像变换为函数)0,()sin(>++=w A b wx A y ϕ的图像.方法一:)(ϕϕ+→+→wx x x 先相位变换,后周期变换,再振幅变换.x y sin =的图像→<ΦΦ>ΦΦ)个单位(向左平移)个单位(向左平移00)sin(ϕ+=x y 的图像→<ΦΦ>ΦΦ)个单位(向左平移)个单位(向左平移00ϖϖ)sin(ϕ+=wx y 的图像→横坐标不变倍来的所有点的纵坐标变为原A)sin(ϕ+=wx A y 的图像→<>)个单位(向下平移)个单位(向上平移00b b b b b wx A y ++=)sin(ϕ 例4.31把函数12cos +=x y 的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1分析 利用三角函数的图像与变换求解解析 12cos +=x y →纵坐标不变倍横坐标伸长2−−−−−−→−+=个单位长度向左平移11cos x y −−−−−−→−++=个单位长度向下平移11)1cos(x y ).1cos(+=x y结合选项可知,函数图像过)0,12(-π.故选A变式1 为得到函数)32cos(π+=x y 的图像,只需将函数x y 2sin =的图像( ).A .向左平移125π个单位 B . 向右平移125π个单位 C .向左平移65π个单位 D . 向右平移65π个单位变式2 已知)2sin()(π+=x x f ,)2cos()(π-=x x g ,则)(x f 的图像( ).A .与)(x g 图像相同B .与)(x g 图像关于y 轴对称C .是由)(x g 的图像向左平移2π个单位得到D .是由)(x g 的图像向右平移2π个单位得到 变式3 已知函数)0,)(4sin()(>∈+=w R x wx x f π的最小正周期为π,为了得到)cos()(wx x g =的图像,只要将)(x f y =的图像( )C DA .向左平移8π个单位长度 B .向右平移8π个单位长度 C .向左平移4π个单位长度 D .向右平移4π个单位长度例4.32已知函数)0)(2sin(21cos cos sin 2sin 21)(2πϕϕπϕϕ<<+-+=x x x f ,其图像过点)21,6(π.(1)求ϕ的值(2)将)(x f 图像上各点的横坐标缩短为原来的21,纵坐标不变,得到函数)(x g y =的图像,求函数)(x g 在]4,0[π上的最大值和最小值解析 由题意把点)21,6(π代入函数的解析式得21cos 21cos 43sin 3sin 21=-+ϕϕϕπ 1)6sin(cos 21sin 23=+=+⇒πϕϕϕ (1)1)6sin(=+πϕ,.3,26),67,6(6),,0(πϕππϕπππϕπϕ==+∈+∈ (2)41cos 21232sin 21)(2-+⋅=x x x f )62sin(2141)2cos 1(412sin 43π+=-++=x x x , 依题意)64sin(21)622sin(21)(ππ+=+⋅=x x x g , 当6764ππ=+x ,即4π=x 时,)(x g 取最小值41-;当264ππ=+x ,即12π=x 时,)(x g 取最大值21.变式1已知向量)0)(2cos 2,cos 3(),1,(sin >==A x Ax A n x m ,函数n m x f ⋅=)(的最大值为6.(1)求A(2)求将函数)(x f y =的图像向左平移12π个单位,再将所的图像上各点的横坐标缩短到原来的21倍,,纵坐标不变,得到函数)(x g y =的图像,求)(x g 在]245,0[π上的值域最有效训练题1.已知函数)02,0)(sin()(<<->+=ϕπϕA wx A x f ,在65π=x 时取得最大值,则)(x f 在]0,[π-上的单调增区间是( ).A .]65,[ππ-- B .]6,65[ππ-- C .]0,3[π- D .]0,6[π- 2.若直线t x =与函数)42sin(π+=x y 和)42cos(π+=x y 的图像分别交于P ,Q的最大值为( )A .2B .1C .3D .2 3.已知函数x x x f sin cos )(2+=,那么下列命题中假命题是( )A .)(x f 既不是奇函数也不是偶函数B .)(x f 在]0,[π-上恰有一个零点C .)(x f 是周期函数D .)(x f 在)65,2(ππ上是增函数4,.已知函数)46sin()(π+=x x f 的图像上各点的横坐标伸长到原来的3倍,再向右平移8π个单位,得到的函数一个对称中心是( ).A .)0,16(π B .)0,9(π C .)0,4(π D .)0,2(π5.如图4-30所示,点P 是函数0,)(sin(2>∈+=w R x wx y ϕx 轴的交点,若0=⋅PN PM ,则w 的值为( )A .8π B .4πC .4D .8 6.已知],0(π∈x ,关于x 的方程a x =+)3sin(2π,( )..[2]A 2]B 2]C 2)D7.已知函数22()2sin cos f x x x x x ωωω=+,其中0ω>,且()f x 的最小正周期为π,则()f x 的单调递增区间为 . 8.已知函数()3sin()(0)6f x x πωω=->的图象和()2cos(2)1g x x ϕ=++的图象对称轴完全相同,若[0,]2x π∈,则()f x 的取值范围为 .9.定义一种运算12341423(,)(,)a a a a a a a a ⊗=-,将函数()2sin )(cos ,cos 2)f x x x x =⊗的图象向左移(0)n n >个单位长度所得图像对应的函数为偶函数,则n 的最小值为 .10.某学生对函数()2cos f x x x =进行研究后,得出如下四个结论:①函数()f x 在[,0]π-上为单调递增,在[0,]π上单调递减;②存在常数0M >,使()f x M x ≤对一切实数x 均成立;③点(,0)2π是函数()y f x =图像的一个对称中心;④函数()y f x =的图象关于直线x π=对称.其中正确的是 .(把所有正确的命题的序号都填上). 11.已知函数22()cos(2)sin cos .3f x x x x π=-+-(1)求函数()f x 的最小正周期及图像的对称轴方程; (2)设函数2()[()]()g x f x f x =+,求()g x 的值域.12.已知函数()sin()f x A x ωϕ=+,其中 (,0,0,)22x R A ππωϕ∈>>-<<的部分图 像如图4-31所示.(1)求函数()f x 的解析式;(2)已知函数()f x 图像上三点M,N,P的横坐标分别为-1,1,5,求sin MNP ∠ 的值.。

三角函数的图象与性质经典例题含答案

三角函数的图象与性质经典例题含答案
二.基本训练
1、(1)(2008浙江卷5)在同一平面直角坐标系中,函数 的图象和直线 的交点个数是(D)
(A)0(B)1(C)2(D)4
(2)、函数 单调增区间是(A)
A[2kπ- ,2kπ+ ](k∈Z)B.[2kπ+ ,2kπ+ ](k∈Z)
C.[2kπ-π,2kπ](k∈Z)D.[2kπ,2kπ+π](k∈Z)
2.(1)已知f(x)的定义域为[0,1],则f(cosx)的定义域是[2kπ- ,2kπ+ ]
(2)函数y=|sin(2x+ )|的最小正周期是
三.典例解析
例1、求函数)y= sin( - )的单调递增区间:
例2、(2008北京卷).已知函数 ( )的最小正周期为 .
(Ⅰ)求 的值;(Ⅱ)求函数 在区间 上的取值范围.
8、(2008湖南卷)函数 在区间 上的最大值是(C)
A.1B. C. D.1+
9、函数y= 的最大值是(B)
A. -1B. +1C.1- D.-1-
10、(2001上海春)关于x的函数f(x)=sin(x+ )有以下命题:
①对任意的 ,f(x)都是非奇非偶函数;
②不存在 ,使f(x)既是奇函数,又是偶函数;
①图象 关于直线 对称;②图象 关于点 对称;
③函数 在区间 内是增函数;
④由 的图角向右平移 个单位长度可以得到图象 .
6.函数 的图象向右平移 ( )个单位,得到的图象关于直线 对称,则 的最小值全国卷II)函数y=sin2xcos2x的最小正周期是(D)
(A)2π(B)4π(C)(D)
化简完是
三角函数的图象与性质
一.要点精讲
1.正弦函数、余弦函数、正切函数的图像

新高考数学复习考点知识专题讲解与练习27---三角函数的图像和性质

新高考数学复习考点知识专题讲解与练习27---三角函数的图像和性质

新高考数学复习考点知识专题讲解与练习专题 27 三角函数的图像和性质一、单项选择题1.函数y =3sin2x +cos2x 的最小正周期为( ) A.π2 B.2π3 C .π D .2π 2.函数y =tan(π4-x)的定义域是( )A .{x |x ≠π4}B .{x |x ≠-π4}C .{x |x ≠kπ+π4,k ∈Z }D .{x |x ≠kπ+3π4,k ∈Z } 3.下列函数中,既是奇函数,又是周期函数的是( ) A .y =sin|x| B .y =cos2x C .y =cos ⎝ ⎛⎭⎪⎫π2+x D .y =x 34.(2018·课标全国Ⅲ)函数f(x)=tanx1+tan2x 的最小正周期为( ) A.π4 B.π2 C .π D .2π 5.(2021·南昌大学附中)设f(x)=sin (ωx +φ),其中ω>0,则f(x)是偶函数的充要条件是( ) A .f(0)=1 B .f(0)=0C .f′(0)=1 D .f′(0)=06.函数f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .-1B .-22C.22D .0 7.已知f(x)=sin 2x +sinxcosx ,则f(x)的最小正周期和一个单调递增区间分别为( ) A .π,[0,π] B .2π,[-π4,3π4]C .π,[-π8,3π8] D .2π,[-π4,π4] 8.(2021·安徽皖江名校高三联考)已知函数f(x)=3sin(2x +φ)+cos(2x +φ)为偶函数,且在⎣⎢⎡⎦⎥⎤0,π4上是增函数,则φ的一个可能值为( )A.π3B.2π3C.4π3D.5π3 9.(2020·辽宁大连一模)若方程2sin(2x +π6)=m 在区间[0,π2]上有两个不相等实根,则m 的取值范围是( ) A .(1,3) B .[0,2]C .[1,2) D .[1,3] 二、多项选择题10.(2017·课标全国Ⅲ,改编)设函数f(x)=cos(x +π3),则下列结论正确的是( ) A .f(x)的一个周期为-2πB .y =f(x)的图象关于直线x =8π3对称 C .f(x +π)的一个零点为x =π6D .f(x)在(π2,π)上单调递减11.已知函数f(x)=sinx +cosx ,g(x)=22sinx·cosx ,则下列结论中正确的是( ) A .两函数的图象均关于点⎝ ⎛⎭⎪⎫-π4,0成中心对称B .两函数的图象均关于直线x =-π4成轴对称 C .两函数在区间⎝ ⎛⎭⎪⎫-π4,π4上都是单调增函数D .两函数的最大值相同 三、填空题与解答题12.函数y =cos ⎝ ⎛⎭⎪⎫π4-2x 的单调递减区间为________.13.(2020·保定市一模)设函数f(x)=2sinxsin(x +π3+φ)是奇函数,其中φ∈(0,π),则φ=________.14.已知函数f(x)=sinx +acosx 的图象的一条对称轴是x =5π3,则函数g(x)=asinx +cosx 的初相是________.15.已知函数f(x)=(1+cos2x)sin 2x(x ∈R ),则f(x)的最小正周期为________;当x ∈⎣⎢⎡⎦⎥⎤0,π4时,f(x)的最小值为________.16.已知函数f(x)=3cos 2ωx +sinωxcosωx -32(ω>0)的最小正周期为π. (1)求函数f(x)的单调递减区间;(2)若f(x)>22,求x 的取值集合.17.(2017·北京)已知函数f(x)=3cos(2x -π3)-2sinxcosx. (1)求f(x)的最小正周期;(2)求证:当x ∈[-π4,π4]时,f(x)≥-12.18.(2021·衡水中学调研)已知函数y =sinωx 在[-π3,π3]上是增函数,则ω的取值范围是( ) A .[-32,0) B .[-3,0)C .(0,32] D .(0,3] 19.(2018·北京,理)设函数f(x)=cos (ωx -π6)(ω>0).若f(x)≤f(π4)对任意的实数x 都成立,则ω的最小值为________.参考答案1.答案 C 2.答案 D解析 y =tan(π4-x)=-tan(x -π4),由x -π4≠π2+k π,k ∈Z ,得x ≠k π+3π4,k ∈Z .故选D.3.答案 C 4.答案 C解析 f(x)=tanx 1+tan2x=sinx cosx 1+sin2x cos2x =sinxcosx cos2x +sin2x =sinxcosx =12sin2x ,所以f(x)的最小正周期T =2π2=π.故选C. 5.答案 D解析 若f(x)=sin (ωx +φ)是偶函数,则有φ=k π+π2,k ∈Z .∴f(x)=±cos ωx.而f ′(x)=∓ωsin ωx ,∴f ′(0)=0,故选D. 6.答案 B 7.答案 C解析 由f(x)=12(1-cos2x)+12sin2x =2sin (2x -π4)+12,得该函数的最小正周期是π.当2k π-π2≤2x -π4≤2k π+π2,k ∈Z ,即k π-π8≤x ≤k π+3π8,k ∈Z 时,函数f(x)是增函数,即函数f(x)的单调递增区间是[k π-π8,k π+3π8],其中k ∈Z .由k =0得函数f(x)的一个单调递增区间是[-π8,3π8],结合各选项知,选C. 8.答案 C解析 根据题意,f(x)=3sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +φ+π6,若f(x)为偶函数,则有φ+π6=k π+π2,即φ=k π+π3,k ∈Z ,所以可以排除B 、D , 对于A ,当φ=π3时,f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos2x ,在⎣⎢⎡⎦⎥⎤0,π4上是减函数,不符合题意,对于C ,当φ=4π3时,f(x)=2sin ⎝ ⎛⎭⎪⎫2x +3π2=-2cos2x ,在⎣⎢⎡⎦⎥⎤0,π4上是增函数,符合题意.故选C. 9.答案 C解析 因为x ∈[0,π2],所以2x +π6∈[π6,7π6].当2x +π6∈[π6,π2]时,函数f(x)=2sin(2x +π6)单调递增,此时,m ∈[1,2];当2x +π6∈(π2,7π6]时,函数f(x)=2sin(2x +π6)单调递减,此时,m ∈[-1,2),因此要有两个不相等实根,即m 与函数f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π6在⎣⎢⎡⎦⎥⎤π6,7π6上有两个交点,结合图象可知,m 的取值范围是[1,2).故选C. 10.答案 ABC解析 由三角函数的周期公式可得T =2π1=2π,所以周期是-2π也正确,所以A 正确;由于三角函数在对称轴上取得最值,所以把对称轴x =8π3代入函数,得f(x)=cos(8π3+π3)=cos3π=-1,所以B 正确;f(x +π)=cos(x +π+π3)=-cos(x +π3)=0,解得其中一个解是x =π6,所以C 正确;函数f(x)在区间(π2,π)有增有减,D 不正确. 11.答案 CD解析 f(x)=sinx +cosx =2sin ⎝ ⎛⎭⎪⎫x +π4,g(x)=2sin2x ,因为f ⎝ ⎛⎭⎪⎫-π4=2sin ⎝ ⎛⎭⎪⎫-π4+π4=2sin0=0,所以f(x)关于点⎝ ⎛⎭⎪⎫-π4,0成中心对称.因为g ⎝ ⎛⎭⎪⎫-π4=2sin ⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫-π4=2sin ⎝ ⎛⎭⎪⎫-π2=-2≠0, 所以g(x)不关于点⎝ ⎛⎭⎪⎫-π4,0成中心对称,故A 错误.由于f(x)关于⎝ ⎛⎭⎪⎫-π4,0成中心对称,g(x)关于x =-π4成轴对称,故B 错误. 若-π4<x<π4,则0<x +π4<π2, 此时函数f(x)为增函数, 若-π4<x<π4,则-π2<2x<π2, 此时函数g(x)为增函数,即两函数在区间⎝ ⎛⎭⎪⎫-π4,π4上都是单调增函数,故C 正确.两函数的最大值相同,都为2,故D 正确. 12.答案 ⎣⎢⎡⎦⎥⎤kπ+π8,kπ+5π8(k ∈Z )13.答案 π6解析 因为f(x)=2sinxsin⎝ ⎛⎭⎪⎫x +π3+φ是奇函数,且y =sinx 也是奇函数,所以函数y =sin ⎝ ⎛⎭⎪⎫x +π3+φ为偶函数,所以π3+φ=k π+π2(k ∈Z ),则φ=k π+π6(k ∈Z ),又φ∈(0,π),所以φ=π6. 14.答案2π3解析 f ′(x)=cosx -asinx ,∵x =5π3为函数f(x)=sinx +acosx 的一条对称轴, ∴f ′(5π3)=cos 5π3-asin 5π3=0,解得a =-33. ∴g(x)=-33sinx +cosx =233(-12sinx +32cosx) =233sin(x +2π3).15.答案 π2 016.答案 (1)⎣⎢⎡⎦⎥⎤π12+kπ,7π12+kπ,k ∈Z (2)⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-π24+kπ<x <5π24+kπ,k ∈Z 解析 (1)f(x)=3cos 2ωx +sin ωxcos ωx -32=32(1+cos2ωx)+12sin2ωx -32=32cos2ωx +12sin2ωx =sin ⎝ ⎛⎭⎪⎫2ωx +π3.因为最小正周期为2π2ω=π,所以ω=1,所以f(x)=sin ⎝ ⎛⎭⎪⎫2x +π3.由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π12+k π≤x ≤7π12+k π,k ∈Z ,所以函数f(x)的单调递减区间为[π12+k π,7π12+k π],k ∈Z .(2)f(x)>22,即sin ⎝ ⎛⎭⎪⎫2x +π3>22,由正弦函数的性质得π4+2k π<2x +π3<3π4+2k π,k ∈Z ,解得-π24+k π<x<5π24+k π,k ∈Z ,则x 的取值集合为⎩⎨⎧⎭⎬⎫x|-π24+kπ<x <5π24+kπ,k ∈Z .17.答案 (1)π (2)证明见解析解析 (1)f(x)=32cos2x +32sin2x -sin2x =12sin2x +32cos2x =sin(2x +π3).所以f(x)的最小正周期T =2π2=π.(2)证明:因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6. 所以sin(2x +π3)≥sin(-π6)=-12. 所以当x ∈[-π4,π4]时,f(x)≥-12.18.答案 C解析 方法一:由于y =sinx 在[-π2,π2]上是增函数,为保证y =sin ωx 在[-π3,π3]上是增函数,所以ω>0且π3·ω≤π2,则0<ω≤32.故选C.方法二(特值法):取ω=-1,则y =sin(-x)=-sinx ,不合题意,故A 、B 不对.取ω=2,则y =sin2x ,不合题意,故D 不对,所以选C. 19.答案 23解析 由于对任意的实数都有f(x)≤f(π4)成立,故当x =π4时,函数f(x)有最大值,故f(π4)=1,即πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ),又ω>0,∴ωmin =23.。

三角函数练习(正弦函数、余弦函数的图像和性质)

三角函数练习(正弦函数、余弦函数的图像和性质)

三角函数练习(7)(正弦函数、余弦函数的图像和性质)2013.4.61、函数x y 2sin 21=的最小正周期T=_____________。

2、 函数21()2sin 2sin 2f x x x =-+的最值是_________3、若函数f (x )=3cos(ωx +θ) 对任意的x 都有f (π6+x )=f (π6-x ),则f (π6)等于. 4、若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=_______ 5、函数)60sin(sin )(ο++=x x x f 的最大值是_________ 6、(1)函数()sin cos f x x x x =的奇偶性是__________(2)函数5sin(2)cos(2)44y x x ππ=++的奇偶性是__________周期为____________ 7、函数()2sin sin()3f x x x π=⋅-的最小正周期T =值域是.8、函数x x y 2sin 3sin 22-=的最大值是.9、函数f(x)=2sinx(sinx-cosx)的单调递减区间为____________10、(1)函数1sin(4)234y x π=-+单调增区间__________(2)函数3sin(2)3y x π=-单调减区间_________ 11、函数)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为( )A.2,2πB.1,2πC.π,1D.π,212、函数)(1)4cos()4sin(2)(R x x x x f ∈-+-=ππ是() A. 最小正周期为π2的奇函数 B. 最小正周期为π的奇函数 C. 最小正周期为π2的偶函数 D. 最小正周期为π的偶函数13、函数⎥⎦⎤⎢⎣⎡∈+=2,0,cos 3sin πx x x y 的单调递增区间_________14、下列函数中,哪一个函数既是区间(0,2π)上的增函数,又是以π为周期的偶函数( )A.y =|sinx |B.y =sin |x |C.y =cos2xD.y =lgsin2x15、已知函数()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,()f x 的单调递增区间是_______16、函数()sin 2sin ,[0,2]f x x x x π=+∈的图像与直线y k =有且仅有两个不同的交点,k 的取值范围是_____17、确定函数12()log )]4f x x π=-的定义域,值域,单调区间,奇偶性,周期性。

2018-2019学年最新苏教版高中数学必修四《三角函数的图像和性质》同步练习题及答案解析-精品试卷

2018-2019学年最新苏教版高中数学必修四《三角函数的图像和性质》同步练习题及答案解析-精品试卷

必修四《三角函数的图像和性质》一、 填空题1. 函数y =sin x -|sin x|的值域是__________.2. 函数f(x)=2sin ⎝ ⎛⎭⎪⎫x -π3,x ∈[-π,0]的单调递增区间是__________. 3. 函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3⎝ ⎛⎭⎪⎫-π6≤x ≤π6的值域是__________. 4. 若函数f(x)=sinx +φ3(φ∈[0,2π])是偶函数,则φ=________. 5. 若直线x =k π2(0≤k≤1)与函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象不相交,则k =__________. 6. 函数y =lg(sin x)+2cos x -1的定义域为__________. 7. 如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0中心对称,那么|φ|的最小值为________.8. 在平面直角坐标系xOy 中,若函数f(x)=sin ⎝ ⎛⎭⎪⎫ωx+π6(ω>0)图象的两条相邻的对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0的值为__________.9. 将函数y =2sin ⎝ ⎛⎭⎪⎫ωx-π4(ω>0)的图象分别向左、向右各平移π4个单位长度后,所得的两个图象对称轴重合,则ω的最小值为__________.10. 已知函数f(x)=sin ⎝ ⎛⎭⎪⎫2x +3π2(x∈R),则下列结论正确的是________.(填序号)① 函数f(x)的最小正周期为π; ② 函数f(x)是偶函数;③ 函数f(x)的图象关于直线x =π4对称;④ 函数f(x)在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数.二、 解答题11. 已知f(x)=cos(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<0,且f(π4)=32.(1) 求φ的值;(2) 在给定的坐标系中作出函数f(x)在[0,π]上的图象.12已知函数f(x)=Asin (ωx+φ),x ∈R ⎝ ⎛⎭⎪⎫其中A >0,ω>0,0<φ<π2的周期为π,且其图象上一个最低点为M ⎝⎛⎭⎪⎫2π3,-2.(1) 求f(x)的解析式;(2) 当x∈⎣⎢⎡⎦⎥⎤0,π12时,求f(x)的最值.13如图为一个缆车示意图,该缆车半径为4.8 m ,圆上最低点与地面间的距离为0.8 m ,60 s 转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB.设点B 与地面间的距离为h.(1) 求h 与θ之间的函数解析式;(2) 设从OA 开始转动,经过t s 到达OB ,求h 与t 之间的函数关系式,并求缆车到达最高点时用的最少时间是多少?1. [-2,0] 解析:y =⎩⎪⎨⎪⎧0,0≤sin x ≤1,2sin x ,-1≤sin x <0,函数的值域为[-2,0].2. ⎣⎢⎡⎦⎥⎤-π6,0 解析:令2k π-π2≤x -π3≤2k π+π2,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z.又-π≤x ≤0,所以-π6≤x ≤0.3. [0,2] 解析:因为-π6≤x ≤π6,所以0≤2x+π3≤2π3,所以0≤sin ⎝ ⎛⎭⎪⎫2x +π3≤1,所以y =2sin(2x +π3)的值域为[0,2].4.3π2 解析:因为f(x)是偶函数,所以0+φ3=π2+k π(k ∈Z),所以φ=3π2+3k π(k∈Z).又φ∈[0,2π],所以φ=3π2.5. 14 解析:由题意得2×k π2+π4=π2+m π,m ∈Z ,则k =14+m ,m ∈Z.由于0≤k≤1,所以k =14.6. ⎩⎨⎧⎭⎬⎫x|2k π<x ≤π3+2k π,k ∈Z解析:要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,2cos x -1≥0,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,k ∈Z ,-π3+2k π≤x ≤π3+2k π,k ∈Z , ∴ 2k π<x≤π3+2k π(k∈Z),∴ 函数的定义域为⎩⎨⎧⎭⎬⎫x|2k π<x ≤π3+2k π,k ∈Z . 7. π6 解析:由题意得3cos ⎝ ⎛⎭⎪⎫2×4π3+φ=3cos ⎝ ⎛⎭⎪⎫2π3+φ=0,∴ 2π3+φ=k π+π2,k ∈Z ,∴ φ=k π-π6,k ∈Z ,∴ k =0时|φ|取最小值π6.8.5π12 解析:π2=T 2,则T =π=2πω,得ω=2,sin ⎝⎛⎭⎪⎫2x 0+π6=0,则2x 0+π6=k π,k∈Z ,∴ x 0=k π2-π12.又x 0∈[0,π2],∴ x 0=5π12.9. 2 解析:平移后得到的函数分别为y =2sin (ωx-π4ω-π4),y =2sin ⎝ ⎛⎭⎪⎫ωx+π4ω-π4,它们的对称轴方程分别为ωx-π4ω-π4=k π+π2,ωx +π4ω-π4=k π+π2,k∈Z,即ωx=π4ω+π4+k π+π2,ωx =-π4ω+π4+k π+π2,k ∈Z ,而ωx=-π4ω+π4+k π+π2可以变形为ωx=-π4ω+π4+k π+π+π2,则π4ω+π4+k π+π2=-π4ω+π4+k π+π+π2,所以ω=2. 10. ①②④ 解析:f(x)=sin ⎝ ⎛⎭⎪⎫2x +3π2=-cos 2x ,故其最小正周期为π,①正确;∵ f(x)=-cos 2x ,∴ f(x)是偶函数,②正确;由函数f(x)=-cos 2x 的图象可知,函数f(x)的图象不关于直线x =π4对称,③错误;由函数f(x)的图象易知,函数f(x)在⎣⎢⎡⎦⎥⎤0,π2上是增函数,④正确.故正确的为①②④.11. 解:(1) ∵ f ⎝ ⎛⎭⎪⎫π4=cos ⎝ ⎛⎭⎪⎫2×π4+φ =cos(π2+φ)=-sin φ=32,又-π2<φ<0,∴ φ=-π3.(2) f(x)=cos ⎝ ⎛⎭⎪⎫2x -π3,列表如下:2x -π3-π3 0 π2 π 3π2 5π3 x 0 π6 5π12 2π3 11π12 π f(x) 121-112图象如图:12. 解:(1) 由最低点为M ⎝⎛⎭⎪⎫2π3,-2,得A =2.由T =π,得ω=2πT =2ππ=2.由点M ⎝ ⎛⎭⎪⎫2π3,-2在图象上,得2sin(4π3+φ)=-2,即sin ⎝ ⎛⎭⎪⎫4π3+φ=-1,∴4π3+φ=2k π-π2(k∈Z),即φ=2k π-116π,k ∈Z. 又φ∈⎝ ⎛⎭⎪⎫0,π2,∴ φ=π6,∴ f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π6. (2) ∵ x∈⎣⎢⎡⎦⎥⎤0,π12,∴ 2x +π6∈⎣⎢⎡⎦⎥⎤π6,π3. ∴ 当2x +π6=π6,即x =0时,f(x)取得最小值1;当2x +π6=π3,即x =π12时,f(x)取得最大值 3.13. 解:(1) 以圆心O 为原点,建立如图所示的平面直角坐标系.则以Ox 为始边,OB 为终边的角为θ-π2,故点B 的坐标为(4.8cos ⎝ ⎛⎭⎪⎫θ-π2,4.8sin ⎝ ⎛⎭⎪⎫θ-π2),∴ h =5.6+4.8sin ⎝ ⎛⎭⎪⎫θ-π2.(2) 点A 在圆上转动的角速度是π30 rad/s ,故t s 转过的弧度数为π30t ,∴ h =5.6+4.8sin ⎝⎛⎭⎪⎫π30t -π2,t ∈[0,+∞). 到达最高点时,h =10.4 m.由sin ⎝ ⎛⎭⎪⎫π30t -π2=1,得π30t -π2=π2,∴ t =30 s , ∴ 缆车到达最高点时,用的最少时间为30 s.。

三角函数图像与性质-知识点总结及题型归纳讲义

三角函数图像与性质-知识点总结及题型归纳讲义

专题七《三角函数》讲义7.3 三角函数的图像与性质知识梳理.三角函数的图像与性质1.正弦、余弦、正切函数的图象与性质函数y=sin x y=cos x y=tan x 图象定义域R R错误!值域[-1,1][-1,1]R奇偶性奇函数偶函数奇函数单调性在⎣⎡⎦⎤-π2+2kπ,π2+2kπ(k∈Z)上是递增函数,在⎣⎡⎦⎤π2+2kπ,3π2+2kπ(k∈Z)上是递减函数在[2kπ-π,2kπ](k∈Z)上是递增函数,在[2kπ,2kπ+π](k∈Z)上是递减函数在⎝⎛⎭⎫-π2+kπ,π2+kπ(k∈Z)上是递增函数周期性周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是kπ(k∈Z且k≠0),最小正周期是π对称性对称轴是x=π2+kπ(k∈Z),对称中心是(kπ,0)(k∈Z)对称轴是x=kπ(k∈Z),对称中心是⎝⎛⎭⎫kπ+π2,0(k∈Z)对称中心是⎝⎛⎭⎫kπ2,0(k∈Z)题型一. 三角函数图像的伸缩变换1.要得到函数y =3sin (2x +π3)的图象,只需要将函数y =3cos2x 的图象( ) A .向右平行移动π12个单位 B .向左平行移动π12个单位C .向右平行移动π6个单位D .向左平行移动π6个单位2.(2017•新课标Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 23.(2021春•闵行区校级期中)函数y =cos (2x +φ)的图象向右平移π2个单位长度后与函数y =sin (2x +2π3)的图象重合,则|φ|的最小值为 .4.(2016春•南通期末)将函数f(x)=sin(ωx +φ),(ω>0,−π2<φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π4个单位长度得到y =sin x 的图象,则f(π6)= .5.(2015•湖南)将函数f (x )=sin2x 的图象向右平移φ(0<φ<π2)个单位后得到函数g (x )的图象.若对满足|f (x 1)﹣g (x 2)|=2的x 1、x 2,有|x 1﹣x 2|min =π3,则φ=( ) A .5π12B .π3C .π4D .π6题型二. 已知图像求解析式1.图是函数y =A sin (ωx +φ)(x ∈R )在区间[−π6,5π6]上的图象,为了得到这个函数的图象,只要将y =sin x (x ∈R )的图象上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变2.已知函数y =sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则( )A .ω=π2,φ=−π4 B .ω=π2,φ=π4C .ω=π,φ=−π4D .ω=π,φ=π43.已知函数f (x )=A cos (ωx +φ)的图象如图所示,f (π2)=−23,则f (0)=( )A .−23B .−12C .23D .124.已知函数f (x )=A tan (ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,下列关于函数g (x )=A cos (ωx +φ)(x ∈R )的表述正确的是( )A .函数g (x )的图象关于点(π4,0)对称B .函数g (x )在[−π8,3π8]递减 C .函数g (x )的图象关于直线x =π8对称D .函数h (x )=cos2x 的图象上所有点向左平移π4个单位得到函数g (x )的图象题型三. 三角函数的性质 考点1.单调性1.函数y =sin (﹣2x +π3)的单调递减区间是( ) A .[k π−π12,k π+5π12],k ∈Z B .[2k π−π12,2k π+5π12],k ∈ZC .[k π−π6,k π+5π6],k ∈ZD .[2k π−π6,2k π+5π6],k ∈Z2.已知函数f(x)=Asin(x +φ)(A >0,−π2<φ<0)在x =5π6时取得最大值,则f (x )在[﹣π,0]上的单调增区间是( ) A .[−π,−5π6] B .[−5π6,−π6] C .[−π3,0]D .[−π6,0]3.已知函数f (x )=sin (2x +π3)在区间[0,a ](其中a >0)上单调递增,则实数a 的取值范围是( ) A .{a |0<a ≤π12} B .{a |0<a ≤π2} C .{a |a =k π+π12,k ∈N *} D .{a |2k π<a ≤2k π+π12,k ∈N *} 4.已知ω>0,函数f (x )=sin (ωx +π4)在区间(π2,π)上单调递减,则实数ω的取值范围是( ) A .[12,54] B .[12,34]C .(0,12]D .(0,2]考点2.周期性、奇偶性、对称性1.已知函数f (x )=cos 2x +sin 2(x +π6),则( )A .f (x )的最小正周期为π,最小值为12B .f (x )的最小正周期为π,最小值为−12C .f (x )的最小正周期为2π,最小值为12D .f (x )的最小正周期为2π,最小值为−122.已知f (x )=sin2x +|sin2x |(x ∈R ),则下列判断正确的是( ) A .f (x )是周期为2π的奇函数 B .f (x )是值域为[0,2]周期为π的函数 C .f (x )是周期为2π的偶函数 D .f (x )是值域为[0,1]周期为π的函数3.将函数y =sin2x −√3cos2x 的图象沿x 轴向右平移a 个单位(a >0)所得图象关于y 轴对称,则a 的最小值是( ) A .712π B .π4C .π12D .π64.已知函数f (x )=a sin x ﹣b cos x (ab ≠0,x ∈R )在x =π4处取得最大值,则函数y =f (π4−x )是( )A .偶函数且它的图象关于点(π,0)对称B .偶函数且它的图象关于点(3π2,0)对称 C .奇函数且它的图象关于点(3π2,0)对称 D .奇函数且它的图象关于点 (π,0)对称考点3.三角函数性质综合1.(2019•天津)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g (π4)=√2,则f (3π8)=( )A .﹣2B .−√2C .√2D .22.(2015•天津)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R ,若函数f (x )在区间(﹣ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为 .3.(2014•大纲版)若函数f (x )=cos2x +a sin x 在区间(π6,π2)是减函数,则a 的取值范围是 .4.(2016•新课标Ⅰ)若函数f (x )=x −13sin2x +a sin x 在(﹣∞,+∞)单调递增,则a 的取值范围是( ) A .[﹣1,1]B .[﹣1,13]C .[−13,13]D .[﹣1,−13]5.(2013•安庆二模)已知函数f (x )=sin (ωx +π6),其中ω>0,若f (π6)=f (π3),且f (x )在区间(π6,π3)上有最小值、无最大值,则ω等于( )A .403B .283C .163D .436.(2014•北京)设函数f (x )=A sin (ωx +φ)(A ,ω,φ是常数,A >0,ω>0)若f (x )在区间[π6,π2]上具有单调性,且f (π2)=f(2π3)=﹣f (π6),则f (x )的最小正周期为 .题型四. 三角函数最值1.函数f (x )=15sin (x +π3)+cos (x −π6)的最大值为( ) A .65B .1C .35D .152.函数f (x )=cos (ωx +π3)(ω>0)在[0,π]内的值域为[﹣1,12],则ω的取值范围为( ) A .[32,53]B .[23,43]C .[23,+∞)D .[23,32]3.已知函数f (x )=cos2x +sin x ,则下列说法中正确的是( ) A .f (x )的一条对称轴为x =π4 B .f (x )在(π6,π2)上是单调递减函数C .f (x )的对称中心为(π2,0)D .f (x )的最大值为14.若0<x ≤π3,则函数y =sin x +cos x +sin x cos x 的值域为 .5.已知函数f(x)=2sinωx ⋅cos 2(ωx 2−π4)−sin 2ωx(ω>0)在区间[−2π5,5π6]上是增函数,且在区间[0,π]上恰好取得一次最大值1,则ω的取值范围是( ) A .(0,35]B .[12,35]C .[12,34]D .[12,52)6.已知函数f (x )=cos x •sin (x +π3)−√3cos 2x +√34,x ∈R (1)求f (x )的最小正周期;(2)求f (x )在闭区间[0,π2]上的最大值和最小值及相应的x 值;(3)若不等式|f (x )﹣m |<2在x ∈[0,π2]上恒成立,求实数m 的取值范围.题型五.三角函数零点1.已知函数f (x )=sin ωx −√3cos ωx (ω>0),若方程f (x )=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为 .2.已知函数f (x )=√3sin ωx cos ωx +cos 2ωx −12,(ω>0,x ∈R ),若函数f (x )在区间(π2,π)内没有零点,则ω的取值范围( ) A .(0,512] B .(0,512]∪[56,1112]C .(0,58]D .(0,56]∪[1112,1)3.函数f(x)=2sin(2ωx +π6)(ω>0)图象上有两点A (s ,t ),B (s +2π,t )(﹣2<t <2),若对任意s ∈R ,线段AB 与函数图象都有五个不同交点,若f (x )在[x 1,x 2]和[x 3,x 4]上单调递增,在[x 2,x 3]上单调递减,且x 4−x 3=x 2−x 1=23(x 3−x 2),则x 1的所有可能值是课后作业. 三角函数的图像与性质1.函数f (x )=A sin (ωx +φ)(A >0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g (x )=A sin ωx 的图象,只需将函数y =f (x )的图象( )A .向左平移π3个单位长度B .向左平移π12个单位长度 C .向右平移π3个单位长度D .向右平移π12个单位长度2.关于函数y =2sin (3x +π4)+1,下列叙述正确的是( ) A .其图象关于直线x =−π4对称 B .其图象关于点(π12,1)对称 C .其值域是[﹣1,3]D .其图象可由y =2sin (x +π4)+1图象上所有点的横坐标变为原来的13得到 3.已知函数f (x )=(12a −√3)sin x +(√32a +1)cos x ,将f (x )的图象向右平移π3个单位长度得到函数g (x )的图象,若对任意x ∈R ,都有g (x )≤g (π4),则a 的值为 . 4.已知函数f (x )=sin (ωx +φ)(ω>1,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4,0)对称,且在区间[0,π2]上是单调函数,则ω和φ的值分别为( )A .23,π4B .2,π3C .2,π2D .103,π25.已知函数f (x )=sin (ωx +φ),其中ω>0,|φ|≤π2,−π4为f (x )的零点:且f (x )≤|f (π4)|恒成立,f (x )在区间(−π12,π24)上有最小值无最大值,则ω的最大值是( )A .11B .13C .15D .176.已知函数f (x )=2sin (ωx −π6)sin (ωx +π3)(ω>0),若函数g (x )=f (x )+√32在[0,π2]上有且只有三个零点,则ω的取值范围为( )A .[2,113) B .(2,113) C .[73,103) D .(73,103)。

最新三角函数概念图像与性质复习题型总结(最全)

三角函数概念和性质复习1.终边相同的角: 与角α终边相同角的集合为(1)试写出与角16800终边相同的最小正角和最大负角. (2)已知α与0240角的终边相同,则2α为第 象限角. (3)第二象限角的集合为________________________________________ (4)如果角α为第三象限角,则2α为第________________象限角 2.弧度制 (1)0180rad π= ,01180rad π=,1801rad π=(2)弧长公式:l = ,扇形面积公式:s =(1)扇形的圆心角为1200,半径为6cm ,扇形的弧长是 cm.(2)若2弧度的圆心角所对的弧长为4cm ,则这个圆心角所在的扇形面积为 2cm . 3.任意角的三角函数定义角α终边上任意一点P 的坐标(,)x y ,它与原点的距离是(0)r r =.规定:sin α= ;cos α= ;tan α= (0)x ≠. (1)①已知角α的终边经过点(5,12)-,则sin cos αα-= .②已知角α的终边过点(,6)P x --,且5cos 13α=-,则x =. ③已知角α的终边在直线y =上,则sin α= ;tan α= . (2)特殊角的三角函数:(1)已知0tan cos <⋅θθ,则角θ是第 象限角. (2)设角α是三角形的一个内角,在sin ,cos ,tan ,tan2αααα中, 有可能取负值.(3)函数cos sin tan sin cos tan x x xy x x x=++的值域为 . 5.同角三角函数关系: ①平方关系: ;②商关系: . (1)①已知4sin 5α=,且α是第二象限角,则cos α= ;tan α= . ②若12tan ,(,0)52παα=-∈-,则sin α= ;cos α= . ③已知sin α=,则44sin cos αα-的值为__________. (2)化简:①若α是第二象限角,则tan = ; = ; ③若(,0)2πα∈-,=(3)已知tan()3πα-=-.①求sin α+cos αsin α-cos α的值;②求sin αcos α-sin 2α的值.(4)①已知sin cos αα+=sin cos αα及44sin cos αα+的值.6.诱导公式(1)求值:①4sin3π= ;②19cos 4π= ;③17tan()6π-= . (2)已知cos α=,且(,0)2πα∈-,则sin(πα-)= . (3)整体角思维应用(角的内在关系)①已知1sin()123πα+=,则7cos()12πα+= . ②已知01cos(75),3α+=且018090α--<<,则0cos(15)α-= . ③已知1sin(),64x π+=则25sin()sin ()63x x ππ-+-= . 7.三角函数的周期设,,A ωϕ为常数,且0,0A ω≠>,则 s i n (y A x ωϕ=+的周期T= ;cos()y A x ωϕ=+的周期T= ; t a n ()y A x ωϕ=+的周期T= . (1)①函数cos(2)3y x π=-的最小正周期是 ; ②函数tan(3)6y x ππ=+的最小正周期是 。

三角函数概念图像与性质复习题型总结(最全)

三角函数概念和性质复习1.终边相同的角: 与角α终边相同角的集合为(1)试写出与角16800终边相同的最小正角和最大负角. (2)已知α与0240角的终边相同,则2α为第 象限角.(3)第二象限角的集合为(4)如果角α为第三象限角,则2α为第象限角2.弧度制 (1)0180rad π= ,01180radπ=,1801rad π=(2)弧长公式:l = ,扇形面积公式:s =(1)扇形的圆心角为1200,半径为6,扇形的弧长是 . (2)若2弧度的圆心角所对的弧长为4,则这个圆心角所在的扇形面积为 2cm .3.任意角的三角函数定义角α终边上任意一点P 的坐标(,)x y ,它与原点的距离是(0)r r =.规定:s i n α= ;cos α= ;tan α=(0)x ≠.(1)①已知角α的终边经过点(5,12)-,则sin cos αα-= .②已知角α的终边过点(,6)P x --,且5c o s 13α=-,则x = .③已知角α的终边在直线y =上,则sin α= ;tan α= .(2)特殊角的三角函数:(1)已知0tan cos <⋅θθ,则角θ是第 象限角. (2)设角α是三角形的一个内角,在s i n ,c o s,t a n,t a n2αααα中, 有可能取负值. (3)函数cos sin tan sin cos tan x x xy x x x=++的值域为 .5.同角三角函数关系: ①平方关系: ;②商关系: .(1)①已知4sin 5α=,且α是第二象限角,则cos α= ;tan α= .②若12tan ,(,0)52παα=-∈-,则s i n α= ;cos α= .③已知sin α=,则44sin cos αα-的值为.(2)化简:①若α是第二象限角,则tan = ;②= ; ③若(,0)2πα∈-,则=(3)已知tan()3πα-=-.①求的值;②求αα-2α的值.(4)①已知sin cos αα+=sin cos αα及44sin cos αα+的值.6.诱导公式tan(2)k πα+=(1)求值:①4sin3π= ;②19cos4π= ;③17tan()6π-= . (2)已知cos 3α=,且(,0)2πα∈-,则(πα-)= .(3)整体角思维应用(角的内在关系)①已知1sin()123πα+=,则7cos()12πα+= . ②已知01co s (75),3α+=且018090α--<<,则0co s (15)α-= . ③已知1sin(),64x π+=则25sin()sin ()63x x ππ-+-= . 7.三角函数的周期设,,A ωϕ为常数,且0,0A ω≠>,则 sin()y A x ωϕ=+的周期 ;cos()y A x ωϕ=+的周期 ; t a n ()y A x ωϕ=+的周期 .(1)①函数cos(2)3y x π=-的最小正周期是 ; ②函数tan(3)6y x ππ=+的最小正周期是 。

三角函数的图像和性质知识点讲解+例题讲解(含解析)

三角函数的图像与性质一、知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )π3.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期. (2)正切曲线相邻两对称中心之间的距离是半个周期.(3).对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )解析 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条. (2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 答案 (1)× (2)× (3)× (4)√2.若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2解析 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 答案 A3.函数y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为________.解析 由-π2+k π<2x -3π4<π2+k π(k ∈Z ), 得π8+k π2<x <5π8+k π2(k ∈Z ),所以y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 答案 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2解析 由题意T =2π2=π. 答案 C5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65B.1C.35D.15解析 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝ ⎛⎭⎪⎫x +π3,函数的最大值为65. 答案 A6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________.解析 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 答案 -π6考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x |x ≠π6 B.⎩⎨⎧⎭⎬⎫x |x ≠-π12 C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z ) D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 解析 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56 π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 答案 (1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.解析 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .答案(1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z (2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________. (3)函数y =sin x -cos x +sin x cos x 的值域为________.解析 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3. (2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2 .所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 答案 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( )A.4B.5C.6D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________. 解析 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π. 答案 (1)B(2)⎣⎢⎡⎦⎥⎤π3,π考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z )C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . 答案 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c解析 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6, ∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 答案 A角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π解析 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.答案 A【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( )A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增 C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增(2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数,∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32.答案 (1)C (2)sin 68°>cos 23°>cos 97° (3)32考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( ) A.-π6 B.π6 C.-π3 D.π3解析 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3, 由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ). ∵|θ|<π2,∴k =-1时,θ=-π6. 答案 (1)B (2)A角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称 C.关于直线x =π3对称 D.关于直线x =π6对称解析 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33,所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. 规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x1+tan 2x的最小正周期为( )A.π4B.π2C.πD.2π(2)设函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3,则下列结论错误的是( )A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6 D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减解析 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .f (x )=sin x cos x 1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x ,∴f (x )的最小正周期T =2π2=π.(2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确.C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x+π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.答案 (1)C (2)D三、课后练习1.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为( )A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ) 解析 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4. 令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ). 答案 D2.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( ) A.ω=23,φ=π12 B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24解析 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12.答案 A3.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________.解析 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ),得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 答案 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z )4.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23.5.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.解析 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2. 答案 π26.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π解析 ∵y =2⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π.答案 C7.(2019·石家庄检测)若⎝ ⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8解析 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6.答案 C8.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32 C.2 D.3解析 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 B9.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2解析 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2.答案 C10.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 答案 2311.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 解 (1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π, ∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4. 令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). 注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8; 同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.。

三角函数图像及其性质(高一复习)

三角函数图像及其性质【知会】三角函数的图像,五点作图法;定义域、值域;奇偶性、单调性、最值与变量【核心问题】考点一:三角函数的图像作法及其运用例1.(1)求作函数y=-2cos x +3的一个周期内的简图,并说明函数取得最小值是x 的值。

(2)画出函数x x f tan )(=和x x f tan )(=的简图【练习】(1)已知函数1)sin()(++=φϖx A x f 满足)4()4(t f t f -=+ππ,1)cos()(-+=φϖx A x g 则=)4(πg () A. 21- B. 21 C. -1 D.1 (2)x x cos =的根个数是______.考点二:三角不等式的求解(简单三角不等式用单位圆,涉及多个不等式用数轴求交集) 例2.求解满足23sin 21≤<x 的x 集合。

【练习】(1)函数216)cos 22lg()(x x x f -+-=的定义域为____________.(2)函数)4tan()(π+=x x f 的定义域为____________.(3)函数x x f tan 3)(-=的定义域为____________. (4)函数1tan 1)(-=x x f 的定义域为____________. (5)函数x x x f tan 1lg 1tan )(-++=的定义域为____________.考点三:三角函数的周期问题(公式,图像法)例3.求下列函数的周期。

(1)y =3tan(21x -)4π (2)y=cos2x (3))431sin(π-=x y (4)x y cos = 【练习】(1)函数)122cos(3π+=x y 的最小周期为________; (2)x x y tan tan +=的最小周期为________;题型四:三角函数的奇偶性问题(判断方法:定义法、图象法、简缩思维法)例4.判断下例函数的奇偶性(1)x x f 31sin 2)(= (2))2343sin()(π+=x x f (3)x x f sin 2)(=(4)1cos cos 1)(-+-=x x x f(5))343tan()(π+=x x f (6)xx x f cos 143tan )(+= 【练习】(1)函数11)(,1cos )(3=+=a f x x x f ,则._______)(=-a f (2)函数)0(),31sin()(πφφ≤≤-=x x f 是实数集上的偶函数,则.______=φ (3)关于函数)tan()(φ+=x x f 的以下几种说法:A.对任意)(,x f φ的都是非奇非偶函数B.)tan()(φ+=x x f 的图像关于(0,2φπ-)对称C.)tan()(φ+=x x f 的图像关于(0,φπ-)对称D.)tan()(φ+=x x f 是以π为最小正周期的周期函数(4))32tan(3)(π+=x x f 的对称中心坐标是______________________.题型五:三角函数的单调性及运用(注意复合函数单调性规律,三角函数的单调区间记忆,计算) 例5.(1)求函数)43sin(2)(π+-=x x f 的单调递减区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数图像与性质 1.正弦函数、余弦函数、正切函数的图像

1-1

y=sinx

-32-52-727252322-2-4-3-2432-

oyx

1-1

y=cosx

-3

2

-5

2-727252322-2-4-3-2432

-oyx

y=tanx3

2

2-

3

2-

-

2o

yx 2.三角函数的单调区间: xysin的递增区间是2222kk,)(Zk,递减区间是



23222kk,)(Zk

xycos的递增区间是kk22,)(Zk,递减区间是kk22,)(Zk

xytan的递增区间是22kk,)(Zk, 3.函数BxAy)sin(),(其中00A 最大值是BA,最小值是AB,周期是2T,频率是2f,相位是x,初相是;其图象的对称轴是直线)(2Zkkx,凡是该图象

与直线By的交点都是该图象的对称中心。 4.由y=sinx的图象变换出y=sin(ωx+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。 途径一:先平移变换再周期变换(伸缩变换)

先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将

图象上各点的横坐标变为原来的1倍(ω>0),便得y=sin(ωx+)的图象。 途径二:先周期变换(伸缩变换)再平移变换。 先将y=sinx的图象上各点的横坐标变为原来的1倍(ω>0),再沿x轴向

左(>0)或向右(<0=平移||个单位,便得y=sin(ωx+)的图象。 5.由y=Asin(ωx+)的图象求其函数式: 给出图象确定解析式y=Asin(ωx+)的题型,有时从寻找“五点”中的第一零点(-,0)作为突破口,要从图象的升降情况找准..第一个零点的位置。

6.对称轴与对称中心: sinyx的对称轴为2xk,对称中心为(,0) kkZ; cosyx的对称轴为xk,对称中心为2(,0)k; 对于sin()yAx和cos()yAx来说,对称中心与零点相联系,对称轴与最值点联系。 7.求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A、的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; 8.求三角函数的周期的常用方法: 经过恒等变形化成“sin()yAx、cos()yAx”的形式,在利用周期公式,另外还有图像法和定义法。

9.五点法作y=Asin(ωx+)的简图:

五点取法是设x=ωx+,由x取0、2π、π、2π3、2π来求相应的x值及对应的y值,再描点作图。 四.典例解析

题型1:三角函数的图象 例1.(2000全国,5)函数y=-xcosx的部分图象是( ) 解析:因为函数y=-xcosx是奇函数,它的图象关于原点对称,所以排除A、C,当x∈(0,2)时,y=-xcosx<0。答案为D。

题型2:三角函数图象的变换 例2.试述如何由y=31sin(2x+3π)的图象得到y=sinx的图象。 解析:y=31sin(2x+3π) )(纵坐标不变倍横坐标扩大为原来的3πsin312xy

xysin313π纵坐标不变

个单位图象向右平移

xysin3横坐标不变

倍纵坐标扩大到原来的

另法答案: (1)先将y=31sin(2x+3π)的图象向右平移6π个单位,得y=31sin2x的图象; (2)再将y=31sin2x上各点的横坐标扩大为原来的2倍(纵坐标不变),得

y=31sinx的图象;

(3)再将y=31sinx图象上各点的纵坐标扩大为原来的3倍(横坐标不变),即可得到y=sinx的图象。

例3.(2003上海春,15)把曲线ycosx+2y-1=0先沿x轴向右平移2个单位,再沿y轴向下平移1个单位,得到的曲线方程是( ) A.(1-y)sinx+2y-3=0 B.(y-1)sinx+2y-3=0

C.(y+1)sinx+2y+1=0 D.-(y+1)sinx+2y+1=0

解析:将原方程整理为:y=xcos21,因为要将原曲线向右、向下分别移 动2个单位和1个单位,因此可得y=)2cos(21x-1为所求方程.整理得(y+1)sinx+2y+1=0. 点评:本题考查了曲线平移的基本方法及三角函数中的诱导公式。如果对平

移有深刻理解,可直接化为:(y+1)cos(x-2)+2(y+1)-1=0,即得C选项。 题型3:三角函数图象的应用 例4.(2003上海春,18)已知函数f(x)=Asin(ωx+)(A>0,ω>0,x∈R)在一个周期内的图

象如图所示,求直线y=3与函数f(x)图象的所有交点的坐标。

解析:根据图象得A=2,T=27π-(-2)=4π,∴ω=21,∴y=2sin(2x+),

又由图象可得相位移为-2,∴-21=-2,∴=4.即y=2sin(21x+4)。

根据条件3=2sin(421x),∴421x=2kπ+3(k∈Z)或421x=2kπ+32π(k∈Z),∴x=4kπ+6(k∈Z)或x=4kπ+65π(k∈Z)。 ∴所有交点坐标为(4kπ+3,6)或(4kπ+3,65)(k∈Z)。点评:本题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力。 题型4:三角函数的定义域、值域 例5.(1)已知f(x)的定义域为[0,1],求f(cosx)的定义域; (2)求函数y=lgsin(cosx)的定义域; 分析:求函数的定义域:(1)要使0≤cosx≤1,(2)要使sin(cosx)>0,这里的cosx以它的值充当角。

解析:(1)0≤cosx<12kπ-2π≤x≤2kπ+2π,且x≠2kπ(k∈Z)。

图 ∴所求函数的定义域为{x|x∈[2kπ-2π,2kπ+2π]且x≠2kπ,k∈Z}。 (2)由sin(cosx)>02kπ<cosx<2kπ+π(k∈Z)。又∵-1≤cosx≤1,∴0<cosx≤1。故所求定义域为{x|x∈(2kπ-2π,2kπ+2π),k∈Z}。 点评:求三角函数的定义域,要解三角不等式,常用的方法有二:一是图象,二是三角函数线。

题型5:三角函数的单调性 例6.求下列函数的单调区间: (1)y=21sin(4π-32x);(2)y=-|sin(x+4π)|。

分析:(1)要将原函数化为y=-21sin(32x-4π)再求之。(2)可画出y=-|sin(x+4π)|的图象。解:(1)y=21sin(4π-32x)=-21sin(32x-4π)。 故由2kπ-2π≤32x-4π≤2kπ+2π。3kπ-8π3≤x≤3kπ+8π9(k∈Z),为单调减区间;由2kπ+2π≤32x-4π≤2kπ+2π3。3kπ+8π9≤x≤3kπ+8π21(k∈Z),为单调增区间。∴递减区间为[3kπ-8π3,3kπ+8π9], 递增区间为[3kπ+8π9,3kπ+8π21](k∈Z)。 (2)y=-|sin(x+4π)|的图象的增区间为[kπ+4π,kπ+4π3],减区间为[kπ-4π,kπ+4π]。

-54-34745434

4-

4o

y

x

题型6:三角函数的奇偶性 例7.(2001上海春)关于x的函数f(x)=sin(x+)有以下命题: ①对任意的,f(x)都是非奇非偶函数; ②不存在,使f(x)既是奇函数,又是偶函数; ③存在,使f(x)是奇函数; ④对任意的,f(x)都不是偶函数。 其中一个假命题的序号是_____.因为当=_____时,该命题的结论不成立。 答案:①,kπ(k∈Z);或者①,2+kπ(k∈Z);或者④,2+kπ(k∈Z) 解析:当=2kπ,k∈Z时,f(x)=sinx是奇函数。当=2(k+1)π,k∈Z时f(x)=-sinx仍是奇函数。当=2kπ+2,k∈Z时,f(x)=cosx,或当=2kπ-2,k∈Z时,f(x)=-cosx,f(x)都是偶函数.所以②和③都是正确的。无论为何值都不能使f(x)恒等于零。所以f(x)不能既是奇函数又是偶函数。①和④都是假命题。 点评:本题考查三角函数的奇偶性、诱导公式以及分析问题的能力,注意k∈Z不能不写,否则不给分,本题的答案不惟一,两个空全答对才能得分。

题型7:三角函数的周期性

例8.设)0(cossin)(xbxaxf的周期T,最大值4)12(f, (1)求、a、b的值; (2)的值终边不共线,求、、的两根,为方程、、若)tan(0)(xf。

解析:(1) )sin()(22xbaxf, T, 2, 又 )(xf的最大值。4)12(f, 224ba ① ,且

122cosb122sina4②,由 ①、②解出 a=2 , b=3.

(2) )32sin(42cos322sin2)(xxxxf, 0)()(ff, )32sin(4)32sin(4, 32232k, 或 )32(232k, 即 k (、 共线,故舍去) , 或

6k,33)6tan()tan(k )(Zk。

点评:方程组的思想是解题时常用的基本思想方法;在解题时不要忘记三角函数的周期性。

题型8:三角函数的最值

例9.(2000京、皖春理,10)函数y=xxcossin21的最大值是( )

相关文档
最新文档